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A LEBESGUE DECOMPOSTION FOR VECTOR
VALUED ADDITIVE SET FUNCTIONS

THOMAS P. DENCE

Our purpose is to show that several recent results dealing
with a Lebesgue decomposition of vector valued set functions
can be verified by using an earlier result due to R. B. Darst
[3].

I* Introduction* In 1963 R. B. Darst established a result giving
the Lebesgue decomposition of s-bounded elements in a normed Abelian
group with respect to an algebra of projection operators. As a result,
one can establish the decomposition of s-bounded additive functions
defined on an algebra of sets.

New results have emerged since then for the decompositions of
finitely additive and countably additive set functions defined on an
algebra of sets and with values lying in a Banach space. In particular,
there is a theorem by J. Brooks [1] (1968) and one by J. Uhl [5]
(1970). We shall show that both are consequences of the theorem by
Darst, thus unifying the three results.

THEOREM (Darst). Let G be a generalized, complete normed

Abelian group, which means

(1) l|0|| = 0,
(2) if g Φ 0 then 0 < \\g\\ ^ ©o, and
(3) only the subgroup {g e G: \\g\\ < °o} need be complete. Let

T be a Boolean algebra of projection operators defined on G, with
the property that if tlf i2 e T with tx ^ ίs(^Λ = *i) then \\ tx(g) || 5j \\t2(g) II
for all g in G. For x > 0 we let Tx c T possess the properties

(1) tx e Tx and t e T implies ttx e Tx, and
( 2 ) txe Tx and ty 6 Ty implies txVtye Tx+y. Define a function

Y:G->B by Y(g) = l i m ^ [sup \\t(g)\\: teTx]. Let feG be bounded
and s-bounded, i.e., for every sequence {ίj of pairwise disjoint
elements of T, £<(/)—+0. Then there exists unique elements h,seG
such that f = h + s and

( 1 ) Y(h) = 0, and
(2) given ε > 0 there exists teTe such that | |ί'(s)| | < ε.

II* First result* We now state Brooks' theorem and show that
it is a special case of Darst's theorem.

THEOREM (Brooks). Let X be a Banach space and Σ any σ-
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algebra of sets. Let u: Σ—+X be countably additive, and let β be
an outer measure on Σ. Then there exists unique mappings uL, u2:
Σ —> X, both countably additive, such that u — ux + u2 and also

(1) ut is β-continuous (β(En) —> 0 implies ut(En) —+ 0)
(2) u2 is β-singular (there exists a set EeΣ such that β(E) —

0 and u2(E) = u2(E f] E) for all sets EeΣ).

Proof. Let G = {countably additive mappings from Σ to X}.
Then G is an Abelian group under addition. Define a norm on G by
HÎ III = sup {\\u(E)\\: Ee Σ). First we show that G is a complete
normed space whose elements are bounded and s-bounded.

Let ueG, and define a set EeΣ to be ^-bounded if the set
{\\u(A)\\: Ae Σ, AaE} is a bounded set of real numbers. If |||i&|[ί<oo
then there exists a sequence {En} from Σ such that \\u(En)\\ > n.
Then E = Un=i EneΣ and is not ^-bounded. But ^(i?) e X implies
\\u(E)\\ < oo. If N>2\\u(E)\\ then there exists a set A c i ? with
\\u(A)\\>N. Thus | | M ( J £ - A) || = \\u(E) - u(A)\\^\\u(A)\\~\\u(E)\\ >
(l/2)iV. But E being unbounded implies either 4 or £ - 4 is also
unbounded, and both of these sets have "large" measure. Continuing
the same procedure, with whichever of the above two sets is un-
bounded, yields a decreasing sequence of sets {An} c Σ such that
|| u(A%) || > n. But u{[\m An) = lim u(An) implies || ^(lim A%)\\ = oo.
This is impossible since ^(lim An) e X. Hence every element of G is
bounded.

Let {un}(zG be Cauchy; thus s u p ^ \\nn(E) - um(E)\\ -*0. So
given any EeΣ, the sequence {un(E)} is Cauchy, and thus converges
to u(E). To show ueG, first let {At} c Σ be pair wise disjoint. Now
u is bounded since \\\un — %m111 < ε for all n, m ^ N implies 111u\\\\ ^
Ill^lll + ε < oo. It can easily be shown that u is finitely additive.
Since uN(\J?=t Aτ) e X this implies \\uN(\J Aτ)\\ is finite, and thus

list
II ί= i

is finite. Given ε > 0 there exists a positive integer M such that
||Σ£=i Λ̂r(̂  i) ~ ΣΓ=i^(^-i)ll < ε for all n, m ^ M. Then for all m ^
M we have ||^(UΓ=«+iΛ)ll ^ ε> a n d , for large fc, it follows that

u

^ ε +

< 2ε .

Finally
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( U U ~ Σ
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— 0

by the previous statement. Thus u(\J?=ί A%) — ΣΠ=i u(Ai) and G is
complete.

The group G thus fits the hypothesis of Darst's theorem. The
elements of T are the projection operators induced by the elements
of Σ, i.e., t e T corresponds to some set EeΣ, say t Ξ= tE, so that
tE(u)(F) = u(Ff)E). Then tE ^ tF if and only if EaF, and in that
case \\\tE(u)\\\ ^ |||tF(w)||| for all u. For α; > 0, let T. = {tEe T: β(E) ^
x}. Then Tx possesses the two properties

(1) tEeTx and tF e Γ implies ί ^ = ^ n ί . 6 Tx, and
(2) έ £ 6Γ, and tFe Ty implies tE V tF = ^U J Pe Γx+lί.

Now t6 6 G is s-bounded if for every sequence {ίj c Γ of disjoint
elements, i.e., tt = ί£i with the ^ pairwise disjoint, we have |||ί#4(w)||| —>
0. To show that every u e G is s-bounded, first let {.SJ aΣ be
pairwise disjoint; so \JZ=IEiβΣ. Thus u({jEt)eX and ί*(UjB<) =
Σwί-By. The sequence of partial sums Sn = Σ?=i^(^i) converges
to w(U Et), and hence is Cauchy. Thus \\Sn- Sm\\ = \\ Σ?= +i^(^i)ll <
e for all n, m greater than some positive integer N. In particular,
for m = n - 1, ||w(^n)|| < e for all w > iSΓ. Thus ||%(£?,)!! —0. Con-
sequently, given any sequence {Ft} c Σ, it follows that 11̂ (23̂  ΓΊ 2̂ )11 —>
0, which implies sup^^ \\u(Ei ΓΊ F)\\ —>0. Thus ^ is s-bounded.

By applying Darst's theorem, we know there exist unique elements
ulf u2e G such that u = ^ + u2 and

1i) Y(Uι) = 0, and
(2) given ε > 0 there exists tE e Tε such that ||| tE,(u2) \\\ < ε. It

remains to show that ux is /3-continuous, u2 is /3-singular and that
they are unique.

Let {En}aΣ with β(En)->0. Then Y(ut) = 0 implies

= lim [sup ||ux(Er\F)\\: β(E) ^x,
ίc->0

= lim [sup ||uι{En n F)\\: Fe Σ] .
n*oo

Letting F — En gives || ̂ (2^)11 —>0, so u^E^-^0 and ^ is then β-
continuous.
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From (2), given εn = 2~n there exists tEne Ttn such that

This means supFeΣ \\u2(KnF)\\ < 2~n, so if H(zE'n then |N 2(iϊ) | | < 2~\
Let E: = \jUn7=iE^ Then j& c ^ and | |wa(J5*)| |<2Λ Note
that JE? aEϊciEfc:--.. Letting J57* = U- ^7* = lim #* gives #* e 2"
and

= lim \\u2(E%)\\ ^ Km 2"n = 0 .

Let ί/ei; be arbitrary. To show u2{E) = u2(E f) E) where i? is the
desired set need to prove w2 is /3-singular, it suffices to show u2(E f]
Ef) = 0. Our set i? will be E = J^*'. Then Ef)E' = EΓ)E* = En
[Un E:] - limn (£? Π #*). Then

- \\limu2(Ef]E:)\\

= lim \\u2(Ef)E:)\\

^ lim 2~n

= 0 .

So u2(Er)E') = 0. And finally, ί £ n e Γεw implies /3(^w) ^ 2~w for all
^. This implies £(U*a» ^ ) ^ 2~% + 2-""1 + . . . = 21"*. Thus

β{E) = βiE**) = £ ( n U ^ ) ^ ^(U ^ ) for all n

^ Σ βΦt) for all n

= 2ι~n for all n .

Therefore βφ) - 0.
Finally, to verify the uniqueness of the decomposition of u, we

shall show that if u = w1 + w2 with w1 being /3-continuous and w2

being ^-singular then u± = wt and u2 = w2. Now

= lim[sup|||tJ!(wI)|||:ί ίeT.]
as-*O

= lim [sup || Wl(E Π F)\\: β{E) £x,
x-*Q+

But β(E Π F) tends to zero as x tends to zero. Hence wt{E Π F) —>
0, which implies ^(^0 = 0.

Since w2 is /3-singular, this means there exists a set E* e Σ such
that β(E*) = 0 and ^.(JK) = wE(£? Π £?*) for all EeΣ. But then ί̂ * e
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Tε and | | | ^ ( ^ 2 ) | | | < e. The uniqueness of the decomposition from
Darst's theorem now implies uλ = w1 and u2 — w2 The proof is complete,
and one concludes that Brooks' theorem is a special case of Darst's
theorem.

III Second result* We now state the theorem by Uhl and
derive the same result as before.

THEOREM (Uhl). Let F: Σ -+X be a finitely additive vector meas-
ure defined on a Boolean algebra, and where X is a Banach space.
Suppose F satisfies any of the three equivalent condition:

(1) F is continuous with respect to some finitely additive
nonnegative measure u:Σ~+ Reals,

(2) F(Σ) is conditionally weakly compact, or
(3) F(Σ) is contained in a weakly complete subset of X.

If X is a finitely additive nonnegative measure on Σ, then F is
uniquely representable as F = G + H where G, H are finitely additive
vector measures with G continuous with respect to X and x*H and X
mutually singular for all x* in the dual space X*. If F and X are
both countably additive, then so are G and H.

Proof. Let gf = {F: Σ->X where F is finitely additive}. Then
5^ is Abelian group under addition, and a norm can be defined on
gf by HIF||| = sup*eΓ \\F(E)\\. To show (gf, ||| |||) is complete, let
{Fn} be Cauchy in gf. Then sup^eΓ \\Fn(E) - Fm(E)\\~+0, so {Fn{E)}
is Cauchy in X for each E, and denote its limit by F(E). Letting
{Ek} c Σ be pairwise disjoint implies

F(\J Et) = lim Fn ( ύ E) = lim £ FΛ(E<)

Thus F is finitely additive, and the completeness is established. The
subspace of bounded elements is therefore complete, so ^ is a gener-
alized, complete, normed Abelian group. But not every element of
5^ is bounded. For example [4], let X = Reals and let Σ be the set
of all finite disjoint unions of right-hand closed subintervals (a, b]
where 0 < a < b ^ 1. Define F(a, b] — g(b) — g(a) where

(0 if a? is irrational

[n if x = m/n, (m, n) = 1 .

Extend F by linearity. Then F is well-defined and finitely additive,
b u t | | | F | | | = 00.
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But anyway, ^ fits into the hypothesis of Darst's theorem. The
elements of T are, as before, the projection operators induced by
the elements of Σ, i.e., teT corresponds to some set 2?eΣ, say t ==
tE, so that tE{F){E,) = FiEnE,). Then tEl ^ tE% if and only if Eιa

Et, a n d hence 111^(20111 ^ III M - ^ ) 111- F o r x > °> d e f i n e Γ* = feG Γ :

λ(J5) ^ «}. Then Γ̂  possesses the desired properties. As before,
F e ^ is s-bounded if for every sequence {tEi} c Γ of pairwise disjoint
operators we have tEi(F)~->0. We now show that if Fe& is con-
tinuous with respect to some finitely additive nonnegative measure
u:Σ-+ Reals, then F is s-bounded. Let {i?JcΣ be pairwise disjoint.
Then φ and φf = whole space are in Σ. Since u: Σ —•Reals this implies
u(φ') = c < oo. Thus .Se Σ implies w(£?) ^ e. So w(^) ^ u(Eι U J58) ^
• ^ ^(U?=i -̂ <) = * = c yields a monotone increasing sequence of
positive real numbers bounded above, hence the sequence converges.
Thus given ε > 0 there exists a positive integer Nsuch that n,m^N
implies u(U?=i Et) — U(\JT=I E%) < ε. Letting m = n — 1 gives ^CEU <
ε, and thus u(En)~+0. But i*7 is continuous with respect to u, so
F(En)—>0, and consequently F is s-bounded.

Now we can show that the same conditions on F imply F is
bounded. As before, define a set E to be jF-bounded if the set
{\\F(A)\\: AczE, AeΣ) is a bounded set of positive numbers. If we
assume HI-FHI = °o then the whole space, call it S, is not F-bounded.
If N> 2\\F(S)\\ then there exists a set ExeΣ such that | |F(£Ί)| | >
N. Hence \\F(S - J^)ll > (1/2)JV, and with S unbounded, then either
E1 or S — J5Ί is unbounded, with both of these sets having "large"
measure. Assuming S—E1is unbounded, and letting Nt>211 F(S — Eι)\\9

then there exists a set E2czS~E1 such that \\F(E2)\\>Nι Then
||2^((S - £Ί) - JSi)|| > (l/2)Nίf so S - E, contains two sets of "large"
measure, with one of them being unbounded, say E2. Continuing
this procedure yields a sequence of disjoint sets El9 (S — £Ί) — E2,
with each one of "large" measure. This contradicts the s-boundedness
of F.

Hence if Fe& is continuous with respect to u, then F is a
bounded and s-bounded element, Applying Darst's theorem yields
unique elements G, He & such that F = G + H and

(1) Y{G) = 0, and
(2) given ε > 0 there exists tEeTε such that |||ίfe,(.ff)||| < ε.
Condition (1) implies that G is continuous with respect to λ. To

see this, let {En}czΣ with \(En)-+0. Then Y(G) = 0 implies

O = lim[sup|||t(flr)|||:t€ΓJ

sc->0+

= lim [sup || G(E f) E*)\\: X(E) ^ x, E* e Σ]
1-0+
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lim [sup II G(E* n En) ||: E* e Σ] .
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Hence for # * = En we have || G ( ^ ) | | ->0, so ( )
Now let f e P , To show α*iϊ and λ are mutually singular

we must show that given ε > 0 there exists E* eΣ such that λ(i£*) <
ε and \x*H{E*r C\E)\ <s ίor all ί e Σ . It is impossible for ε = 0 in
the finite additivity case [2]. Letting ε > 0 we note that since x*
is continuous at 0 then there exists δε > 0 such that for zeX, \\z\\ <
δε implies \x*(z)\ < ε. Let ει < min(ε, δε). From condition (2), given
εx > 0 there exists E*eΣ such that tE*e Tεi and | | | ^ ( i ϊ ) | | | < εx. But
this means λ(#*) ^ ε, < ε and sup*βΓ \\H(Ef] E*')\\ < ex. Thus

\H(E*'ΓιE)\\<δt so |ί

Finally, to verify the uniqueness of the decomposition, let F =
Gi + .fiΓi with Gi continuous with respect to λ and #*i2Ί and λ mutually
singular for all £*eX*. Then

But E*)-»0 as ^ —0+, so 0 and thus Γ(G0 = 0.
We know there exists unique mappings G2, H2: Σ —> X such that

H, = GJ + iP, Γ(G2) = 0 and given ε > 0 there exists ί£ e Γe such

IIIM^2)!!! < £• W e k n o w t h a t b o t h x*Hi a n d α;*-flΓ2 a r e s i n ^ u l a r w i t h

respect to λ. One can easily show that x*^ — H2) is also λ-singύlar.
To see this, let ε > 0, then there exists sets Eu EzeΣ such that
λ ( ^ ) < ε/2 a n d \x*Hx{E[ (\E)\< ε/2 a n d \x*ΈL\E[ ϊ\E)\< ε/2 f o r a l l
EeΣ. Letting E^E.UE, gives λ( l)<εand | B * ( H I - H2)(E' Π
JS)| < e.

Now fli - £Γ2 = G2. If G2 ̂  0, then there exists a set S e Σ
such that G2(S) ̂  0. By the Hahn-Banach theorem there exists
^ e P such that |**G2(S)| = | |G 2(S)| | > 0. Let 0 < ε < (l/4)\x*(?(S)\.
Since x* is continuous at zero, there exists δε > 0 such that if ||a?|| <
δε then \x*(x)\<ε. And given δε > 0 there exists <5e > 0 such that
if X(E) < δε then supper II G2(£7 f]E)\\<δε. Letting e, < min {ε, δεf δε)
we know there exists a set £?*eΣ such that X(E*) < e, and ^{H, -
H2){E*f r\E)\<ex for all S e Σ .

Thus
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\x*G%S)\ :g \x*G%Sf)E*)\ + \x*G2(S Π E*')\

= \x*G*(Sf)E*)\ + |α;*(fli - H*)(SΠ

This is a contradiction, so G 2 Ξ 0 and Si. ΞΞ if2. The uniqueness of
the decomposition for Darst's theorem then implies G — GL and H =

This completes the proof that first the part of UhΓs theorem is a
special case of Darst's theorem. The second part is when F and λ
are both countably additive. But if we let *& = {countably additive
maps from Σ to X}, then (^, ||| |||) is complete, and the rest of the
proof is as in the first part of UhΓs theorem.
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