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ON CAUCHY'S THEOREM FOR REAL ALGEBRAIC
CURVES WITH BOUNDARY

NORMAN L. ALLING

On a real algebraic curve with a nonempty boundary,
one must orient the several boundary components in order
to pose the question considered in Cauchy's theorem for
analytic differentials. It is proved that the conclusion of
Cauchy's theorem is true, in this context, if and only if the
orientation in question is induced by an orientation of the
interior of the curve.

Let 2) be a real algebraic curve (i.e., a compact Klein surface
[3, 4]), whose boundary dY has r components, where r > 0. Let g
be the algebraic genus of 2): i.e., the genus of the field E of mero-
morphic "functions" on 2) that are real valued on dY; then g is the
first Betti number of Y, the underlying space of 2), and the Euler
characteristic χ of Y is 1 — g [4, 2]. Y is—of course—characterised
topologically by knowing g, r and whether or not Y is orientable.
In [2] the author investigated some sheaves that arise from analytic
problems on 2), whose cohomology groups reflect the orientability of
Y; however these sheaves and groups seemed rather remote from
analytic function theory on 2). This paper is an outgrowth of the
search for a simple analytic question which could be posed on 2),
whose answer would reflect the orientability of Y. What analytic
question on 2) is, after all, more basic than Cauchy's theorem?

In order to pose the question considered in Cauchy's Theorem on
2), we must orientate the r-components of dY; there are 2r ways to
do this. If Y is orientable, then two of these 2r orientations are
engendered by the two possible orientations of Y; these will be called
indigenous orientations of dY. If Y is nonorientable, then dY has
no indigenous orientations. Let & be an orientation of dY.

Next we must have a space of analytic differentials on 2) to
integrate along 3 Y, as orieted by έ?. A space Ω9 of analytic "different-
ials" on 2) was defined in [4] which is the natural generalization of
the space of Schottky differentials on a bordered Riemann surface,
in that they are real on d Y. (The space of meromorphic differentials
on 2) [4, 1.10] is also very natural from the point of view of the
algebraic geometry of E.) Even though ω e Ω^ is called a "differential"
its integral along an oriented Jordan curve, or arc Γ, need not have

an invariant meaning! If ΓadY then it does, and I ωeR. The real
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part of I ω always has an invariant meaning. If Γ is contained in
an orientable tubular neighborhood, then I ω is always invariantly
defined, up to complex conjugation. The real dimension of Ω9 is g
[2]. (The reason it is so small is that the condition that co be real
on 3 7 allows it to be extended to the complex double.)

λ^ ωeflgH ωeR is a well defined iMinear functional on
ΩΌ whose image is either of dimension 0 or 1. Accordingly we will
say that the conclusion of Cauchy's theorem holds on 2) for &, or
does not hold on 2) for d7.

THEOREM 1. The conclusion of Cauchyys theorem holds on 2)
for an orientation & of dY{Φ<Z) if and only if d? is an indigenous
orientation of dY (i.e., one induced by an orientation of Y). Thus
Y is orientable (resp. nonorientable) if and only if there exists 2
(resp. 0) orientations & of BY for which the conclusion of Cauchy's
theorem holds on 2).

Proof. Assume first that & is an indigenous orientation of dY;
then, by definition, d7 is induced by an orientation of Y. In the
dianalytic structure on Y that gives 2) we may choose an analytic
structure and thus consider the bordered Riemann surface structure
2)i on Y that engenders ^ on 3 7 [4]. Then Ωd becomes the space
of Schottky differentials on 2^. In this context the Gauchy theorem
is known to hold. (This can be shown directly by triangulating Y
and using the Cauchy theorem in C.) Assume, henceforth that έ?
is nonindigenous.

It is well known (see e.g., [6]), that a topological model of Y
can be built up from a closed unit disc D, by adjoining various
strips and handles to it. Adopting a different construction suited to
our purposes, first adjoin to D r — 1 untwisted strips—glued to the
boundary of D—to form D' so that dDf has r components. Let U
be imbedded in C (in some way), let Γl9 •••, Γr^ be the components
of 3D' that bound bounded components of C — D', and let them be
positively oriented relative to Dr (as oriented by C). The Euler
characteristic of D', %{Df), is 2 — r, which is—necessarily—not
smaller than χ(Y). Next choose the largest integer h such that
2 - r - 2h ^ χ(Y), in the orientable case or 2 - r - 2h ^ χ(Y) + 1
in the nonorientable. Adjoin h handles to Ώf—by removing 2h open
discs from D', whose boundaries do not meet 3D', and attaching h
handles (each on the same side of D'), to some choice of /t-pairs
of these circular boundaries—to form Z)o If Y is orientable, then
Y and Do are homeomorphic. In this event let Y and Do be
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identified. If Y is nonorientable, let Dι be formed by adjoining
a half twisted strip to Do; then χ(A) — 2 — r — 2h ~ 1, which is
either χ(Y) or is χ(Y) + 1. In the first case Y and A are homeo-
morphic, and are to be identified. In the second let one more
half twisted strip be adjoined to D1 to form D2, a space that is
homeomorphic to Y; then let D2 and Y be identified. In general,
χ(Y) = 2 — r — 2h — m, where m = 0, 1, or 2, and Y and Dm are
identified. Let Γr be 3 Γ - ( Λ U ••• U Γ^J, and let it be oriented
in such a way that Γ3 and Γr have opposing orientations on the
untwisted strip adjoined to D to form D', which gives rise to Γj9

for eace 1 <; j < r.
The main analytic technique we will use, that of doubling 2),

goes back—essentially to Schottky and Schwarz—and explicitly, in
this context, to Klein. Let (X, r, p) be the complex double of 2) [4,
1.6]: i.e., X is a compact Riemann surface (without boundary), τ is
an anti-analytic involution of X, and p is an analytic map of X onto
2) (i.e., a morphism [4, 1.4]). p~\y) has one (resp. two) points
in it, for ye Y, if and only if yedY (resp. y e Y — dY). For
1 ^ i ^ r, let Aβ be the pullback of Γs to X, endowed with the
orientation induced on it by the orientation of Γs; thus A3- is an
oriented Jordan curve in X. For 1 ^ j < r, let α, = z/,. It is easy
to see that these, regarded as elements in Hλ{X, Z), are part of the
usual α-paths (see e.g., [7, Chapt. 10] for details), which arise from
doubling the r — 1 untwisted strips that were adjoined to D to form
Ώf. τ induces an involution σ on ΩΈ, the C-space of analytic differen-
tials on X, which is IMinear, such that σ(iω) — —iσ(ω), for each
ω e Ωx. Ωx is then the direct sum of the /ί-space, ΩX}S, of symmetric
elements of i2£, and the iί-space Ω^a of anti-symmetric elements of
Ωχ Further ΩX)a — iΩXtS; thus the real dimensions of Ωx>a and ΩXfS

are the same, namely g, the genus of X—which is also the algebraic
genus of 2). Given (oeΩχ, let ω = p + ζ where p is symmetric and
ζ is anti-symmetric. This convention will hold throughout the paper.
Further Ω9 can be naturally identified with ΩX}S (see [4], [1], and [2]
for more details).

LEMMA. Let a be an oriented Jordan curve (arc) in X such that

τ(a) = a, and assume that \ ω = t is real; then \ p = t and \ ζ = 0.
j a ja Ja

Proof. U s i n g [ 1 , 3 . 1 ] , w e s e e t h a t \ p = /co\ p = κ o \ p f so
Ja Jr(o) Ja

\ p € R. ζ=iη for some η e ΩliS, so I ζ— i \ ηe ίR, proving the lemma.
Jα ' Ja Ja

Returning now to the proof of Theorem 1, first let us treat the
(trivial) case in which Y is orientable, or equivalently in which m =



318 NORMAN L. ALLING

0. Then Y and Do are identified, and Γ1 + + Γr = 0 in HSJ, Z).
The orientation έ?, of BY, can be given by choosing eie{±l}1l ^
j ^ r, and by assigning each e3- to Γ3. Since <^ is nonindigenous,
not all the e/s are alike. {au ••-, α r_J is contained in a basis I?o =
{alf b19 , αff, bg} of -ff̂ X, ^ ) such that

a) αi δi αi^ &Γ1 ag bg a^ bj1 = 1, in TΓ

Let {α>i, , ωg} be a basis of ΩΛ over C such that \ ωk = δifc, 1 ^
Jαj

i, k ^ g. (See e.g., [7, Chapt. 10] for details.) As noted above there
exists k, 1 ^ & < r, such that ek Φ er. Using, among other things,
the lemma, we find that

t Pk = Σ β y ϊ iθfc = eΛ ρk

Since Γ t + . + Γr = 0 in H^Y, Z), Δr = -A, - . . . - Jr_, in ^

Z); thus er\ pk = —er\ pk, by Cauchy's theorem, and thus is —er,

S JJr jΔk

Pk — ek — er Φ 0, disposing of the proof, if F i s orientable.
Before going on to the nonorientable cases, let us consider a useful
example.

EXAMPLE. Let a = 1/2 + bi, where 6 > 0, and consider G =
aZ in C. Let G act as a set of conformal maps of C, by translation.
Note that G is invariant under Λ:, where /r is complex conjugation.
Let X = C/G, and let r be the anti-analytic involution on X induced
by fc. The parallelogram whose vertices are 0, a, 1, and α: can be
taken as a fundamental domain for 36. The interval [0,1] is the set
of fixed points of this domain under the action of /c. Let ξ) =
&/{l, τ}; then 2) is a Mobius strip, the image of [0,1] in Y being its
boundary. The isosceles triangle, whose vertices are 0,1 and a, may
be taken as the fundamental domain for 2). Given β in the straight
line segment [0, a], it will be identified—when passing to g)—with

β + a in [a, 1]. dz induces a basis {dz} of Ω% over R. Since 1 dz —
Jo

1, we see that the conclusion of Cauchy's theorem is never true for
2). (It is also not hard to show that all dianalytic Mobius strips
occur in this way.)

Returning again to the proof of Theorem 1, note that the triangle,
described in the above example and identified as indicated, is a Mobius
strip. Assume now that Y is nonorientable: i.e., m > 0. We can
modify the construction of Dm from Do as follows. Let one end of
a strip be glued to [1/3, 2/3] in the Mobius strip above. The resulting
space will be referred to as a Christmas tree. Glue the other end
of the strip that forms the trunk of the Christmas tree to the edge
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of A to form 2?x. Repeat the procedure on Dx to form Dz. Let Λr

and Λr+m_± be the boundaries of the Mobius strip—in the form given
in the example—before the trunk is glued on, and then glued to
Do, and -Dm-i Let them be oriented to agree with the orientation
of Γr. In doubling 2) to form X, the Christmas tree doubles to a
torus with a tube running from a hole in it, back to the rest of X.
As lifts to a (nonunique) path Δs in X, r <£ j ^ r + m — 1. Let these
paths be oriented by the paths onto which they map. Let ar = Δr

and let ar+m_1 = Ar+m_λ. {au , ar, αr+w_i} is contained in a basis
#m = {dif K •••, G ,̂ fyj of iϊi(X, Z) that satisfies condition a) above.

Thus there exists a basis {ωu . ., ω j of i?* over C such that 1 ωk = δίk,
Jay

1 ^ j\k S 9* (See e.g., [7, Chapt. 10] again.) Let ρk be the symmetric
component of ωk, and let p = Σ?=i i°r+*-i5 then /? e fl9. There exist

^•€{±1}, 1 ^ i ^ r , such that ί /0 = Σi=iβi( P Since — for 1 <>j <

o)r+k-i = 0, k = 1 or 2, for such j's, we

may apply the lemma and conclude that \ p = 0; thus Σί=i ei \ /° =

ιθ. Assume now that m = 1. Since we may invoke Cauchy's

theorem on an orientable sub-domain of 5), we find that \ p = ±

I p. Let αr be re-oriented so that positive sign above holds. Since

\ ωr = 1, we may reason as we did above. Since \ ωr = \ ωr = 1,
J ct>r jΓr }ar

and since τί/7,.) = Γr, we may apply the lemma and conclude that

I p = 1. Thus 1 p = er ^ 0. Assume lastly that m = 2. Reasoning

as above 1 o)r + &r+i = \ a)r+ o)r+1, the signs being independent,

one of the other. If necessary, re-orient ar or ar+ι so that the plus sign
holds twice above; thus I ωr + ωr+1 = 2. Since τ(Γr) = .Γr, we may

r f f
apply the lemma and conclude that \ p = er \ p = 2er Φ 0, prov-
ing the theorem.

Greenleaf and Read considered a related question in [5]. Given
an orientation έ? of d Y they defined the notion of an analytic differ-
ential p as being positive at y (in dY), relative to έ? as follows: if
given / G E — a local uniformizer at y — that is increasing near y,
relative to #* then 0 < h(y), where p = hdf for a (unique) heE.
(This definition is independent of the choice of /, as may easily be
seen.) p is said to be positive relative to & if it is positive at y,
relative to ^ , for each yedY. Greenleaf and Read proved that if
έ? is indigenous, then no positive analytic differentials exist in fl9,
that if & is non-indigenous and 2) is elliptic or hyper elliptic then
positive analytic differentials always exist; and then they went on to
conjecture that the condition that 5) be elliptic or hyperelliptic can
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be dropped while preserving the conclusion above. If the Greenleaf-
Read conjecture is correct, then it would imply our theorem; thus
our theorem may lend additional credence to their conjecture.

Having set up this machinery, let us use it to draw some addi-
tional conclusions. As noted before, the real dimension of β 8 is g
and g — r — 1 + m + 2Λ. Given p e flB, let

= \ P,~ ,<Pr-l(P)=\ P

Clearly these maps are real valued. If m ;> 1, let φr(p) ~ \ p. If

m = 2, let φr+1(ρ) =\ p. Let r ^ ί ^ r + m - 1 . By [ ί ' 3.1],

I p = ιc(φk(ρ)). Since+i. and τ(Ak) are homologous, 1 p — φk(p)>
ir(άk) * }τ{Δk)

proving that φk(p) is real. φk(p) can also be computed by integrating
allong Λk. Note that Λk lifts to Δk and to τ(Ak), and that the integral
of p allong each of these paths is the same. Let Θj be an oriented
α-path about the j t } χ handle adjoined to Df to form DQ, for 1 ^ j ^ h.

For each such path we may choose an analytic structure in a
tubular neighborhood; then integration of p along each such is well
defined. As remarked before the real parts of these integrals are
a priori well defined, whereas the imaginary parts are a priori well
defined only up to sign. If h > 0, let φg{p) Ξ Re I p, 9Vi(ι°) Ξ ±

Im I p, , φg-2h+i(p) = Re \ p, and φg.2h+1(ρ) = . ± Im I p> the signs
M jβh Jθh

above being independent of one another.

THEOREM 2. Given p e Ωv, p = 0 if and only if φx(p) = =

Φ,(P) = 0.

Proof. Since each of the φ/s is an J?-linear functional, p = 0
implies that each <?i(<o) = 0. Conversely, let peΩ9 such that φ3(p) =
0, for each i , 1 ^ i ^ g. As noted in the proof of Theorem 1, Γβ

lifts to dj e fli(X, Z) for 1 ^ i ^ r - 1. If m > 0, Λr lifts to α r, and
if m = 2, ^ίr+1 lifts to ar+1. For 1 ^ i ^ ^, Θj lifts to two oriented
α-paths on X, ag-2j+2 and α,_2/+i> which are permuted by r. Finally,
{αly , ag} is contained in a basis I? Ξ= {aL, bu , α ,̂ 6ff} of Ht(X, Z)
such that condition a) holds. By [1, 3.1], the integral of p about
α,_2y+2 a n ( i about αff_2i+1 are complex conjugates of each other. Because
of this symmetry, to know that p is zero it suffices to know that
its periods with respect to alf , αr_x, , α r_1 + m, ag, ag-2, , ag-2h+i>
and ag_2h+2 are all zero: i.e., the periods of p with respect to
Γl9 " , Γ M , •••, ̂ r-i+m, Θi, Θ2, •••, Θ A - A ^^ all zero; but this is
implied by the condition that φλ{ρ) = = φg(ρ) = 0, proving the
theorem.
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COROLLARY. There exists a unique basis {pl9 . •-, pg) in ΩΌ of Ω%

over R (resp. in Ωv of £?x over C), such that φ^Pό) — δίkf for all 1 <;

j , k^g.

Bibliographic note. See also [8, 9] for related results on the
period matrix of a symmetric Riemann surface.
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