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ON GROUPS WITH A SINGLE INVOLUTION

JERRY MALZAN

This paper is concerned with the ‘‘ordinary’’ (over the
complex numbers) representation theory of finite groups and
in particular with matrix groups of the first and second kinds
(that is, matrix groups which are similar to real groups or,
alternatively, have real character but are not similar to real
groups. In the event that the character is non-real, we
speak of the third kind.)

The purpose of this paper is associate groups with exactly
one involution with representations of the second kind, and
this we do in two ways: First, by showing that any group
possessing an irreducible representation of the second kind
involves a non-trivial group with only one involution. Second,
by showing that a group with only one involution cannot
have a faithful irreducible representation of the first kind.

It is well and long known that groups of odd order
possess nontrivial irreducible representations of the third kind
only, so that evenness of order is a necessity if matrix groups
of the first or second kind are to be dealt with.

THEOREM 1. If G is a finite group which admits a representation
of the second kind then there is involved in G a group with exactly
one involution which is meither cyclic nor a direct product. In fact
G involves ome of the groups mentioned at the comclusion of the

proof.

Proof. G possesses, by assumption, a representation p of the
second kind. If o has as irreducible components only representations
of the first or third kind then p would, in fact, be the first kind.
Hence we may assume that G possesses an irreducible representation
of the second kind. Using [1], we see that G has a subgroup H with
this same property, and that furthermore H = S,. P where

(i) S, is a 2-group,

(ii) P is cyeclic,

(iii) (@, |P)) =1, and

(iv) P<H.

It is enough to show Theorem 1 for H. To this end we first
show that the irreducible representations of H are monomial. To do
this, look at Cy(P), the centralizer of P in H, and a representation
Y(Cx(P)) of it in which P is presented faithfully. If P is trivial
then H is a 2-group, and the monomial character of the representa-
tions of H is immediate. [2] Otherwise, we may assume that P is
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nontrivial, and that every element in H outside of C(P) normalizes,
but does not centralize, P. From this it follows directly [3] that
Y(Cx(P)) 1 H is irreducible. But C,(P) is a direct product of p-groups
and so [2] Y(Cu(P)) is monomial. It follows that the irreducible
representation 7(Cy(P)) | H is monomial. Further, it is easy to see
that each faithful irreducible representation of H arises in this manner.
Finally, we note that since homomorphic images of H still have
properties (i)-(iv), nothing is lost in assuming that the representation
of H of the second kind in question is faithful. Hence we may
assume that we have a faithful irreducible representation o(H) of
the second kind such that

o=7K)1 H,Y(K) of degree 1, with PcC K.

7 is necessarily complex. Also [5],

(g?) = — =_I.'_H_I_ ’ 2
516 =~ 1H = st

where the last sum is taken over those g in H satisfying g*c K.
Hence

3/ (¢) = | K|, while 37(¢) =0

Consider the set S = {g € H|g*€ K}. Split S into subsets g(K N K*).
This is, in fact, a partitioning of S, for if g, and g, were in the
same subset, there would exist elements %, k,, k., k, of K such that

9.k, = k.9, = 9.k; = k.9, whence
91 = g.ks = keg, which implies
9. € g,(K N K2) and so

g(K N K") = g(KN K.

Label a complete disjoint subset of the g(K N K*) as g,(K N K%).
We define new groups M, = {(g,, KN K*). ¢, normalizes K N K%,
and so | M;| = 2| KN K*|. Also,

Se) = 2@ —, 3, Ne) = ~IK] .

We would like to conclude that 3, 7(¢*) is negative for at least
one ¢. This follows unless it is the case that for some 1

>, 7(g®) =|Kn K%|.

KNKI9i

But consider w,(M;) = (K N K%) 1 M,, of degree 2. Since V(K N
K%) is real so too is w,(M;) and
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S 1(e) = | M

(in which case the contribution of > xnxs 7(9%) is cancelled) or else
S, X°49") = 0. (The case of two complex components.) In order
for this to be the case it would be necessary that 7(X N K*%) involve
only %1, and that g, be represented by the matrix

01
(1 o)
which generates all the matrices in ®,(#;). In this case, however,
we have 7(g;kg:*) = Y(k) whenever ke KN K°, and this contradicts
the irreducibility of v H. [4] p. 329.

It follows that one of the w,, of degree 2, is of the second kind,
and induced. The matrix group w,(M;) has at least one involution,
since it is of the second kind. But each such involution has an even
number of —1 eigenvalues, as an immediate consequence of [5] p.
62, and so the only involution in this group is —I. It follows that
M;, hence G, involves a subgroup which has only one involution,
which is neither cyelic nor a direct product.

While this completes the proof we can go further to give generating
relations for a group that must be so involved. Such a group may
be taken to be one of the following:

{h,9l9* = h" =1, ghg™ = h7'} (n odd) or
{h, 9|k =1, g* = K", ghg™ = h™'} (n even).

THEOREM 2. Let G be a group with a single imvolution which
18 neither trivial or C,. Then G does not possess a faithful irreducible
representation of the first kind.

Proof. We begin by noting that every subgroup of G is, again,
a group possessing no more than one involution so, since groups of
odd order do not possess nontrivial irreducible representations of the
first kind, we may proceed by induction on the subgroups of G. We
note also that a Sylow 2-subgroup of G must [2] be cyclic or gen-
eralized quaternion.

Suppose first that G has a normal subgroup N of prime index
p. Suppose, by way of contradiction, that G has an irreducible
representation o of the first kind (which we also assume to be faithful),
and consider the restriction 0 | N. By induction, none of the irreducible
components of this restriction is the first kind. If p | N is irreducible,
then it is also real, a contradiction. Hence p | N is reducible, with
p irreducible components, no two of them similar. This last removes
the possibility that the components of p | N are of the second kind
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since o | N is, like p, real. We see that these components must be
of the third kind, and appear in complex conjugate pairs. It follows
immediately that p = 2.

Let the irreducible components of o | N be ¢ and 6. We have

2.%(¢°) = |G| and 3.x°(9°) = 0
and so
S0 =16l

Each element of G — N is of the form hk, where & is a 2-element,
k has odd order, and % and k& commute. For each 2-element % in
G — N we define Cy(k) to be the centralizer in N of k. Because a
Sylow 2-subgroup of G is cyclic or generalized quaternion, Cy(%) has
cyclic Sylow 2-subgroup generated by #®. Hence [2] the elements
of odd order in Cy(k) form a normal subgroup, Q. By definition of
Cy(h) we then have

Cy(h) =W X Q.

We claim that the cosets ACy(k) partition C — N. That every
element of G — N arises in this fashion is obvious from the remarks
above. If we suppose that A,Cy(h) N hCy(h;) # @, then there are
elements %, and %k, of odd order in Cy(k,) and Cy(h,) respectively such
that hik, = hik,, with ¢ and j odd. Suppose that that 2° is the order
of h,. Then

(Bl = k' = Bk’

which implies that A{* = 1, and that k, = k,. Hence hi{ = hi, and
h’J.CN(h’J.) = hch(h2)°
It is enough, then, to show that for each #,
> x(9)=0.

hCp(n)
Let k£ be a fixed element, of odd order, of Cy(k) and consider
the sum

sy = 2 X ((WkY)

%

which is taken over ¢ =1,3,5, --., |h| — 1. If M(h) is the matrix
for k in p, then

s = 2 W(ME) M) = 1(M*k) 35 (M (R))) -

The single central involution in G must be represented by the
matrix —7I and so all the eigenvalues of M(g) are primitive |A[™
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roots of unity. It follows that
SI(M¥h)y =0 if |h| >4 and
S (Mih)y = —1 if |h|=4.

%53
In the first case we have

EQ]sk= > X9 =0.

hC y(h)

In the second case we have

28 = > %9 = — 2 %) =0,
Q LC 5 (h) CN(h)

since Cy(h) is a direct product of a group of odd order and a cyeclic

2-group, so that o | Cy(k) has no irreducible components of the second

kind.

We conclude that 3; x°(¢®) < 0, and the case in which G admits
a normal subgroup of prime index is disposed of.

Suppose now that a maximal proper normal subgroup N of G
is larger than Z(G). G/N is a noncyclic simple group having either
dihedral or cyclic Sylow 2-subgroup. It could not be cyelic [2], and
so N has cyclic Sylow 2-subgroup. It follows that N is a semi-
direct product PQ, where @ contains all the elements of odd order
in N, and is characteristic in N. Hence @ <{G. If @ # 1, we con-
sider p | @. The irreducible components of this representation occur
with equal multiplicity and are permuted transistively among them-
selves by the action under conjugation of G. Further, since p is
faithful, and is odd, these components are all of the third kind.
Let o be one of these components, and let H, be the subgroup of G
which stabilizes o, and let @ be the irreducible representation of H,
associated with ¢ in o | H,. In order that > x°(¢%) be positive it is
necessary and sufficient (since 0 = 81 G) that

SZ x’(g*) >0

where S={geG|g’c H,}. As in the previous theorem, S — H is
partitioned by cosets g¢.(H, N H?"), and it is necessary that one of
the representations in o | {g;,, H, N H%) be of the first kind. This,
however, is impossible since {g,, H, N H%) is a proper subgroup of
G (otherwise, G would admit a subgroup of index 2) and all the
irreducible components of o | {g;,, H, N H%) take Z(G) to —1I, so that
the homomorphic image of{g,, H, N H%) in any of these components
is still a group with exactly one involution which is neither trivial
nor C,. We conclude that @ = 1.

The possibility remains that N is a cyclic 2-group greater than
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Z(G). But in this case, an element 2 of N of order 4 cannot be
centralized by G for otherwise, by Schur’s lemma, o could not
possibly be real. Hence & is centralized by half the elements of G,
and inverted by the rest. But now G has a subgroup of index 2,
a possibility which has already been seen to.

We conclude that G/Z(G) is simple, with dihedral Sylow 2-sub-
group. Such simple groups have been classified [6] and are one of
(i) PSL (2, q), ¢ odd, ¢ > 3,

(ii) A,.

A; has no central extension of degree 2 [8] and so need not
concern us here. The obvious central extension of degree 2 of PSL (2,
q) is to SL(2, g), the group of 2 X 2 matrices wich determinant 1,
and entries from the GF (¢). But [7] this is the only such extension
of PSL (2, ¢). It is enough to show that none of the faithful irre-
ducible representations of SL (2, q) is real. To do this we first exhibit
the classes, C, of SL (2, q), showing a representative from each class,
the number of such classes in each row, and the order, |C|, of each
class, as well as the order of the restriction of each of these to the
subgroup H of SL (2, ¢) consisting of the matrices

)

H has index ¢ + 1 in SL (2, ¢) which, in turn, has order a9(¢® — 1).

geC 2C |C| |CN H|
+1 2 1 1
(“ 0 ) (¢ — 3)/2 o(g + 1) g+q
0 a (splitting)
1 0
+ ( s 1) 4 (@ — 1)/2 (q — 1)/2
( 5 1) (¢ — 12 o - 1) 0
-1 0

B#a+ as.

H is a semi-direct product of a eyclic group of order ¢ — 1 and
a group C, x C, X ... X C,, normal in H, where ¢ = p", and there
are n terms in this direct product. The irreducible characters of H
can be directly calculated, as well as the characters of the induced
representations. In these calculations, only representations of H which
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do not have —1I in the kernel will be considered since all the others
vield representations of PSL (2, ¢) and are not faithful on SL (2, q).
The table below lists representatives from the classes of G, the character
of these representatives in an irreducible representation o of H, the
character of these representatives in the induced representation

o 1SL(2 q)

and, finally, the number of such representations. In this table w
will designate a generator of the multiplicative group of the GF (q)
and z is a (¢ — 1)th root of unity. X\; and \] are pth roots of unity
(possibly 1) and the sums >, \; and >, A} satisfy S, N, + D M= —
1. Each )\; corresponds to a nontrivial irreducible character of C, x
C, X ++o X C,.

o o)l )= ()1 )

+ +
+1 0 w w 1 w? 1/)\—1 0 o
o,(H) +1 2 +1 +1 cer (g —1)/2
o, (H) + (¢ — 1)/2 0 =N BN e 1
o(H) + (¢ — 1)/2 0 =N EN e 1
o, 1SL(2,9)| £ (g +1) (+27) +1 +1 0
o 1SLE g|x@-12 0 £33N =3\ 0
a; 1 SL(2, q)| = (¢* — 1)/2 0 N N 0

Label the representations ¢, | SL(2, ¢)as p,(: = 1,2, ---, (¢ + 3)/2)
and write G = SL (2, ¢). We compute

1 . 1 .
A —_— oif (2 a d o 0) = —— 03 2
=TT H X0) and (0, p) = 1 25 [27(0)]
noting that if o, = 3}; m} ¢t;, where g; is an irreducible representation
of G, and a component of 0, with multiplicity m}{, then

A4, = ; mjc; and (0, 0;) = 12 (m3)*

where ¢; = 1, —1 or 0 according as m! is, respectively, of the first,
second, or third kind. Also, we note that since the centre of G is
represented by —1I in each of the p,, each of the y; is a faithful
representation of G. Further, each faithful irreducible pg; appears
as a component in one of the p,.

We note also that if
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-1 1

then M?* has character 0 in each of the p, unless 4|/¢ — 1 and B = 0.
This follows from the fact that M* as a matrix in SL(2, ¢), has
trace B* — 2 and, if it has nonzero character, this trace must satisfy
B*—2=a+ a* for some a. But then B*=a*(a + 1)* whence
either 8 =0, and 4|qg — 1, or else 8 # 0, a is a square, say « = 7%
and 2=7*% 7"+ 1)} and so B =7 (V*+1)=x£(r+ 7", a con-
tradiction.

Using these observations one obtains, from a straightforward,
although lengthy computation, the following results:

If 4]g — 1, then A, = —1 and (0, ;) = 1, so that the first (¢ — 1)/2
irreducible induced representations of G in the last table are irre-
ducible, and of the second kind. We find also that

A=4,=—(q+1)/2, (0:+ 00, + 0:) =2q.

If 4/g — 1, then 4, = —1 and (o0, p;) = 1 for all but one of the
induced representations subsumed under p,. This is induced from a
real representation of degree 1 of H. For it we have 4, =0, (0, 0,) =
2, and we conclude that this representation has two irreducible com-
ponents, both of which have complex character. We have also 4, =
A= —(g — 1)/2, (0, + 05, 0, + 05) = 2¢.

We need concern ourselves only with the representations p,, and
03, for which we do not yet know enough to categorize their irreducible
components by kind. Computation shows that (o, 0,) = (0, 05) =1
for each of the representations under p,. Hence with the exception
of the representation induced from a real character of H, o, and o,
each contain each of the p, exactly once. In the exceptional case,
0. and o, contain, separately, the two inequivalent complex irreducible
components of o,. Denote by p, and p, the characters obtained by
subtracting from p, and p, respectively the various p,. It is enough
to deal with p, and p,. For these we have:

If4jg—-1, A, =A,=—(@+1)/2+(¢g—1)/2= —1and

(.04+,05,,04+Ps)=2<1—4(q—1)/2=2-

Hence o, and p; are both irreducible, of the second kind and, in this

case, we are done.
If 4]g—1, A, = A, = —(¢ — 1)/2 + (¢ — 3)/2 = —1 while

(0i+ 05, 0s+ 05) =29 — 4(g — 3)2—-2=4.

This can happen only in two ways: Either o, and o, are irre-
ducible, and both of the second kind, or else o, and o, each have
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two irreducible components, no two of them similar, with at least
two of the four of the second kind. But then, since 4, = 4, = —1,
the remaining two components must be of the third kind, and the
proof is complete.

We have, as an easy corollary, a result first proved by G. Vincent

[9].

COROLLARY 1. If G is a finite group of real matrices of degree
>1, irreducible over the field of complex numbers, then one of the
matrices of G, other than the identity, has a +1 eigenvalue.

Proof. G must have even order and so has at least one involution.
Theorem two excludes the possibility that G has only one involution.
At least one of these lies outside the centre of G since, by Schur’s
lemma, each central involution in G is represented by —I. Now a
noncentral involution M has eigenvalues =+1 and, since M =% —1, at
least one of these is +1, as claimed.

We also have

COROLLARY 2. If G is a real, irreducible group of matrices of
degree greater than 1, then G has a dihedral subgroup.

Proof. A dihedral subgroup is, by definition, a group generated
by two distinet involutions. (Here we are admitting C, x C, as
dihedral.) Theorem 2 shows that G does, in fact, have two distinct
involutions.
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