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THE SUM OF THE DISTANCES TO N
POINTS ON A SPHERE

KENNETH B. STOLARSKY

How can the sum of Λth powers (0 < λ < 2) of the Euclidean
distances from the variable unit vector p to N fixed unit
vectors Pw ,pN be maximized or minimized? By means of
an integral transform used in distance geometry, the problem
can be reduced in certain cases to minimizing or maximizing
sums of integer powers of the inner products (p,Pi). In
particular, a complete solution is obtained for the vertices
of an m-dimensional octahedron.

I* Introduction* Let \p — q\ denote the Euclidean distance
from p to q. Various authors [1-3, 7, 12, 14, 16, 17] have studied
the problem of placing N points plf * ,pN on the unit sphere U of
m-dimensional Euclidean space Em so that

(1) S(N,m) =Σ\Pi-Pj\λ 0 < λ < 2

is m a x i m a l . T h i s s u g g e s t s a second p r o b l e m : If pl9 ---,pN a r e
p r e a s s i g n e d points of U, for w h a t p e U is

( 2 ) T(p)=Σ\p-Pi\λ 0 < λ < 2

maximal? One can add to this, when is T(p) minimal? For example,
if N = 3 and pu p2, p3 are the vertices of an equilateral triangle,
then T(p) is maximal if and only if p — — pt for some i and minimal
if and only if p = pi for some i. This is very easy to show for
0 < λ ĝ 1, but is rather more difficult for 1 < λ < 2.

In §2 we develop a method for attacking this second problem.
Our main tools are (i) an integral transform introduced by Schoenberg
(see [15, pp. 526-527] or [4, pp. 134-136]) to prove certain metric
embedding theorems, and (ii) the concept of uniform power maxima
introduced in §2. The results §§3-6 are applications of the theorem
of §2 to various special cases. In §3 we determine the maxima and
minima for T(p) when the pt are the vertices of a regular m-dimensional
octahedron. In §4 we determine the maxima of T(p) when the pt

are the vertices of an m-dimensional cube. In §5 we investigate the
case where the pt are the vertices of an m-dimesional simplex. We
show that if a certain "elementary" inequality is valid, then T(p) is
minimal if and only if p — pi for some i. In §6 we determine the
minima of T(p) when the pi are the vertices of a regular N-gon
and U is the unit circle x2 + y2 = 1.
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The general conclusion we draw from these results is that if
the points pi are "reasonably" uniformly distributed on U then Tip)
is large or small depending upon whether mini | pi — p | is large or
small. It is interesting to contrast this with Theorem 2 of Bjδrck
[3, pp. 256-257]. Also, it can be shown that if p is constrained to
be in the convex hull H of plf , pN and 1 ^ λ, then Tip) will be
maximal at some pt.

In § 7 we show that a modification of our method can be applied
to the problem of minimizing T(p) when λ is negative. This is related
to the problem of stability configurations of electrons on a sphere;
see [5-6, 8-10, 14, 18].

2 Uniform power maxima* For vectors g and h in Em, we
let (g, h) denote their inner product.

DEFINITION. Let pl9 , pN be a set of points on the unit sphere
U. We say q0 e U is a uniform power maximum (minimum) for plf

• , PN if for every positive integer k, the sum

N
k(2.1) Σ (P» Q)

achieves its absolute maximum (minimum) on U when q = q0.
For example, let U be the unit circle x2 + y2 = 1. If p1 — (1, 0)

and p2 = — p19 then the points p1 and p2 are themselves the uniform
power maxima, while the points (0, 1) and (0, —1) are the uniform
power minima. In general, uniform power maxima or minima may
fail to exist.

If #o is a uniform power maximum, then we easily see that
q0 = p. for some i; let fc—• oo through odd values in (2.1). Similarly,
by letting k —> oo through even values, we see that max* | ipi9 q0) \
must be minimal if q0 is a uniform power minimum. For example,
if N is even and plf -- 9pN are the vertices of a regular iSΓ-gon
inscribed in the unit circle U given by x2 + y2 = 1, then the only
possibilities for uniform power minima are points on U which bisect
the arc between adjacent pt. The only possibilities for uniform
power maxima are the pt themselves.

The following result shows how the concepts of uniform power
maxima and minima can be used.

THEOREM. Let plf , pN have at least one uniform power maxi-
mum (minimum). Let pe U. Then

(2.2) Tip) = Σ 12>i - P\x 0 < λ < 2
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is minimal (maximal) if and only if p is a uniform power maximum
(minimum).

Proof. Let pe U. Let g0 be a uniform power maximum. Then

(2.3) Σ (ft, P)k £ Σ (ft, Q«)k

ί=i i=i

for all integers k ^ 0. If g and h are arbitrary unit vectors, then

(2.4) 2(g,h) =2-\g-h\>.

Hence

(2.5) Σ (2 - I ft - P \2)k ^ Σ (2 - I ft - ?o:|2)fc

i=l ί=l

Set

E(p,t) =Σ>exv(-\P<-P\2t2) .

Multiply both sides of (2.5) by t2kjk\ and sum over all k. This shows
that

exp (2t2)E(p, t) = Σ exp (2έ2 - |ft - p|2ί2)

(2.6) ^ Σ e x p ( 2 ί 2 - | f t - ? 0 | 2 ί 2 )

- exp (2t2)E(q0, t) .

Note that here and throughout equality holds if and only if p is a
uniform power maximum. Since 0 < λ < 2, we can set

(2.7) Iλ(s) =
Jo

By making the change of variable t~-+t/s we see that

(2.8) Iλ(s) = c(X)sλ

where c(λ) is a positive constant depending only on λ; in fact,

c(λ) -

Now replace s by |ft - qo\ in (2.7). From (2.6) and (2.8) we find that

c(X)T(q0) = c ( λ ) Σ | f t - ( 7 o | i
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(2.9) =\"[N-E(qt,t)]ri-idt
Jo

N - E(p, t)ψ ι-ιdt

with equality if and only if p is a uniform power maximum. The
proof for uniform power minima is obtained simply by reversing all
inequalities.

3* The octahedron* Let at denote that vector of Em whose
ith component is 1 and whose other components are 0. Let aN+i =
—(Xi for 1 <; i <Ξ N. Then we call al9 •• ,αw the vertices of the
standard iV-dimensional octahedron.

COROLLARY 1. Let pe U. If al9 , a2N are the vertices of the
standard N-dimensional octahedron, and

IN

(3.1) P = Σ I « * - P l 2 0 < λ < 2

is minimal, then p = at for some i. If T(p) is maximal, then

(3.2) p

for some choice of plus and minus signs.

Before we prove this we need a simple inequality related to
power means (for the basic properties of power means see, for example,
[11, P. 26]).

LEMMA. Let s > 1 and define

f(u) =

for all N-tuples u = (ult •••, uN) satisfying

and

u^O 1 ̂  i ^ N

Σ
*=i

/(%) is minimal if and only if u — (Σf=i ai)IN and maximal
if and only if u — at for some i with 1 <Z i <£ N.
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Proof of Lemma. The sth power mean of ulf , uN is non-
decreasing as a function of s, so by letting s —> 1 and s —> oo we
obtain

The Ui must all be equal for equality to hold on the left, while for
equality to hold on the right one of the ut must equal 1.

Proof of Corollary 1. F o r pe U w r i t e p = (xlf •••, x N ) . T h u s
Σ x* = 1. For every positive integer k we have

2N N

(3.3) Σ * (P) Ξ Σ (««, V)k = [1 + (~l)fc] Σ *f .

Clearly Σ& (ϊ>) is zero unless fc = 2m for some positive integer m.
Apply the above lemma with ut = x\ and s = m. It shows that the
at are the uniform power maxima and the 2N values of p given
by (3.2) are the uniform power minima. Thus Corollary 1 follows
from the theorem.

4* The cube* Let the βi9 for 1 <̂  i <̂  2N, be the vectors in
EN whose components are either N~112 or —N~112. We call βu , β2N

the vertices of the standard iV-dimensional cube; this cube is inscribed
in the unit sphere U.

COROLLARY 2. Let pe U. If βu . . . , βM are the vertices of the
standard N-dimensional cube, where M = 2N, and

(4.1) Γ ( P ) = Σ I / S * - P l ' 0 < λ < 2

is maximal, then (in the notation of Corollary 1) we have p = at for
some i.

Proof. For pe U write p = (xlf , α^); thus X a?? = 1. For
every positive integer k we have

Σ , (P) = Σ C8o P)fc = iv-fc/2 Σ * (±»i ± ± ̂ ) f c

ί 1

where the asterisk indicates that the sum is extended over all M
possible choices of plus and minus signs. Clearly Σ f c (p) is zero unless
k — 2m for some positive integer m. Now



568 KENNETH B. STOLARSKY

(4.3) Σ ί Ή Σ * (±*i ± ±%NY =

since all the mixed terms cancel. Now apply the lemma of §3 with
Mt — (VJΊ/M)2, with s = m, and with N replaced by M. It follows
that

so

(4.4) M

for every positive integer m. Thus every ai is a uniform power
minimum. For any q = (χl9 . . . , χN) e U which is not an aif it is easy
to vp.rifv thatto verify that

(4.5) v* Ξ

N

ί = l

But since v* = vt for some i, this shows that q is not a uniform
power minimum. The result now follows from the theorem.

We have no proof that the βt are the uniform power maxima
here. If they were, then T(p) would be minimal if and only if p =
βi for some i.

5. The simplex. Let the 7i9 where 0 g i <̂  N, denote the
vertices of a regular simplex inscribed in U. We now propose

Conjecture A. If m and N are integers with m ^ 0 and AT ^ 1,
then for # ̂  0 we have

(5.1)

If we set Pm(α;) == Rm(x) - Zrw(a;), then PQ(x) = P^a;) - 0 and for
m = 2 and m = 3 the coefficients of Pm(cc) are nonnegative. It seems
likely, in fact, that the coefficients of Pm(x) are always nonnegative.

COROLLARY 3. Conjecture A implies that the uniform power
maxima for the vertices of the regular simplex are simply the vertices
themselves, i.e., the Ύt where 0 <̂  i <̂  N.
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Proof. For N = 1 this is trivial. Assume true for all positive
integers less than N. We shall examine

(5.2) Σ* (P) = Σ (%, V)k

where pe U. Without loss of generality we may assume that p =
a]yι + . . . + aNΊN where at ^ 0 for 0 <̂  i <Ξ N. For any vector q,
write q = qa + qb where qa is parallel to 70 and qb is normal to 70.
In particular, (7jα = Ύia = -Ύo/N. Thus

(5.3)
fk\r i Ίfc-«/&\r 1

Σ -^(Ύo, 7β)
•=o \ s L N

e(k,
Λr

ί = l

where the coefficients c(&, s) are all positive. By the induction hy-
pothesis the last sum on the right can only become larger if p is
rotated about an axis through 70 so that 7ό = Ύjb for some j . Thus

(5.4) Σ * (P) ^ Σ Pi, PΎ = ^

where p' is a linear combination of 70 and 7 i? i.e. p' ~ — .τ70 + τ/7̂
where ^, 7/ ̂  0. Now

(5.5) 1 - (p'9 v') = x2 + jjxy + y2

and

It suffices to show that J is maximal when x = 0 and 7/ = 1 (in which
case J = 1 + (-l)W1-^) .

First we consider the case where k is odd, and write k = 2m + 1.
The vector T, where

(5.7) τ ((j + v),(x +

is a counterclockwise tangent to the ellipse described by (5.5) in
the first quadrant of the xy plane. We have
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(gradJ, T)

(5.8) = HI - m[^§ + vf + v(* + §T - <* § I
>o

for 0 < x < 1, so J achieves its maximal value at the endpoint (0, 1).
Next, let k be even and write k = 2m. Replace x by xjy in (5.1),
and multiply both sides of (5.1) by y2m. It follows that J^ 1 + Nι~2m

whenever (5.5) holds. Since a uniform power maximum must be one
of the Ύit this completes the proof.

COROLLARY 4. Let pe U. Let 70, , ΎN be the vertices of the
N-dimensional simplex, and assume the sum

(5.9) Tip) = Σ \7t - P\λ 0 < λ < 2

is minimal. If Conjecture A is true, then p = Ύt for some i.

Proof. This follows from Corollary 3 and the theorem.
It seems reasonable to conjecture here that T(p) is maximal if

and only if p = — 7« for some i. But (see the comment towards the
end of §6) the — 7* are not always uniform power minima.

We digress here to mention that an inductive procedure similar
to that used in the proof of Corollary 3 shows that for any pe EN

we have

(5.10) Σ 2 <P)

where again the 7< are the vertices of a regular simplex inscribed
in U. The famous Selberg inequality [13, pp. 7-8] asserts that

(5.11) Σ (7<f py\ΣI (7O 7,) \V s (P, P)

for any nonzero vectors 7< with 0 ̂  i ^ N. For the vertices of a
regular simplex

(5.12) Σ | ( 7 ί , 7 i ) | -

so in this case the Selberg inequality yields

(5.13) Σ 2 (P) ̂  2(p, p)

which is somewhat weaker than (5.10). Also, the equality (5.10) has
as a consequence that

(5.14) ΣI^-p|4

i=0
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for pe U.

6* The regular JV-gon* Let the pi9 where 0 5j i ^ JV — 1, denote
the vertices of a regular N-gon inscribed in the unit circle U given
by x2 + y2 = 1. We begin by establishing two lemmas; the first is
well known, but we include it for the sake of completeness.

LEMMA 6.1. For k a positive integer,

k

(6.1) cosfc x = Σ ask cos sx
s=0

where ask ^ 0 and ask = 0 if s Ξ£ k mod 2.

Proof. Since cos2 x — 1/2 + 1/2 cos 2x, this is true for k = 1 and
k = 2. Assume true for integers less than &. For & > 2 we have

cos* x = (cosfc~2 a?) (cos2 a?)

= (cosfc~2 &)(— + — cos 2x)

and the result follows from the identity

cos A cos B = — cos (A + 5) + — cos (A - 5)
2 ^

and the induction hypothesis.

LEMMA 6.2. If k is a nonnegative integer, then for any real φ
we have

N /

with equality if and only if either φ = 2πm/N for some integer m,
or k < N.

Proof. Let d!(.N, s) be 1 if N divides s, .and 0 otherwise. Then
the left hand side of (6.2) is

3=0 s=0 \ iV

_fc_ jv—i 2jcis k N~ι

^ cos —-— + Σ ask sin sφ Σ s i n

s=o i=o iV 8 = 0 i=° iV
(6-3)

V, s)αs& cos sφ^NY, d{N, s)ask
08 = 0
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Equality holds only under the conditions stated, so the result is proved.

COROLLARY 5. Let p = eiφ e U. If ρ3- = e2πiJIN for 0 ^ j ^ N - 1

(6.4) Γ(p) - Σ \pi ~ V\λ 0 < λ < 2
i = o

ΐs minimal, then p — p3- for some j.

Proof. The sum

(6.5) Σ* (P)=S to, v)k = Σ1 co
3=0 j=0

is maximal for all k if and only if φ = 2ττy/Λίrmod27Γ for some j"
with 0 ^ j ^ iV — 1. In other words, if and only if p = ^ for some
i. The result now follows from the theorem.

Although the author has a proof that T{p) is maximal if and
only if p = e~i{2j+1)lN for some integer j, it is is not always true that
these points are uniform power minima. The case N — 3 and k = 6
provides a counterexample.

Rather more can be proved here by means of certain differential
inequalities associated with Sturm-Liouville problems. Namely, T(p)
is minimal if and only if p is a vertex, and maximal if and only if
p lies half way between two vertices. Moreover, if λ is allowed to
increase from 0 to 2N, then every time λ passes through an even
integer the points at which T(p) was maximal will become the points
at which it is minimal, and vice-versa. The present paper omits this
proof.

7* Negative λ. For λ < 0 define the integral transform

Aλ(s) = ( V 'ί-1-^ - 8xΓ(-\) .
Jo

If q0 is a uniform power minima, the proof of the theorem can be
trivially modified, with Aλ(s) in place of Iλ(s), to show that T(p) is
minimal when p = qQ. So for λ negative, T(p) is minimal for the
octahedron when p = p* and minimal for the cube when p — at.

Note added in proof. L. J. Yang has proved Conjecture A. Thus
Corollary 4 is unconditionally valid. His method, essentially, is to
analyze the cases (i) 0 < x < 1/4ΛΓ, (ii) l/4iV <> x < 2/N; and (iii)
21N ^ x < 1 separately. The details are somewhat lengthy, but
require only elementary calculus.
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