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EXTENDIBILITY, BOUNDEDNESS AND SEQUENTIAL
CONVERGENCE IN SPACES OF

HOLOMORPHIC FUNCTIONS

WILLIAM R. ZAME

Let X be a compact subset of Cm and let έ?(X) be the
space of germs on X of functions holomorphic near X,
equipped with its natural locally convex inductive limit
topology. The object of this paper is to give, under a mild
topological assumption on X, an internal description of this
topology, and in particular, of the bounded sets and con-
vergent sequences. These results follow from a general
extendibility theorem. Surprisingly, the topological assump-
tion on X is necessary, and examples are constructed which
illustrate this point. A related local extendibility result is
also established.

The topology of έ?{X) may be described as follows. For each
open set U containing X, let έ?(U) denote the Frechet space of
holomorphic functions on U, with the topology of uniform conver-
gence on compact sets. Let ρπ: έ?{U)—> έ?{X) be the natural map.
The space έ?(X) is the inductive limit of the spaces ^(£7), and we
endow ^(X) with the locally convex inductive limit topology; i.e.,
the finest locally convex topology which renders each of the maps
pu continuous. Allan, Dales and McClure [2] have shown, using a
general result of Komatsu [10], that this topology is in fact the
finest (not necessarily locally convex) topology which renders the
maps pϋ continuous. Thus, an arbitrary subset &~ of &(X) is
closed if and only if Pΰι{^) is closed for each U. General func-
tional-analytic results (see Edwards [5] for example) imply that
έ?{X) is a complete, non-metrizable, locally convex space, and
describe the bounded sets and convergent sequences in έ?(X). In
particular, a subset & of έ?(X) is bounded if and only if there
is an open set U containing X and a bounded set &π in
such that pui&u) = &. Similarly, a sequence fu f2 in
converges to 0 if and only if there is an open set U containing X
and a sequence gu g2 in έ?( U) which converges to 0, such that
•Puiffi) — A for each i. It is then easy to see that a subset of ^(X)
is closed if and only if it is sequentially closed, so that despite its
non-metrizability, the topology of έ?{X) is determined by its con-
vergent sequences.

The above descriptions suffer from an unfortunate defect: they
are not internal. That is, given a family ^ of germs in
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it is usually not clear whether there is a neighborhood of X to
which all the elements of ^ can be extended. The purpose of this
note is to show that, under a very weak local connectedness
assumption on X, it is possible to give internal conditions on ^
which are necessary and sufficient for the existence of an open set
U containing X to which all the elements of J^~ extend (Theorem
1). Easy applications of this result yield internal descriptions of
the bounded sets in ^(X) (Corollary 2) and the convergent sequences
in έ?(X) (Corollary 3). These descriptions are in terms of the rate
of growth of successive derivatives of the functions in ^ 7 We con-
struct examples to show that the topological restrictions on X
cannot be removed (Theorem 4). Finally, we give a local version
of our extendibility result (Theorem 5). The methods employed may
be of interest in themselves and are largely topological.

The results in this paper answer a question raised by R. Aron
at the conference on Infinite-Dimensional Holomorphy. The author
would like to thank T. Hay den and T. Suff ridge for their kind
invitation to attend this Conference, and L. Mohler and D. Webster
for several helpful conversations.

If K, K' are compact subsets of X with K c K' then by K'/K
we mean the space formed from Kf by identifying K to a point;
we denote this point by K/K. We will say that X has property L
if for each point x in X there is a finite sequence Kt c K2 c c Kn

of compact connected subsets of X such that Kλ = {x}, Ki+JKt is
locally connected for i — 1, 2, . , n — 1, and X/Kn is locally con-
nected at KJKn. (For general information about point-set topology
we refer to Why burn [11]; we use Ahlfors and Sario [1] and Gunning
and Rossi [7] as references for complex analysis.) That property
L is in fact a very weak form of local connectedness may be seen
from the following example. Let CΊ be a Cantor set (i.e., a compact,
totally disconnected perfect set) in the interval {(x, y) e B2: 0 ̂  x ^ 1,
y = 0} which contains the point (1, 0) and let C2 be a Cantor set in
the interval {(x, y) e R2: 1 ^ x <̂  2, y = 1} which contains (1, 1). Let
X be the union of all straight-line intervals joining the point (1, 0)
to a point of C2 and all straight-line intervals joining the point
(1, 1) to a point of Ct Then X has property L but is not locally
connected at any point.

Let ^ be a subset of ^(X). We say that J^ is extendible if
there is an open set U containing X and a family ^ > c έ?(U) for
which Pui^u) = _ ^ If xeX, we say that the family ^ is
continuable at x if there is an open set Ux containing x such that
for every / in JF" there is a function /* in έ?(Ux) for which fx=f
in some neighborhood of x. Note that fx is a continuation of / into
Ux, but need not represent an extension of /. Note also that
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continuability at x is in fact an internal property, since it is
equivalent to the requirement that the radii of convergence of the
power series expansions (about x) of the elements of άf are bounded
away from 0, and this latter requirement can be expressed, via the
Hadamard radius formula, in terms of the values at x of the
elements of ^ and their derivatives. The following result is then
an internal characterization of the extendible subsets of έ?(X) when
X has property L. Although we state the result only for compact
subsets of Cw, it may be observed that the proof in fact carries
through verbatim for compact sets in an analytic space, or in a
complex manifold modelled on any metrizable topological vector
space.

THEOREM 1. Let X be a compact subset of Cm which has
property L. Then a subset ά^ of έ?(X) is extendible if and only
if JF* is continuable at each point of X.

Proof. It is evident that an extendible family is continuable at
each point, so we need to establish the converse. Note first of all
that there is no loss in assuming the family ά^ to be countable; say
^r = [fu f2y ...}. We will proceed by constructing a complex
manifold Σ on which all the functions in ^ "live", and then show
that Σ contains a copy of X. We will then "push down" a neighbor-
hood of X in Σ to obtain the desired extension in Cm.

For each x in X, let Ux be the neighborhood of x provided by
the definition of continuability at x, and let // be the continuation
of fj into Ux. Set

A = {(x, a): x e X, a e Ux) .

Note that A is the disjoint union of the collection {Ux} and thus
may be given the structure of a complex-analytic manifold (with
uncountably many connected components). Let p\A —>Cm be defined
by p(x, a) = a; p is easily seen to be a holomorphic local homeo-
morphism.

For each integer n, define an equivalence relation &n on A by
requiring that (x, a)&n(y, b) if a = b and // = // in a neighborhood
of the point a = b, for each j = 1, 2, , n. Let Σn be the quotient
space of A with respect to this equivalence relation, with the
quotient topology. We have the quotient map σn:A—>Σn and an
induced map τn: Σn —> Cm which are easily seen to be local homeo-
morphisms with τn°σn = p. Thus τn induces on Σn the structure
of a complex-analytic manifold and σn9 τn are holomorphic maps.
Finally let & be the equivalence relation on A defined by (x, a)&(y, b)
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if (x, a)&n(y, b) for all n. Let Σ be the quotient space of A with
respect to ^ as above we obtain local homeomorphisms σ:A—*Σ
and τ: Σ —> Cm such that τ ° σ = p. We also obtain natural maps
ζn:Σ—+Σn and ψn: Σn+ί—+Σn. When we equip Σ with the complex
structure induced by τ, we arrive at the commutative diagram of
complex-analytic manifolds and holomorphic local homeomorphisms
shown in the figure. This completes the construction of the desired
complex-analytic manifold Σ.

FIGURE

Now we show that Σ contains a copy of X. Define φ:X~>Λ
by φ(x) = (x, x). We wish to show that σoφ is a homeomorphism
of X into Σ; it is clearly one-to-one, so we need to establish its
continuity. For each x in X and each integer j , the functions fδ

and // have the same germ at x, and hence have the same germ
at all points y in some X-neighborhood of x. Hence for each x in
X and each integer n there is an X-neighborhood V of x for which
// and // have the same germ at y for each y in V and each j =
1, 2, , n. It follows easily that σnoφ = ζn°σ°φ is continuous for
each n. If Σ were the inverse limit of the spaces Σn we would
then have the continuity of σ<>φ; unfortunately, Σ does not carry
the inverse limit topology, so we use a different procedure.

We will proceed by establishing the following principle: if K, K'
are compact, connected subsets of X such that KczK', K'jK is
locally connected at KjK and (σ<χp) \ K is continuous, then (σoφ) \ Kf

is continuous at each point of K. Note first that σoφ(K) is a
compact connected subset of Σ on which τ is one-to-one. Since τ is
a local homeomorphism, a compactness argument allows us to find
a connected neighborhood V of σ o φ(K) in Σ such that τ \ V is a
homeomorphism onto the open set r ( F ) c C m . Let W be the connected
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component of r( F) ΓΊ K' which contains K; we claim that σ o φ( W) c
F. If this were not so, we could find a point w in W with
σ o φ(w) ί V and a point v in F for which τ(v) = w. It is evident
that the maps ζn collectively distinguish the points of Σ, so we can
find an index k for which ζk(w) Φ ζk(v). Note that ζk | V is one-to-one
since τ j F is one-to-one. Then if we set T = ζk°G

o(P(W), we see
that Γ contains ζkoσoφ(K), which is a subset of ζk(V), and also
contains ζk(w) which is a point not in ζfe(F). Since ζk°σ°φ is con-
tinuous on X, T is a connected set. On the other hand, τk is a local
homeomorphism and τk \ ζk( V) is easily seen to be a homeomorphism
onto τ(F), so that ζk(V) must be a connected component of τk\τ{V)).
Since T is a connected subset of τk\τ(V)) and meets ζk(V) it follows
that Taζk(V). This contradiction establishes our claim that
σ o <£>( W) c F. Now, τ I F is a homeomorphism onto τ( F), so τ | σ o <p( W)
is a homeomorphism onto W, and σ o >̂ | W is its inverse and is
therefore continuous. Since K'/K is locally connected at KjK, it
follows that W is a neighborhood of If in K', so that (σ o φ) | if' is
continuous at each point of K, which establishes the desired principle.

To see that σoφ is in fact continuous on X, let x be in X and
let Ku K2, , Kn be the sequence of compact connected sets whose
existence is guaranteed by the definition of property L. Since K2

is locally connected and σ © φ \ {y} is continuous for each y in K2,
application of the above principle to each of the pairs {?/}, K2 shows
that σoφ\K2 is continuous. Since Kz/K2 is locally connected, appli-
cation of the principle to the pair K2, iΓ3 and then to each of the
pairs {z}, K3 for each z in K3\K2 yields the continuity of σ<>φ\K3.
Continuing, we see that σoφ\Kn is continuous. Finally, application
of the principle to the pair Kn, X shows that σoφ is continuous at
each point of Kn, and in particular at x. Since x was arbitrary,
it follows that σoφ is a homeomorphism, as desired.

For each j , define a function /,- on Σ by fj(σ(x, a)) = //(α). It
is easily checked that f3- is in fact well-defined and holomorphic on Σ,
and that fj(σ(x, x)) = fj(x). Since σoφ(X) is a compact set in Σ and
τ\σoφ(X) is a homeomorphism, there is a neighborhood Q of
σoφ(X) in J such that τ\Q is a homeomorphism of Q onto the
open set τ(Q)(zCm. For each j , define a function #,• on τ(Q) by gά =
/ i 0 ^ ! ^ ) " 1 - It is easy to see that gό is a holomorphic extension of
fj to the open set τ(Q) containing X, so that the family J^ is indeed
extendible.

With the aid of this extendibility result, we can easily establish
the desired internal descriptions of the bounded sets and covergent
sequences in

COROLLARY 2. Let X be a compact subset of Cm which has
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property L and let JF' be a subset of έ?(X). Then J?~ is bounded
if and only if for each x in X there is a constant M such that

(B)

for each f in ^~ and each ku k2, , km.

Proof. That the bounded sets in <^(X) have this property
follows easily from an application of the Cauchy integral formula.
To establish the converse, we use the Hadamard radius formula to
conclude that &~ is continuable at each point of X. Theorem 1
allows us to conclude that there is an open set U containing X and
a family ^ ^ C ^ ( Ϊ 7 ) for which Pu(^u) = ά^. For each x in X,
choose a polydisk Dx centered at x and contained in U. Condition
(B) combined with a straightforward estimate using power series
shows that ^ ^ | Dx is bounded in έ7(Dx). Since X is compact, we
can choose a finite number of such polydisks DXi, DX2, , DXn, which
cover X. Set D = U DXi; then ^ \ W is a bounded set in
which is the desired result.

The proof of the following result requires only a slight modifica-
tion of the above and is omitted.

COROLLARY 3. Let X be a compact subset of Cm which has
property L. Then the sequence flf f2f converges to 0 in έ7{X) if
and only if for each x in X there is a constant M with the pro-
perty that for every ε > 0 there is an integer Nε such that

(C)

for every ku , km and every j ^ Nε.

We remark that certain topological assumptions on X, other
than property L, would suffice for the above result. For example,
we could assume the existence of compact connected sets Jlf J2, , Jn

with Ji c J2 c c Jn — X, Jγ locally connected and Ji+1/Ji locally
connected for each i = 1, 2, , n — 1. It is not hard to see that
this assumption is not implied by (nor does it imply) property L.

It is easy to see that Theorem 1 and Corollaries 2 and 3 are
false without some sort of topological restriction on X. Suppose
for example, that X has infinitely many connected components.
Then at least one of them, say Xo, is not an open and closed subset
of X. Choose a sequence Vlf V2, of neighborhoods of Xo whose
boundaries do not intersect X such that Xo = Π Vt. Let gk be the
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function which is 2~k on Vk and 0 on Cm — Vk. Then {gk} is a sequence
in έ?(X) which is continuable at each point of X, satisfies conditions
(B) and (C) of Corollaries 2 and 3 respectively, but is not extendible
(and thus neither bounded nor convergent). Construction of a
counter-example in which X is connected is much more difficult, but
is accomplished in the following Theorem.

THEOREM 4. There is a compact connected subset X of C2 and
a countable set in έ?(X) which is continuable at each point of X
but not extendible.

Proof. Let Uo = {{z, w) eC2:z Φ 0} and let x = (1, 1). Using an
inductive procedure, we can construct a sequence Ulf U2, of con-
nected open sets containing x with the following properties:

( i ) Uj+1 is a relatively compact subset of U3 ;
(ii) if y e Uj+1 then the distance from y to the boundary of

Uj+ι does not exceed 2~j;
(iii) Uj+1 is an open solid torus which "winds around" in-

exactly twice.
(This is simply the procedure for constructing a dyadic solenoid.

A detailed geometric construction may be found by [4, pp. 70-72].)
Condition (iii) insures two things: First, that tfi(ϊ7/, x) (the funda-
mental group of Uj with base point x) is just Z for each j = 0, 1,
and second, that the inclusion Uj+1—> U3 induces a monomorphism
TΓ̂ E/i-n, a?) —• 7Γi( Ϊ7O, x) whose image is the subgroup 23'Z. Let X=Γ\ Us\
then X is a compact, connected subset of C2 which contains x (in
fact X is a dyadic solenoid).

For each k = 1, 2, . let <pk: Uo —• Uo be given by φk(z, w) =
(z2k, w). Then each φk is a covering map and φk induces a homo-
morphism φ^'.π-^U^ x)-+Ki(U0, X) whose image is the subgroup 2kZ.
By the general theory of covering spaces (see [6] for example)
there is a unique map ψk: Uk—+ Uo such that φk°ψk is the inclusion
of Uk in Uo and ψk(x) = x* Evidently ψk is a homeomorphism, and
is holomorphic (since φk is).

For each k = 1, 2, define a function fk on ί7fc by fk = zoψk.
Thus /Λ is a holomorphic branch of the function z2~k. We assert
that for every k ^ 2, /Λ has no extension to i7]b_1. This can be
seen by a direct and very messy argument, but we present an
alternative method. Suppose that g were such an extension. Let
& be the sheaf of germs of holomorphic functions on C2, and let
v\ έ? —+C2 be the projection. Define a map 7: U0—+έ? as follows.
For each t in Z70, let Wt be an open neighborhood of t such <pfc | Wt

is one-to-one, and set h — z^(φk\Wt)~1. Let 7(ί) be the germ of h
at φk{t). A simple computation shows that 7 is well-defined and a
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homeomorphism; moreover, voτ = φk so that

>U0

is a covering map. Now define a map η: Uk-t —> έ? by sending £ to
the germ of # at t\ rj is a homeomorphism onto its range, which is
open. Since x = (1, 1), φk(x) = x and η{x) — Ύ(x). We claim that
^(ί^-i)c7(ί7o); since η(Uk_^ is a connected subset of v~ι(U0) which
meets 7(Z70) (by the above), it will suffice to show that Ύ(Z70) is an
open and closed subset of ir^E/i). It is certainly open, so suppose
that a is a point of its boundary in v~\UQ). Recall that v is a
local homeomorphism, so that v~λ(y(a)) is discrete, and that v\Ί{JJ^
is a covering map. Hence we can find a connected neighborhood
Wa of a in v~\UQ) and, for each /3 in 7(i70) Π v~\v{a)), a connected
neighborhood Wβ of /3 in 7(t70) such that: (a) Waf) Wβ = φ = W, n tify
for all /3, /?' in 7(J70) Π i^Mα)) with /3 Φ β'\ (b) x^TΓJ = v(Wβ) is an
open neighborhood of v(a) which is evenly covered by v\Ί(UQ).
Hence v maps each connected component of v~ι{v{ Wa)) Π 7( J70) onto
v(Wa). But our construction insures that at least one of these com-
ponents is contained in Wa Π 7( Uo) and hence contains no point of
v~\a). This contradiction allows us to conclude that r]{Uk^dΊ{UQ)
as claimed. Now, if c: U^-* Uo is the inclusion then (y|7(ί7o))07? = c,
so that

(» I *ϊ( f̂ o))* ° V* = ^ : TΓ̂  £7^, α?) > ^ ϋ"0, α?) .

On the other hand, the range of c* is the subgroup 2k~1Zf while the
range of (v 17(ϋ70))* is the range of (φk)* (since 7 is a homeomorphism
and (y | 7( ϋ70)) 07 = φk) which is the subgroup 2kZ This contradiction
establishes our claim that fk has no extension to Uk^.

Now the family {fk} in έ?{X) is evidently not extendible, but
since each fk is a root of the function z and X is a compact set
disjoint from {(z, w): z = 0}, the family {fk} is indeed continuable at
each point of X. We remark that the family {/&} actually satisfies
condition (B) of Corollary 2.

There is a local notion of extendibility which is relevant here.
We say that a family &~ c έ7(X) is extendible at the point x in X
if there is a compact neighborhood Dx of a? such that every element
of &~ extends to a neighborhood of l U ΰ , . It is perhaps not
evident that a family which is extendible at each point of X is in
fact extendible, but this is indeed the case. To prove this, we need
only carry out the argument of Theorem 1, and observe that the
need for property L is vitiated since the functions in question are
assumed to extend to X\jDe (rather than merely continuing). In
light of this, the following local result is somewhat surprising.
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THEOREM 5. Let X be a compact subset of C and let x be a
point of X. The following conditions are equivalent:

( i ) X is locally connected at x\
(ii) every family in έ?(X) which is continuable at x is extendible

at x.

Proof. That (i) implies (ii) is easy. If J^~ is continuable at x,
let D be an open disk about x such that every function in j ^ ~ can
be continued into D. Let C be the connected component of D Π X
which contains x. By (i), C is a neighborhood of x in X, so we
can find a closed disk Π centered at x such that fl'ίllcC. If
f e ^ and we continue / into D and then restrict to D', the con-
nectedness of C shows that we obtain a true extension; i.e., every
function in ^ extends to X U D\

In order to establish the converse, suppose that X is not locally
connected at x. Then there is a closed disk D with center x for
which the component of D i l i which contains x (call it K) is not a
neighborhood of x in X. For each n, let Un be an open connected
set in C which contains K, whose boundary does not intersect Df)X,
and no point of which is further than 1/n from K; we may also
choose Un so that it does not contain ΰ Π l . Let Vn be an open
subset of C — Un which contains (D f) X) — (Un Γ\ X), and such that
each component of Vn meets D Π X. Set Wn = (C - D) U Un{J Vn.
Let Δ be the interior of D and set

Sn = {Δ x {0})U(TF,x {1}).

Let Sn be the quotient space of Sn by the equivalence relation which
identifies (z, 0) with (z, 1) for each z in Unf)Δ. There is a continuous
map φ\X—+Sn which sends the point x to the equivalence class of
(x, 1), and a natural map ψ: Sn—>C that sends the class of (z, a) to
z (whether a = 0 or α = 1). Evidently ψ is a local homeomorphism
and induces on Sn the structure of an open Riemann surface without
branch points. Note that ψ ° φ = identity, so there is an open
neighborhood Q of <p(X) in Sn such that ψ \ Q is a homeomorphism.

Since !£" is not a neighborhood of x in X, for each integer k we
can find an integer n and a point tk in // Π FΛ whose distance to #
does not exceed 1/k. Let p be the equivalence class of (tk, 0) in Sn

and let q be the equivalence class of (tk, 1). Since p Φ q and Sπ is
an open Riemann surface, we can find an analytic function hk on
Sn for which hk(p) Φ hk(q). Set fk = hko(ψ \ Q)"1; then fk is analytic
near X and has no extension to X U {z: dist (z, x) ^ 1/&}. On the
other hand, if Z is the image of Δ in Sn, then /& = hk°(ψ \ I)'1 is a
continuation of fk into z/. Hence the family {fk} is continuable at x
but not extendible at x.
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We remark that, if X is a compact subset of Cm (m ^ 2), then
Theorem 5 no longer holds. There is of course no difficulty in showing
that (i) implies (ii), but use of Hartog's theorem provides easy
examples to show that (ii) does dot imply (i). Jft seems possible
that a result analogous to Theorem 5 could be proved if we replaced
X by its "envelope of holomorphy" (see [8]). This might be quite
difficult, however, since envelopes of holomorphy of compact sets in
Cm can be extremely badly behaved (see [13]).
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