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ALGEBRAIC MAXIMAL SEMILATTICES

J. W. STEPP

A topological semigroup S is maximal if it is closed in each
topological semigroup that contains it. The semigroup S is
called absolutely maximal if each continuous image is
maximal. In this paper we are concerned with those discrete
semilattices that are absolutely maximal. Thus we are con-
cerned with those algebraic conditions on a semilattice which
force it to be topologically closed.

In [9] Stralka studies those semigroups which have the congruence
extension property. The semilattices we are concerned with and all
their homomorphic images have this property. In fact, every congru-
ence on such a semilattice S is closed. Thus 5 admits a compact
Hausdorff topology ZF{S) under which multiplication is
continuous. By [5] S admits a unique such topology. Also, since S
has the congruence extension property for finite subsemilattices, the
topology £F(S) has a base which consists of subsemilattices [3].

In §11 we give definitions, and we give necessary and sufficient
conditions for a sublattice of a compact lattice to be closed. In §111 we
characterize those discrete semilattices and lattices which are abso-
lutely maximal. Also, we show (Sy^(S)) is stable and 0-
dimensional. In §IV we indicate how absolutely maximal discrete
semilattices are constructed from a class of simple examples.

II. Definitions. Let 5 denote a topological semi-
lattice. The Bohr compactification of S is a pair (2?(S), bs) where B (S)
is a compact semilattice, bs: S —> B(S) is a continuous homomorphism
and if / : S -» T is a continuous homomorphism with T a compact
semilattice, then there is a unique continuous homomorphism which
makes the following diagram commute:

For the existence of the Bohr Compactification see either [1] or [2].
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For each U C S with U^ 0 let M(U) = {y G S | there is an JC G [/
with jcy=jc}, L(U)= U S and CL(U) denotes the closure of
U. Define g on 5 by JC ̂  y if and only if xy = x. Let {xa}aεA be a net
in 5. To say xa f JC means the net converges to x and xα ^ x̂
whenever a ^ β. We define xα J, x is a similar manner. For a topolog-
ical semilattice Γ Hom(S, T) denotes the collection of continuous
homomorphisms from S to Γ. Let / denote the unit interval with
xy = min{jc, y} and let J, = {0,1} C I

PROPOSITION 1. Lei L be a compact topological semilattice with
identity element and let A be a sublattice of S. Then A is closed if and
only if A is complete.

Proof. Assume A is complete and let x G CL(A). Let °U be the
collection of sequences of open sets about x having the following
property; {[/„}:=, G% if and only if CL(Un+ι) A CL(Un+ι) C Un for
n = 1,2, . Partially order % by {Un}U =S{Vn}:_, if Vn C l/π for all
n. Then % with this partial order is a directed set. Now fix a =
{lU:-i G %. Note that Π Γ=i l/» = Π Γ=iCL(l7n) is a sublattice of L and
if (Π Γ=i C/n) n A £ 0, then (Π Γ=i l/n) Π A is closed under taking inf s and
thus has a zero which will be denoted by z(a). Thus we show this
intersection exists.

For each n let bn G Un Π A and let {αj}p=i be the sequence given by
an

p = Λf=1 bn+i. Then {α£}p=i C ί7n and is a decreasing sequence and thus
has a limit point t in CL(t/n) Π A. Clearly, t G CL(l/m) for all m > n
and thus (Π U Un) Π A φ 0 . It is clear that if α, β G % with α < β, then
z (a) ^ z (β). Thus {z (α )}α G% is an increasing net in A which converges
to x. Since A is complete, and / compact, x GCL(Λ).

In [5] Lawson defines B+ for an ideal in a semilattice 5 to be {x \
there is a net {jcα}αGΓC B with jcα j x}. He shows for an ideal B in a
compact semilattice S is closed if and only if B + = B. Thus one has

PROPOSITION 2. Lei B be a sub semilattice of a compact semilattice
S. Then B is closed if and only ifB contains arbitrary infs and B = J3+.

We also need the following from [5].

PROPOSITION 3. Let S and T be compact semilattices and leff be a
homomorphism from S to T Then f is continuous if and only if f has
the property that f(xa) f f(x) whenever xa f x andf(ya) | /(y) whenever

Comment 4. It is not the case that a complete lattice necessarily
admits a compact Hausdorff topology for which both operations are
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continuous. For consider the lattice on the integers with 0 the smallest
element, 1 the largest element and each maximal chain having three
elements. However, (Z, Λ ) does admit a compact Hausdorff topology
with Λ continuous.

III. Maximal semilattices and lattices. Throughout this
section 5 will denote a discrete semilattice which is absolutely
maximal. Since 5 is a locally compact semilattice with a base for the
topology which consist of subsemilattices, Hom( S,J) separates points
[4], Thus there exists a continuous injection a from S into a compact
semilattice. Since α(S) is closed it is compact and S therefore admits
a compact topology 3*(S) with multiplication continuous. By [5],
3*{S) is unique, and therefore (α(S),α) is the Bohr compactification of
S. Note that a(S) is the Bohr compactification of a(S) with the
discrete topology. Therefore, we first characterize those compact
semilattices T which are the Bohr compactification of Γ with the
discrete topology.

For a semilattice T we let Td denote T with the discrete topology.

PROPOSITION 5. Let T be a compact semilattice with T =
B(Td). Then

(a) Hom(Γ, IJ separates points.
(b) If U is a subsemilattice of Γ, then M(U) is both open and

closed.
(b') Each prime ideal of T is both open closed
(c) dim S = 0.

Proof, (a) Let JC, y G T and assume x <£ M(y). Let φ: T -» J, be
given by φ(s)=l if sGM(y) and 0 otherwise. Since T = B(Td),
φEHomίT,/,), and φ(y) = 1 ̂ 0 = φ(x). It now follows that Horn
(Γ,/i) separates points.

(b), (b') Same as (a).
(c) Since Hom(5, Iχ) separates points and S is compact, 5 can be

embedded in a 0-dimensional semilattice and is therefore 0-dimensional.

LEMMA 6. Let Ί be a compact semilattice with M(U) both open
and closed for each subsemilattice U of S. If C is a chain in Γ, then C is
finite.

Proof. Assume T has an infinite chain C. Then CL(C) is a chain
and must have a limit point z. Since M(z) is open, there is net {jcα}αeΓ in
C with xa I z and xa^ z for each a G Γ. Let N = Π aeΓM(xa); then
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M{U) is closed with z£M(U) with is a contradiction. Thus C must
be finite.

PROPOSITION 7. Let T be a compact semilattice. Then the follow-
ing are equivalent:

(a) T = B(Td).
(b) M(U) is both open and closed for each subsemilattice UofS.
(c) Each chain in T is finite.
(d) Hom(ΓJ1) = Hom(T ί ίJ1).
(e) There is a compact semilattice R with |1?|>1 with

Proof, (a) Φ (b) Φ (e) trivial, (e) Φ (b) by proof Proposition 5,
(b) Φ (c) by Lemma 6. Thus we show (c) Φ (a).

Let fEHom(TdyR) where R is a compact semilattice and each
chain in T is finite. Let {jcα}αeΓ be a net in T with xa j x. Since each
chain is finite, eventually xa = x and /(xα) | / ( x ) . Similarly, if yα f y
then /(y α ) t/(y) . By Proposition 4, /GHom(Γ,l?) and thus Γ =
B(Td).

LEMMA 8. Let T be a tppological semilattice and let R be a
subsemilattice of T with each chain finite. Then R is closed.

Proof. Let x G CL(JR). Let °U be the collection of sequences of
open sets about x satisfying; {[/n}"=1G °U if and only if Un+I[/π+i^ Un

for all n. Partially order °U by {I7n}:=1 ^{Vn};=ι if and only if Vn C t/π

for all n. Then % with this partial order is a directed set. Fix
{ί/j:=1 = α: G%. Then Π Γ=i CΛ is a subsemilattice of T and if (Π
Γ=il/n)ni?^0, then (ΠΓ=it/n)Πl? has a zero. For each positive
integer n let frπ G Un ΠR, and for each positive integer p let α£ =
bn+φn+2- -' bn+p. As before, an

p E.Un for all p. Since each chain in R is
finite, there is a q such that if p >q then a\ = αj. Thus {αj}p=1

converges to απ in Un. Clearly, if m > n then αm ^ α " . Thus there is
a m0 such that if n ^ m 0 then an = am°. It now follows that
αm°G(ΠΓ=it7n)ni?. Let z(a) be the zero of (Π7^UΛ)ΠR. Thus
{z(α)}αG% converges to x. Thus r = x 6 J J and R is closed.

We now summarize our results in the form of a theorem.

THEOREM 9. Let Tbea discrete semilattice. Then T is absolutely
maximal if and only if each maximal chain in T is finite.

It is clear that we also have
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COROLLARY 10. Let L be a discrete lattice with each chain
finite. Then each lattice homomorphic image of L is closed.

We close this section with some additional properties a semilattice
T with T = B(Td) must have. The proofs are all straightforward and
will be omitted.

PROPOSITION 11. Let T be a compact semilattice with T =
B(Td). Then

(a) Each semilattice of T is closed.
(b) If R is a sublattice of T, then R = B(Rd).
(c) If R is a homomorphic image of T, then R = B(Rd).
(d) T is stable (that is, there are no dimension raising

homomorphisms on T).

IV. Examples. Throughout this section Sd is assumed to be a
discrete absolutely maximal semilattice and 5 will denote B(Sd). For
each x E Sd let A(x) = {y E Sd \x < y and M (JC) Γϊ L(y) = {JC, y}.

LEMMA 12. For each x E Sd A(x) is infinite if and only if x is a
limit point of S. Further, if A(x) is infinite, then CL5(Λ(JC)) =

A(x)U{x}.

Proof. Assume A(x) is infinite and let {yα}«er be a net in A(x)
which converges (in 5) to y. Assume each ya ^ y. Let z E A (JC); then
zya = x if yajέ z. Thus zy = x. It now follows that y = y2 = limyyα =
limx = x. Thus CLs(A(x)) = A(x) U{JC} and JC is a limit point of 5.

Now assume x is a limit point of S and let {za}aGΓ be a net in 5
which converges to JC and zα^jc. For each « 6 Γ let xaEA(x)Π
L(Za). Such jcα's exist since each chain in T is finite. Thus {jcα}«er is
a net in A(x) which converges to JC. It now follows that A(JC) is
infinite.

EXAMPLE 13. Let X be a compact well-ordered space and let B
be the set of limit points of X. Let p be defined on X by xpy if and
only if x = y or x, y E B. Then XIp is a compact Hausdorff
space. Define multiplication on XIp by [JC] [y] = [JC] if [x] = [y] and B
otherwise. Then X\ρ with this multiplication is a compact semilattice
with each chain finite. Thus (Xlρ)d is an absolutely maximal semilat-
tice.
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EXAMPLE 14. Let Γ = {((l/n),(l/p))|n,p positive integers, n ^
p ^2n}U{(0,0)} with multiplication defined by

(0,0) if nϊm

(1 λ) (± 1) =WpJWqJ (II . ίl n\ .,
—,mini—,—}) if n = m.W [p'qίJ

Then each chain in Td is finite and thus Td is absolutely maximal. Note
that although chain in T is finite there is no upper bound on the length of
chains.

Observation 15. Let x be a limit point of 5. Then CLS(A (JC)) is
isomorphic to XIp for a suitable compact well-ordered space X (see
example 13).

Observation 16. There is a discrete semilattice Td which is
absolutely maximal and the set of limit points of T is 5.

Question 17. If S is a maximal semilattice is it absolutely
maximal?

Question 18. Are these reasonable conditions one can impose on
a locally compact semilattice to guarantee that it be maximal?
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