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THE KRULL INTERSECTION THEOREM

D. D. ANDERSON

Let R be a commutative ring, / an ideal in R, and A
an i?-module. We always have 0 £= 0s £ I(\~=1 InA £ f|ϊ=i JM.
where S is the multiplicatively closed set {1 — i\ie 1} and
0s = 0s Π A = {α G A13S 6 S 3 sα = 0}. It is of interest to know
when some containment can be replaced by equality. The
Krull intersection theorem states that for R Noetherian and
A finitely generated I Π*=i In A = Π~=i InA. Since Π »=i /"A
is finitely generated, f|*=i InA = 0s. Thus if I £ rad (i?), the
Jacobson radical of ϋ?, or R is a domain and A is torsion-
free, we have (]n=i InA. = 0. In this note we show that for
a Priif er domain R and a torsion-free ϋί-module A, I f|Γ=i ^nA =
nΓ=i/n-A We also consider the condition (*): Πn=Jn = 0 for
every ideal I in the commutative ring R. It is shown that
a polynomial ring in any set of indeterminants over a Noe-
therian domain and the integral closure of a Noetherian
domain satisfy (*).

Let R be a ring and A an JS-module. If x e R and xg Z(A), the
zero divisors of A, then (x) Π»=i {%Y A- = Π«=i 0&)n-A- Actually we can
take / to be invertible and A torsion-free. However, the assumption
xg Z(A) is essential. For example, let peR be neither a unit nor a
zero divisor and let F = Rx 0 (ΣΓ=i ^/*) be the free i2-moduίe on
{%9 Vi, V*, •}• Let A = F/G where G = (x-pyl9 x-p2y2, •••)»' ^ ^s n o t

difficult to see that (p) Γl*=i ( P ) ^ ^ flSU (2>)*-A Using this result,
one can show that the following are equivalent: (1) dim R = 0, (2)
for every finitely generated (principal) ideal / and every ϋ!-module A,
IΓin=ιInA = f\κ=ιInA. The first theorem gives another affirmative
case.

THEOREM 1. Let E be a reduced ring and let I be a finitely
generated ideal with rank 1 ^ 1 . Then Π"=i In ~ i*Π»=i In- If -B is
quasi-local or R is a domain, then Π»=i I" — 0.

Proof. First suppose i2 is a domain. By localization we can
assume Vi — M the maximal ideal of R. If B — Π~=i ^ ^ 0, then
χ/5" = Mj so there exists an integer m such that Im S JB. Then Im =
jm+i ^^hίch implies /m = 0 by Nakayama's lemma. Next suppose B
is quasi-local, by passing to R/P where P is a minimal prime we get
Π»=iIn £ p> S i n c e ^ i s reduced, we have Π»=i ^ £ nil (iί) = 0. The
general case now follows by localization.

Another affirmative case is R a Prϋfer domain and A a torsion-
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free i?-module. We first consider the quasi-local case.

LEMMA 1. Let V be a valuation domain, I an ideal in V, and
A a torsion-free V-module. Then ibe B = Π~=i InA where ie I and
be A implies i e Π»=iIn or beB. In particular, B — IB.

Proof. Suppose i g Π?=i In* then there exists an integer N such
that i e Γ'1 - F. Now ib e ImA for m > N implies ib = jNjm~Na for
some j e I and ae A. Now i & IN gives j N — si for some s e V. Hence
ib = sijm~Na so δ = sjm~Na e Im~NA since A is torsion-free. Therefore

THEOREM 2. Lei R be a Prufer domain, I an ideal in R, A a
torsion-free R-module, and B = Π*=i InA. Then B — IB.

Proof. Let y eB and J — (IB: y); it suffices to show J = R.
Let M be a fixed maximal ideal; we show that Jξ£M. Now
y e B Q BM ^ Γin=i IMAM = ΓM f[-=1 l;,AM by Lemma 1, so y = i2(b/s)

where iel, b e A, se R — M and b/s e Π»=i β ^ Let iV be any
maximal ideal of R, then i2b — syeBS f\n=i INAN SO by Lemma 1,
i e Πn=i /y or iδ e f|"=i I M In either case, ib e fl"=i /MJV for every
maximal ideal N of R, so ibeB. Therefore, s ej — ilί.

We remark that for a Prufer domain, ΠϊU ίn n^ed not be a
prime ideal, but is always a radical ideal.

Consider the condition (*) on a ring. Local rings and Noetherian
domains satisfy this condition. The next two propositions are straight
forward and the proofs are omitted.

PROPOSITION 1. If R satisfies (*), then Z(R) S rad (R). Conversely,
if R is Noetherian, then Z(R) £Ξ rad (R) implies (*).

PROPOSITION 2. // R satisfies (*), then RM satisfies (*) for every
maximal ideal M. If RM satisfies (*) for every maximal ideal M,
then n?=i I" = ί Π»=i I* for every ideal I in R. If Z(R) £ rad (R),
then R satisfies (*).

The next theorem generalizes the Krull intersection theorem to
rings which are locally Noetherian.

THEOREM 3. Let R be a ring and A an R-module such that
f|Γ=i-PMp = 0 for every Pespec(i2), then f\n=iInA = 0s for every
ideal I in R.

Proof. Let T be the saturat ion of S = {1 - ί\i e I}, so T =



THE KRULL INTERSECTION THEOREM 13

R - Lfpαβ^ Pa where S? = {Pe spec (R) | P Π Γ = 0}. Then setting
5 = n ? = i ^ 4 yields £ P £ Γ)Γ=I/MP = 0 for every Pe^. Hence
(T-'B^-ip = 0 for every PeSI but the Γ - ' P e ^ 7 are precisely the
prime ideals of T~ιR. Therefore T'XB = 0, hence B8 = 0 and the
result follows.

The next proposition will be used to prove that a polynomial
ring in any number of indeterminants over a Noetherian domain
satisfies (*).

PROPOSITION 3. Let R be a Noetherian ring, I an ideal in R[X],
and B = flSU In- Then B = (B Π R)R[X].

Proof. First suppose IΠ R = 0, we show that 2? = 0. Suppose
0 =£ #(#) G B, by the Krull intersection theorem there exists a poly-
nomial f(x) = aox

n + + anel such that #(x)(l — f{x)) = 0. Since
1 - fix) e Z(R[X]), there exists 0 Φ c e i2 such that c(l - /(a?)) = 0.
Hence 0 = ca0 = = can^ = c(αw - 1) so c = cαw. But cα% = c/(a?) e
IΠR = 0soc = can = 0, a contradiction. For the general case, let
J = /mni2, passing to (R/J)[X] yields £ g Ji2[Z], hence ί S f l ί i ^ n
R)[X] = (Bf] R)[X] £ B.

THEOREM 4. Le£ R be a Noetherian domain and T — R\{X^\ a
polynomial ring over R in any set {Xa} of indeterminants. Then
T satisfies (*).

Proof. We may assume the set of indeterminants is countable
and hence index it by the positive integers. By Proposition 2 we
may assume that (JS, ̂ ) is local and we only need show that Π2U Mn =
0 where M is a maximal ideal in T with M f] R = ^ C Let K be
the algebraic closure of £({2,5}) where {zβ} is an uncountable set of
indeterminants over k = R\^. There exists a local ring (B, N) with
B 3 R faithfully flat, N = ^€B and B/N = K [1]. Now £=) i2 faith-
fully flat implies MB[{XJ] Φ J5[{XJ] so MB[{XJ] £ ikf* a maximal
ideal in B[{XJ]. It is sufficient to show ΓI»=i^*Λ = 0. Since

[B[{Xt}]IM*:B/N]

is countable and i5/ΛΓ = K is uncountable and algebraically closed,
J3[{XJ]/ikP = iΓ. Thus M* = {^X,~ rl9 X2 - r2t . . .) for suitable
r f 6 J?. Since a given polynomial involves only finitely many indeter-
minants, it suffices to show Π?=i (~̂ C Xi ~ ru %m ~ ^m)n = 0 in B[XU

. . . , Xm]. Since (^% X, - rl9 . , Z m - < Γ ΓΊ 5[XX, , Xm_J = (^K
Xi — ru , Xm_! — rw_!)%, the result follows from Proposition 3 and
induction.
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The last theorem gives another class of rings where (*) holds.

THEOREM 5. Let R be Noetherian domain and R' its integral
closure. Then any ring between R and Rf satisfies (*).

Proof. Let R £ T £ Rr be a ring, since T £ R' is integral, any
ideal of T is contained in the contraction of an ideal of Rf, thus we
may assume T = Rf. It suffices to prove the result for (R, M) a
local domain. Now R £ R/N £ R/P, φ . . . © R/Pn £ {RjPy 0 0
(R/PJ where R is the completion of R, N = P, ΓV Π P%, and Px,
• , PTO are the minimal primes of JB. NOW each JR/P* is a complete
local domain, so each (R/Pi)' is a Noetherian domain and hence satisfies
(*). Every maximal ideal ^€ of R' has the form ^ = M* Π Rf

for some maximal ideal If* of CR/PO' Φ 0 (R/Pn)' [2, p. 119].
Hence M* = (Λ/PJ' 0 0 i\Γ0 0 (R/PJ where iV is a maximal
ideal in CR/P,)' for some i. Then Πί=i ^€n = Π?=i (Af* Π # T S
(Π^i M*%) n R = J, Π Λ' where /€ - (^/P,)' 0 0 0 0 . . . 0 (R/PJ.
Suppose Ii Π R' Φ 0, then 7, Π R Φ 0 since i? £ i?' is integral. But
0 ^ a e I; Π i? implies α e Pf £ ^(β), a contradiction.
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