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METRIC FAMILIES

J. F. MCCLENDON

A (continuous) metric family is a disjoint collection of
metric spaces whose metrics are compatible with a given
topology on the disjoint union. The purpose of this paper
is to give some examples of these objects and to develop
some of their basic properties. Most theorems about metric
spaces can at least be formulated for metric families — some
are true, some are true only with extra hypotheses, and
some are false. Examples of each kind will be given. The
main positive results are a version of Dugundji's extension
theorems, a cross section theorem, a generalization of one
of Michael's selection theorems, and a generalization of one
of Coban's selection theorems.

Here a rough description of the results described above will be
given. First consider the following diagram:

K

/
f/

Here e:E—+D is a metric family and v:K—>D is a sub-family of
a vector family. It is shown (Theorem 3.3) that under certain
conditions / extends to a continuous F: E—> K with vF = e. If D
is a point then the result coincides with the extension theorem of
Dugundji [5, 6],

Now consider the following diagram.

H c E

Here h:H~+D is a sub-family of a vector family E-^D. τ is a
partial cross section of h. Theorem 4.2 is a fairly general theorem
giving hypotheses on E, H, and τ which guarantee that h has a
cross section which extends τ. The result is sufficiently general to
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492 J. F. McCLENDON

include the Tietze extension theorem. Subsequent results specialize
Theorem 4.2 and give conditions on e and H which guarantee a
cross-section-extension for any τ.

Finally, consider the following diagram.

E

A c X

Here e\E—*D is a vector family and F: X—+E is a multivalued
function such that eF = x. g is a partial selection for F. Theorem
5.1 gives conditions on e and F which permit g to be extended to
a continuous selection for F. If D is a point then this becomes
one of MichaeΓs selection theorems [9]. In general the problem
presented by the diagram can be thought of as a lifting problem
with extra condition. The lifting problem (take A empty for
simplicity) is to find f: X—>E with ef — x and is the type of problem
often studied in algebraic topology when e is fibration. The extra
condition is to make / a selection for F. Of course the problem
can be reformulated as a pure lifting problem (not for fibrations)
or a pure selection problem (not metric valued). One can also let
Xd = x~\d) and Fd = F\ Xd. Then F can be thought of as a family
of multifunctions with parameter space D. In Theorem 5.5 e: E-+D
is simply a metric family but the resulting selection-extension is not
necessarily continuous. If E is a single metric space the theorem
coincides with one of Coban [3]

I wish to thank C. Himmelberg for some helpful lectures and
conversations.

1* Definitions and examples. We will use the following ter-
minology. A space is a topological space. A map is a continuous
function. If p: E—>D is a map then a section of p is a map s: D-+E
with ps = idD:D—+D. A local section of p is a map s: V-+E, V
open in D, with ps = idv: V—> V. Now suppose p: E—*D is a given
map.

EA = p~\A)

E* = EXDE = {(β, O e E x # | pe = pe'} aE x E

= U -Ek x Jδ'd (a disjoint union)

,eSd = SnEd, SA = Sf] EA
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DEFINITION1 1,1. (E, p, D, p) is a metric family if p: E—>D is
a map, p: E* —• R is a map, and p\ Ed x Ed is a metric for each
Ed, deD.

Usually we will simply say that E is a metric family or that
E is a metric family over D. p can also be called a fiber metric
and E can be called a fiber metric space. Later it will be con-
venient to use e:E-+D rather than p:E—>D when more than one
family is involved.

EXAMPLE 1.2. Let £ be a metric space with metric d and
p: E—+D any map. Then d\E* = p makes E-^D a metric family.

EXAMPLE 1.2'. Let E—>D be a metric family and E-+D =
E-+B-+D. Then # - + £ is a metric family by EXBEaE XDE—>
R. If D is a point then this is 1.2.

EXAMPLE 1.3. Let D be any space and (ikf, <x) any metric space.
Let E = DxM and p\E—+D be the natural projection. Here
E* = {(d, m, d, mf) \de D, m, mf e M) and E* is homeomorphic to

D x M x M. Define ^. #* ~+R by ^(ώ, m, d, m') = α(ra, m') That is,

Then £7 is a metric family. Call E a product family.

EXAMPLE 1.4. Let Έ—>D be a metric family and SaE. Then
S—> D is a metric family with metric obtained by restricting that
of JS7.

DEFINITION 1.5. Let p:E—>D and p'\ E' —> D be metric families.
A map f:E-+Er such that p'/ = p is an isometry if each fd: Ed —>
J?̂  is an isometry (not necessarily onto) and / is an embedding
( —homeomorphism onto its image).

The question arises as to which metric families are isometrically
embeddable in a product family.

EXAMPLE 1.6. Let D = R. Let E as a set be R x R with the
topology generated by usual opens and the following set

S = R x R - {(8, ί) |£ = 0, - o o < s < θ o r O < s < + o o }
1 This should be compared to corresponding notions of J. Dauns and K. H. Hof mann,

Representation of rings by sections, Memoirs of the A. M. S. no. 83, 1968, and J. M. G.
Fell, An extension of Mackey's method to Banach *-algebraic bundles, Memoirs of the
A. M. S. no. 90, 1969.
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p:E-*D is p(s,t)=8. ρ\E*->R is (s, t, s, V) = \ t - V \. Then
{E, p, D, p) is a metric family. E is not regular since the closed set
A — {(s, t)\t = 0, 0 < s < 00} and the point (0, 0) cannot be put into
disjoint open sets. If E were embeddable in a product family we
would have

EaR x M

R

with M metric—but this would imply that E is regular,

EXAMPLE 1.7. Let & = (p: E-+B, G, F, Ssf = {(V, hv)}) be a

fiber bundle in the sense of [Steenrod, 11]. That is, p is i^-locally
trivial, G a, topological group, F is an effective left G-space and
Szf is a G atlas (really, & is a coordinate bundle but it determines
a unique fiber bundle). Suppose now that α is a metric for F and
that the G action preserves the metric, i.e., cx(gf,gf')=α(f,ff).
Then call & a metric bundle. Then ί / ^ ΰ is a metric family since
Ev *-+ V x F is (Example 1.3) and the equivariance assumption
permits us to piece these together to form a metric family.

Recall [e.g. Husemoller, 7] a space X is a G-space, G a
topological group, if there is a continuous function G x X—>X,
(g, x) —* gx, such that lx = x and #(#'#) — (##')# all g, g' e G, xe X.
It is called a free G-space (or a fixed-point-free G-space) if gx — x
for some a? implies g = 1. It is calld an effective G-space if gx — x
for all x implies # = 1. A free G-space is a Cartan principal G-
space if the function u: X* —> G uniquely defined by u(x, x')xr = x is
continuous. Here p: X—+X/G = D is the quotient map and X* —
XXnX.

THEOREM 1.8. If G is α metrizαble topological group and p: X—*
X/G a Cartan principal G-space then Y is a metric family.

Proof. Recall [e.g., Montgomery-Zippen, 10] that G has a left
invariant metric a, so a(ggu gg2) = a(gu g2) all gu g2 e G. Define
p: X*—>R by p(x, x') — a(u(g, g'), 1). Then p is continuous and we
need only show that it gives a metric on each fiber. The function
u always satisfies the following conditions: u(x, xf) = 1 <=> x — x',
u{x, x') u(x', x") = u(x, x"), u(x', x) = u(x, xr)~ι. The first shows that
p(x} xf) = 0 « x = a?f. Also |θ(^, α') = α(u(x, a?'), 1) = «(1, ^(», ^') - 1) =
α(l, %(«', OJ)) = α(w(a?', x), 1) = <o(α/, a?). The triangle inequality is also
easy to check.
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COROLLARY 1.9. G a topologίcal group and H a metrίzable
subgroup. Then G—+G/H is a metric family.

Proof. If H is any subgroup of G then G —• G/H is a Cartan
principle fiber space so the result follows from 1.8.

Let X—+X/G be a Cartan principle G-space and F a G-space.
Then X x F is a G-space (diagonal action) and there is a natural
map (X x F)/G—>X/G called a Cartan fiber space.

THEOREM 1.10. Suppose F has a G-invariant metric. Then a
Cartan fiber space is a metric family.

Proof. Similar to 1.8 (which is a special case of 1.10).

Note that 1.10 actually includes Example 1.7 since a Steenrod
fiber bundle is homeomorphic cover the base to a (locally trivial)
Cartan fiber space. In general a Cartan fiber space need not have
a local cross section as the case G—>G/H shows.

Recall [Atiyah, 1] that p: E—> D is a vector family if each Ed

is a vector space (over R here, but the general case is similar) and
the functions

EXDE >E (e, er) >e- e'

Rx E > E (t, e) > te

are continuous, p: E —* D need not have a continuous section. How-
ever, if it does then the zero section d —+ 0d will then be continuous.

DEFINITION 1.11. Let E-+D be a vector family. Suppose
I |: E—>R (e—> \e |) is a function such that

(a) it is a norm on each Ed (| e \ ̂  0, = 0 <=> e = 0, | e + β'| <;
\e\ + | β ' | , | λ e | = | λ | | e | )

(b) the function | |: E—>R is continuous.
Then E-^D will be called a normed vector family.

Thus p{e, e') — \ e — e'\ makes the normed vector family E into
a metric family. Any normed vector bundle or vector bundle with
metric [Atiyah, 1, p. 13] will be a normed vector family and hence
a metric family.

2* Elementary properties*

THEOREM 2.1. Let p:E-*D be a map and p: E XDE-+ R a
function. Then the following are equivalent.

(a) p is continuous at {e, e')
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(b) Given ε > 0 there are opens V, V of E, ee V, e' e V such
that Ip(e, ef) - ρ(e, e')\ < e for eeV, e'e V, pe = pe'.

COROLLARY 2.2. Let p:E-+D be a metric family, eeE, ε > 0.
Then there is an open W in E with ee W such that e, e'e W,
pe = pe' imply p(e, e')<ε.

Theorem 2.1 gives the following verbal description of a metric
family: each Ed is a metric space and if a pair of points in Ed is
topologically close to a pair of points in Ed, then the distance
between the points of the first pair is close to the distance between
the points of the second pair. It is possible to have each Ed metric
but E-+D not a metric family (see example below). Corollary 2.2
shows that there is an ε-strip around each point of E, where V is
an ε-strip if diam (Vd) < ε for all d e D. If there is a local section
through eeE then there is something better than an ε-strip.

DEFINITION 2.3. Let p:E—>D be a metric family.
(1) ε>0, AaE, Bε(A) = B(A; ε) = {ee E\ Ap{e) Φφ and p(e,Aplβ))<e}
(2) σ: F—> E a local section of p, Be(σ) = B(σ; ε) = {e e E\ pe e V,

ρ(e,σpe)<ε} = Bε(σ(V)).
Usually Bε(A) is not open in E, as the case A = a point shows.

However we do have the following facts.

THEOREM 2.4. Let p:E—>D be a metric family and σ: V—+E
a local section of p and ε > 0.

(1) B(σ\ ε) is open in E.
(2) Let eoeB(σ; ε). Suppose τf\ W—+E is a local section of E

with eoeτ'(Wf). Then there is a d > 0 and an open neighborhood
W of pe0 such that eQ e B(τ; d) c B(σ; ε) where τ =τ'\W.

Proof. (1) Let s:Ev-+E£ be defined by s(e) = (β, σpe). Then
8 is continuous since σ is and B(σ; ε) = (psy^O, ε).

(2) Let p(e0) = d0 and p(e0, σ(dQ)) = εx < ε2 < ε. Let W =
{d I p{τ\d), σ(d)) < ε2}. Then W = {d \ τ\d) e B(σ; ε2)} = τ'-ι{B{σ; ε2)) so
W is open in D and doe W. Set δ = ε - ε2 > 0. Then eeB(τ; δ),
pee Wimplies ρ(e, τpe) < δ so p{e, σpe) < ρ(e, τpe) + p(τpe, σpe) < δ +
ε2 = ε. Thus eoe B(τ; δ) π p~ι{W) c B(σ; ε) proving the result.

Part (2) of the theorem shows that is &* if a family of local
sections of p and there is at least one section through each eeE then
the family {B(σ \W, ε)\σe<9*, ε > 0, W open, W adorn σ) is a basis
for a topology on E. Call £f a full family of local sections of p
if it contains at least one local section through each point of E.
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DEFINITION 2.5. Let p:E-+D be a metric family and S? a
family of local sections of p. The coarse ^-topology on E is the
topology sub-generated by &" = {B(σ \ W, ε) \ ε > 0, σ e S^, W open,
Wadomσ}. If S? consists of all local cross sections of p then call
the resulting topology the coarse topology of E. A function h: E—+ Z
is coarsely continuous (open, closed, etc.) if it is continuous (open,
closed, etc.) for the coarse topology on E. If the topology on E is
the same as the coarse topology then E will be called a coarse
metric family.

Example 1.6 shows that a metric family may have many local
sections and still not be a coarse metric family. A metric family
may not have any sections (or even local sections) but when it does
the set of sections has a natural metric (possibly infinite valued).
More generally, consider

E

X >D
e: E—> D a metric family

DEFINITION 2.6. CD(X, E) = {/: X~+E\f continuous, ef = x}. If
f,ge CD(X, E) then d(f, g) = sup {p(f(x)9 g(x)) \ x e X} e [0, + - ] . If
x = id: D-+D write Sect e for CD(D, E).

THEOREM 2.7. Suppose E has the coarse S^-topology for some
full family of local sections £f. If each Ed is complete then so is
CD(X9 E).

Proof. Let {fn} be a Cauchy sequence in CD(X, E). Then each
{/»(»)} is Cauchy so fn(x) -+f{x). Now let f(x0) e B(σ; ε) where σ: F->
E is a local section from £f and x(xQ) = d0, σ(dQ) = f(x0) The usual
argument shows that there is an JV such that n > N implies
p(fn(x), fix)) < ε/2. Select such an n so fn(x0) e Biσ, ε/2) and there is
an open set W in X with xoeX and fJJ¥) c B(σ; ε/2). If xe W
then p(f(x), σxx) ̂  p(f(x), fM) + P(f»(x), ox(x)) < ε/2 + ε/2 = ε so
f(W) c B(σ; ε). Thus / is continuous and by the proof /n—>/in
CD(X, E).

We now consider briefly separation properties and some examples.
Let us say that a map p:E-+D is a Hausdorff [normal] family if
for any two distinct points x, ye ED [disjoint closed sets A, B of Ed]
there are disjoint open sets V, V of E with xe V, yeV [AaVf

Ba V'].
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Note that if E is a Hausdorff family and D a Hausdorff space
then E is a Hausdorff space. However if D and Y are normal
spaces then D x F is a normal family but not necessarily a normal
space. It is easy to see that a metric family is a Hausdorff family.

EXAMPLE 2.9. A metric family need not be a normal family.
Note first the following general fact. Suppose X a Hausdorff space
and A a closed subspace with metric d: A x A —> R. Define D —
XIA and p: X XD X-+ R by p | A x A = d and |0 [ J(α) = 0. Then
(X—>X/A, p) is a metric family.

Now take X = / x J as a set with A = I x 0, Xr = / x (0, 1].
Give X' the R2 usual topology and take as a basis at (x, 0) all
Z7e = [B.(x, 0) Π X'] U {(a?, 0)}. Let B = [0, 1/2] x 0, £' = (1/2, 1] x 0.
Then B and J5' are closed in A but can not be separated by disjoint
opens in X. Thus X—>X/A is a metric family which is not a
normal family (not even a regular family).

EXAMPLE 2.10. It is possible to have each Ed metric but E-+D
not a metric family. Let E — {alf α2, bu δ2} —> D = {a, b}. The opens
of E are {αlf δ2}, {α2, δ2}, {6J, {62}, {αlt 6L, 62}, {6̂  62}, {α2, 6X, b2} and £/, ̂ .
The opens of D are Z>, φ, and {6}. p ^ ) = α, ^(δj = 6 , i = 1, 2.
E-+ D has each 2£d metric (since discrete) but E is not a Hausdorff
family since αx and α2 can't be globally separated.

Call p:E—+D is a completely regular family if for each deD
and each AaEd, A closed, beEd, b$A, there is a function f: E—>R,
continuous on E, with f(A) — 0, f(b) = 1.

EXAMPLE 2.11. Let W be a Hausdorff regular space such that
all coninuous functions on W are constant [I wish to thank J. Porter
for pointing out to me the relevance of these spaces]. Let w0, w[
be distinct points of W and set D = W/{wQ, w[] (i.e., identify w0 and
w'o). First note that W~*Ό is a normal family since only A = {w0}
and B — {w[} must be separated in W but W is Hausdorff. Also
W —* D is a metric family since p: W* —> R, p(w0, w'o) = 1, jθ(wj, w0) =
1, |θ(^, w) = 0 all tί;, is a metric. Thus W—+D shows that a normal
family need not be a completely regular family and a metric family
need not be a completely regular family.

3* Extensions* In this section we will prove a version of
Dugundji's extension theorem [Dugundji, 5, 6] for metric families.

Let 7 ^ ΰ be a vector family. A subset K of V is convex if
each Kd is convex (ft, ft' 6 ίΓd implies tk + (1 - ί)ft' 6 iΓrf for 0 <; t S 1).
F is locally convex if it has a basis of convex subsets. For the
theorem below we can get by with somewhat less than local convexity.
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DEFINITION 3.1. (cf. 5, p. 417, 418). A vector family v: V-+D
is of type m if for every metric family e: E—• D and continuous
/: .£7 —* V, vf — e> the following is true: for each e e E and neighbor-
hood W of f(e) there is a neighborhood U of e and a convex set C
of U such that / ( ϋ ) c C c W.

We study the following commutative diagram of spaces and
maps.

K
/

f/

K(zV—>D, K convex, V a vector family of type m, E—+D a
metric family.

DEFINITION 3.2. A subset A of E is smooth if eA — D, e—>
p(e, A) is a continuous function (E — A) —>• i?, and the sets JS(cr; ε)
for local sections σ: V—>E, σ(V)aA, ε > 0, form a basis at each
point of A.

THEOREM 3.3. Suppose A is a smooth closed subset of E and
E — A paracompact. Then f extends to a map F: E —• K with
vF = e.

Proof. Let e e E - A. Select αe e A such that p(e, ae) < 2ρ(e, A).
Let 0" = σe:v—>E be a local section such that aeeσ(v)czA. Define

Ne = {e' e E I tfβ', ^β(β')) < 2/o(β'f A)}

Then ΛΓe is an open neighborhood of e since both e' —> |θ(e', σe(er))
and ef—>/θ(βf, A) are continuous. The family of all JVβ's is an open
cover of E — A so we get a locally finite subcover ^/ = {Vλ \ λ e Λ)
and partition of unity {Πλ: (E — A) ~+ R) subordinate to it. For
each λ select e with Ne Z) Vλ and define σλ = σe. Define F: E —+ K
by

F(e) = \
\ΣxΠx(e)fσe(e) ee(E-A)

F is continuous on (E — A) by the usual argument. Let ae A and
Suppose W a neighborhood of F(a) = f(a) in K. Let U be a neighbor-
hood of a and C a convex subset of K such that /(Z7 Π A) c C c W.
We may assume that U = 2?(r; e) for a local section r of A ~~<- D
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which passes through a. Let U' = B(τ; ε/3). Then to prove F
continuous at a we need only show F( Ur) c W. Let y e U'. If
2/ e A then .Ffo/) = /(#) e W. Suppose that ye U' - A. If ye Uλ

then ρ{σλe{y), τe{y) ^ p(σλe(y), y) + ^(y, τ%)) ^ 2,0(7/, A) + ρ(y, τe{y))
(since yeUλa some iVe) <: 3̂ (τ/, τ%) < ε. Thus σλey e Uand fσλey e C.
Since C is convex, JPO/) eCaW showing F{U') c TF.

Dugundji's extension theorem is the case D = point since in
this case every A is smooth and E metric so E — A is paracompact.
Now let L be a topological vector space of type m (as in [5] or the
case D = point in Definition 3.1) and T a convex subset. Consider

E T

E—+Ό& metric family.

COROLLARY 3.4. If A is a closed smooth subset of E and E — A
is paracompact then g extends to a continuous function G: E —+ T.

Proof. Use V= Dx L-+D and K = Dx Γ—D. Let / =
(e, g): A~+K. The theorem gives an extension F — (e, G): E —• K
and G is the desired extension of g.

Now consider

Dx M T

A

T = convex subset of L = vector space of type m. M — metric
space.

COROLLARY 3.5. Let A be a closed smooth subset ofDxM and
suppose (D x M) — A is paracompact. Then g extends to a con-
tinuous G: D x M-*T.

Just as in the case D — point we can say something about
linearity. Suppose S—»JD is any map and V—+D a vector family.
Let CD(S, V) be the set of map's h:S-*V with vh = s. Then if
CD(S, V) is not empty it has a natural vector space structure (add
values). The proof of Theorem 3 gives a linear function

a: CD(A, V) > CD(E, V) a(f) = F
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and if β: CD(E, V) -> CD(A, V) is the function βG = G \ A then we
have βa = identity.

4* Cross sections* In this section we will study the following
commutative diagram E —»D a normed vector family.

H

The objective is to find conditions under which h:H—*D has a cross
section which extends r. If A = φ this is a pure cross section
problem and by introducing an auxiliary space we can reduce the
problem to a cross section problem. Define G = G(τ) c E by Gil Ed —
Hd if d£ A and Gf]Ed = {τ(d)} if deA. Thus

and h has a cross section extending r iff g has a cross section.
Recall [Dold, 4] that a cover ^ of a space is numerable if

there is a family {/7/. Z) —* [0, 1]} of continuous functions such that
{Πj'iO, 1]} is locally finite and a refinement of ^ and ΣλΠλ{d) = 1
all deD.

DEFINITION 4.1. (if, τ) is numerably sectioned in E if for every
ε > 0 and every open convex E' of E with £(£" P\ G) = D there
is a family Sf = S^(ε, Ef) of local sections of e such that

(a) ffndcUTOkey}
(b) ^ = ^ ( ε , £") = {£(£e(<7) Π G Π #') | tf e «^} is a numerable

cover of Zλ
The dependence on τ of the above condition appears to be

unavoidable in the general case. However, if D is paracompact it
can often be eliminated (see 4.9 below).

THEOREM2 4.2. Suppose that e: E —> D is a normed vector family

2 This theorem and its corollaries are valid, with the same proof, under the
weaker hypotheses: | \: E -^ R is upper semi-continuous and a pseudo-norm on each Ed.
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and Sect (e) is complete. Suppose Hd is closed in Ed and convex
for de D — A and that (H, τ) is numerably sectioned in E. Then
h has a cross section extending τ.

LEMMA 4.3. Suppose e\E—*D is a normed vector family, each
Hd is convex, and (H, τ) is numerably sectioned in E. Suppose
ε > 0 and Ef open convex with e(E' Π (?) = D. Then B(Gf)E'; e)->D
has a cross section.

Proof. Let %S = %f(ε, E'), {Πλ: D-+ [0, 1]} be as in Definition
4.1. For each XeΛ, Πjι(0, 1] c Ve <%s for some V. Pick such a
V and its section σ and let σλ — σ \ Πj^O, 1], Define σ = ΣΠλσλ: D—*
E. Then σ is continuous by the usual argument. Each σλ is a
local section of B(G Π Ef) ε) —• D and B(Gdy ε) is convex so σ is a
section of B(G Π E'; ε) — D.

Proof of 4.2. We will construct a sequence σl9 σ2, . . . of sections
of e:E-+D such that

(An){n > l)p(σn, U < l/2^-2

( W « G) < 1/2* .

By (A), {σn} is a Cauchy sequence in Sect e and by completeness
σn—>σ and σ is a continuous section of e. By (2?) and the fact
that each Gd is closed in Ed we see that σ(D) c G so that σ is the
desired cross section.

Lemma 4.4 gives σιm Suppose that σu σ2, •• ,σ n are defined
with properties (A) and (B). The lemma gives a cross section

σn+1: D >B(Gf) B(σn, 1/2*), l/2*+1)

since (Bn) shows e(G n S K , l/2 )) - D. Thus (SΛ+1) ^(σ,+1, σn) <
lβn+1 and (ilΛ+1) ρ(σn+1, σn) < 1/271"1 are clear (since l/2%+1 + l/2% <
1/2*-1).

It's interesting to note that the above theorem includes the
Tietze extension theorem. To be precise it includes a deduction of
the Tietze extension theorem from the Uryrohn theorem on the
existence of certain real valued functions on a normal space.

COROLLARY 4.4. (Tietze 12) X normal D A closed, f: A —>[0, 1]
a map. Then f extends to a map F: X—> [0, 1].

Proof. Consider [((X ~ A)xl) U Gf] = G(Z X x Ic: X x R

it
x
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where Gf is the graph of /. For ίe I define σt(x) = (x, t). These
and the compactness of I allow Sζ to be finite in Definition 4.1.
Also g is an open map so ^ of 4.1 is a finite open cover. Urysohn's
theorem permits the construction of a subordinate partition of unity
[Bourbaki, 2] and the result now follows from 4.2.

DEFINITION 4.5. e:E —>Ό is a Banach family if it is a normed
vector family (see 1.11), has the coarse topology for a full family
of local sections (see 2.5), and each Ed is complete.

COROLLARY 4.6. Suppose e: E—>D is a Banach family. Suppose
that each Hd is closed in Ed and convex and that (H, τ) is numerably
sectioned in E. Then h has a cross section extending τ.

Proof. By 2.7 Sect e is complete.

DEFINITION 4.7. H is sectioned in E there exists Hr dense in H
such that for every h£ H' there is a local section σ: V—* E of e with
heσ{V).

COROLLARY 4.8. Suppose D paracompact, e:E—+D a normed
vector family, Sect e complete, h coarsely open and onto. Suppose
H is sectioned in E and each Hd is closed and convex. Then h has
a cross section extending τ for any closed A and partial section τ.

Proof. For any ε > 0, Ef (as in 4.1) t a k e ^ = all local sections
of E. Then (a) is clear. If we can show that g is coarsely open
then ^f of Definition 4.1 will be an open cover and will be
numerable by the paracompactness of D. Let de e(B(σ; e) Π G).
If deD- A then d e h(B(σ; ε)) f] (D - A) c e(B(σ; ε) n G). If d e A
select W open in D such that τ(W Γ) A) c B(σ; e) and check that
de Wf] h(B(σ; e)Γ\H)d e(B(σ; ε) f]G). So g is coarsely open because
h is. Thus 4.2 applies.

COROLLARY 4.9. Suppose D paracompact e\E~>D a Banach
family, h open and onto, each Hd closed and convex. Then h has
a cross section extending τ.

Proof. This follows from 4.8. H is sectioned since e has a
full family of local cross sections. Sect e is complete by 2.7.

COROLLARY 4.10. D paracompact, e\Έ~->Ό a Banach family,
e open and onto. If A is any closed subset of D and τ is a cross
section of e over A then τ extends to a cross section of e.
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Note that in 4.8-4.10 the hypotheses are independent of A.
Recall [4] that a map t: T—> D has the section extension property
if each cross section over a set A which extends to a halo extends
to a cross section over D. V Z) A is a halo if there is a continuous
function a:D-+[0, 1] with i c α ^ l ) and (D - F j c α ^ O ) .

COROLLARY 4.11. Suppose T~*D satisfies the hypotheses of
4.8 or 4.9 or 4.10, over βαcfc set of a numerable covering of D.
Then T-+D has the section extension property.

Proof. Since Dold showed that the section extension property
is local [4, p. 229].

5* Selections* In this section some of the results of § 4 are
used to prove selection theorems. Gall F:X—*E a multifunction
if it is a relation which assigns to each x e X a nonempty subset
of E. The g r a p h of F = G(F) = {(x, e)\ee F(x)} c X x E. A selec-

tion for ί 7 is a single valued function f: X—+E such that /(#) e ^(α?)
for all xe X. Consider

•E

F a multifunction

g a continuous selection for F \ A

The selection-extension problem [Michael, 9] is: can we find a con-
tinuous selection for F which extends gi Here we shall study the
following version

F is a multifunction, g, x, e are maps, eF = ί, eg = x\A and # is
a selection for JP | A. The object is to find a continuous selection
for F extending g. Note that ef=x will follow. Recall that a
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multifunction F is lower semi-continuous if F'1 of an open set is
open (recall F'^S) = {xe X\ F(x) f]S Φ 0}).

THEOREM 5.1. Suppose X paracompact, A closed, e:E—*D a
Banach family. Suppose F is lower semi-continuous and has closed,
convex values. Then F has a continuous selection extending g.

Proof. Consider the following diagram.

G(F) c XXDE >E

\h

A c X >D

Here X XD E = {(x, e) e X x E | x(x) = e(e)} = C. C-+X gets the
structure of a Banach family from e. Specifically (x, e) + (x, e') —
(x, e + e') is the addition, X(x, e) = (x, Xe) the scalar multiplication,
Cx is isometric with E%x so is complete. If (x, e) is given with xx =
d = ee then there is an open V of D and local section σ over V
through e. σf = (id, σx) is a local section of c over x~ι( V) through
(x, e). It is not hard to check that h is an open map since F is
lower semi-continuous (this is Prop. 1.2 of [3]). The hypotheses
show that each G(F)d is closed and convex. Define τ(a) = (a, g(a)).
Now Corollary 4.9 gives a cross section σ:X—>G(F) of h which
extends τ and the composition X—* G(F) aXXDE-+E is the desired
selection-extension.

COROLLARY 5.2. [Michael, 9] E a Banach space, F:X-+E a
lower semi-continuous multifunction with closed convex values. X
paracompact Z) A closed and g:A—+E a continuous selection for
FI A. Then F has a continuous selection which extends g.

Proof. This is the case D = point of Theorem 5.1.
In [9] Michael proves several variants of 5.2. Each of these

can be generalized to the metric family setting. Theorem 5.1 is a
consequence of Theorem 4.9. Similarly each of the theorems of § 4
gives rise to a selection theorem. Now consider the following
situation.

L

 > IT

E-+D a Banach family

/ϋ F — D a vector family
D
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COROLLARY 5.3. Suppose L is linear (i.e. each Ld is continuous
linear - L is a family of linear operators), openf and onto, and V
is paracompact. Then L has a continuous right inverse (M: V—>E
such that LM = id). In fact, any partial right inverse on a closed
subset A of V can be extended to a right inverse.

Proof. Consider

E

V >D
V

Since L is open and onto, F = L~ι is a lower semi-continuous multi-
function. It has closed convex values since L is linear and V is
Hausdorff. Theorem 5.1 gives a continuous selection for L"1 which
is a right inverse for L.

Until now we have looked for continuous cross-sections and
selections but for our final result we will relax this restriction.
Henceforth sections and selections are simply single valued functions
and all continuity conditions will be stated explicitly. In [3] Coban
proves a selection theorem for a multifunction from a cr-space to
a complete metric space. We will generalize this to the metric
family setting. Several of Coban's other results can be generalized
in the same manner. A space X is a <7-space if for every family
^ of open sets there is a σ-discrete refinement Ύ^ of closed sets
such that U ^ = U ^ Coban points out [3, p. 275] that each of
the following is a sufficient condition for a space X to be a σ-space:
(a) X is weakly paracompact and completely normal, (b) X has a
^•-discrete filter, (c) X is a symmetric space satisfying the first axiom
of countability, (d) X has a uniform structure, (e) X has a refining
sequence of coverings. Recall that a subset of a topological space
is an Fσ set if it is a countable union of closed sets. In a tf-space
every difference of closed sets is an Fσ set. In particular open sets
are Fσ sets.

DEFINITION. 5.4. E—>D a metric family, V open in E, Vn =
{e e E I p(ef E — V) > 1/n}. V is approachable if Vn is open for all
sufficiently large n.

Consider the following situation
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E

/
H/

Assume that e is a metric family with the coarse topology defined
by a full family of continuous local sections and Ed complete.
Suppose that X is a σ-space and H is a lower semi-continuous multi-
function with eH = x and closed values.

THEOREM 5.5. Under the hypotheses above H has a selection h
such that h~\ V) is an Fσ set for every approachable open V of E.

Proof. For n = 1, 2, , we will find a function hn: X—+E with
ehn = x and subsets XnΛ, Xn?2, such that

(AJ (n > l)p(hn, Λ..0 < l/2»+1

(Bn) p(hn, H) < 1/2-1

(Cn) hn I Xntk is continuous

(Dn) {Xn,k \k = l,2, •} is a disjoint cover of X by Fσ sets.

If this has been done then define h: X—+E by h = lim/^. h is well
defined by (A) and the completeness of each Ed and it is a selection
for H by (B). Consider

h'ι(V) = U λ ' ί K ) V» as in Definition 5.4.

By [8, p. 398] this equation is true in each Xd so it is true in X.
There is no loss in generality in assuming each Vn open so by (C)
and (D) each hz\Vn) is an Fσ and hence hr\V) is an Fσ set.

Proof of An+1 — Dn+1 assuming An — Dn {with modifications for
n = 0}. Let hnj XnΛ, X%tt9 , satisfy An — Z)Λ {ignore this if n = 0}.
Fix &, for now, and define Hk:Xnk-+E by JEΓfc(α?) = f f ( a ; ) n % ( 4
1/2Λ+1) {if Λ = 0, use X0Λ = X, X0,k - φ for fc. > 1, and H, = H}. By
(J5J JEΓjfcία?) is nonempty and Hk is lower semi-continuous on Xn>k

because hn is continuous there. Define ^ = {Hϊ^Biσ, 1/2W+2) | σ a
local section of e}. Then ^ is an open cover of Xn>k so there are
discrete families of closed sets W^v = {Ap,a \aelp} p = 1,2, ••• such
that <W — U ^ ί refines ^ and covers XΛ)fc. If aelp select σα a
local section with Ap,acHk

ιB{σa9 l/2*+2). Thus /o(jff(α), crβ(a?)) < l/2%+2

for a? 6 A- β . Now define
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wt.h = w;,\ ϋ wjΛ = w;Λ\j w,.t
\i=i \i=i

Then Witk is a difference of closed sets so an Fσ subset of Xn,k, so
an Fσ subset of X. The With's form a disjoint cover of Xn>k by Fσ

subsets of X. Define

g'ik: WU > E g'ik = σa on A i a

Qik: Wik > E gik= gf

ik \ Wik .

Thus g\k is continuous on each AitCt and W\ discrete so g\k continuous
on Wά and giΊc continuous on Wih.

Now consider the family of all Wik, i, k — 1, 2, ••-. This is a
countable family so it can be reordered and renamed as X{n+1)>1)

X(n+D,2)-"- Hence the X{n+1)yk form a disjoint cover of X by Fσ

subsets of X which proves (Dn+1). Define hn+1: X—>E by hn+1 \Wik =
gik. Then (Cn+1) and (Bn+1) are easily checked. For n > 1, condition
(An+1) is a consequence of the definition of Hk and ^ since l/2%+1 +
l/2*+2 < l/2%. This completes the proof.

DEFINITION 5.6. E-+D is a locally embedable metric family
if for every de D there is an open W = W(d) neighborhood of d
and a metric space I f = M(d) and an isometric embedding of metric
families

Nw <^—+ Wx M

\ /
\ /
W

COROLLARY 5.7. Suppose in 5.5 £/&α£ E is a locally embedable
metric family. Then H has a selection h such that h~\ V) is an
Fσ set for all V in some basis of E.

Proof. In Wx M if V = W' x B B = Bε(m) then Vn = W x Bn

is open so V is approachable and sets V Π ̂  ^ re a basis of E.

DEFINITION 5.8. E—>D is a sub-euclidean metric family if for
every de D there is a neighborhood W = TF(cZ) of eZ and an integer
% = n(d) and a closed isometric embedding of metric families.

Ew <=—> TF x Rn
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COROLLARY 5.9. Suppose in 5.5 that E—+D is a sub-euclidean
metric family. Then H has a selection h such that h"\ V) is an
Fσ for every open V of E.

Proof. Let A be closed in E and define gA: E—> [0, + oo] by
g(e) = p(e, A). Then Vn = g^-v(l/n, +oo] so we need only show that
each gA is lower semi-continuous. We may assume E = D x Rn.
Let ε > 0 and g(e) > ε. Suppose e = (d0, u0) and g(e) = α > /92 > βi > e.
Set 7 = β2 — β19 We will prove that there is a neighborhood TΓ of
(Zo such that e = (d, u) e W x -B(̂ o, 7) implies g(d, u) > ε. Suppose
this is false. Then for each WBd0 get de ΫF, %eΰ(wo,7) and

%) g ε. So we can find uf e Rn with (ώ, uf) 6 A, d(w, ^') <̂  /3i.
Then {(ώ ,̂ i6 )̂} is a net on A, {uf

w) is a net on B(u0, βλ + 7) so has a
convergent subnet converging to ΰ. But this gives a net on A
converging to (d0, ΰ) and A is closed so (d0, u) e A. Hence g(e) ^
p(e, (dOf μ)) = ώ(u0, μ) ^* βι + Ύ = βz<a, a contradiction.

COROLLARY. Lei p: E —*X be a metric fiber bundle with fiber
F a closed subset of Rn and X a σ-space. Then p has a cross section
σ such that σ~1( V) is an Fσ set for all opens V of E.

Proof. Apply 5.9 with X = D and H = p~\

Note that we cannot expect a continuous cross section in the
setting of Corollary 5.10 as is shown by the Hopf bundle S3—+S2

with fiber S1.
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