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ISOMETRIES OF THE DISK ALGEBRA

J. N. MCDONALD

In this paper we are concerned with the problem, posed by
R. R. Phelps, of describing the into isometries of the disk
algebra. We show that, in a certain sense, every isometry can be
approximated by convex combinations of isometries of the form
/—>k(f°φ). We also give some sufficient conditions for an
isometry to be of the form /—>k(f°φ).

Let D and Γ denote, respectively, the open unit disk and the unit
circle. The disk algebra, i.e., the algebra of all complex valued functions
which are continuous on D U Γ and analytic on D, will be denoted by A.
It will be assumed that A is equipped with the sup-norm.

Operators of the form

(1) Tf

are isometries of A: if k G A, if ||fc||= 1, and if φ: D U Γ ^ D UΓ is
analytic on D, continuous on D U Γ - fc~!(0), and satisfies φ(k'ι(T)) D Γ.
In fact, if T is a surjective linear isometry of A, then it must be of the
form (1) with k being a constant, and φ being a Mobius transformation.
(See [3, pp. 142-148].) Rochberg [8] has shown that if T is an isometry
such that Γl = 1, and T(A) is a sub-algebra of A, then T is of the form
(1) with k = l.

Note that any bounded linear operator T: A —» A which satisfies
(1) also satisfies.

(2) TlT(fg)=TfΓg

for all / and g in A. Moreover, we have the following.

PROPOSITION 1.1. A bounded linear operator T.A-+A satisfies
(2) for all f,g <ΞA iff it is of the form (1).

Proof. It is only necessary to show that, if T satisfies (2) for all
f,g G A, then it satisfies (1).

Suppose that w is a point of D where T\ is not 0. Consider the
linear functional defined on A by

By (2), Lw is a multiplicative. Hence, there is a v in D U Γ such that
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Lw(f) = f(υ). Since υ =(Tl(w))-ιTZ(w), where Z is the identity
function onDUΓ, it follows that the function φ = {T\yλTZ is bounded
on D. Thus, the singularities of φ in D are removable. Let 5 be the
operator defined on A by

S/=7Ί(/oφ).

It follows easily from (2) that SZn = TZn for n = 0,1, . Since the
polynomials in Z are dense in A, the operators T and 5 are the same. If
7Ί = 0, then, by (2), (T/)2 = Γl Γf ^ 0. It follows that T is of the form
(1) with λ:=0.

For an example of an isometry which fixes 1 but is not multiplica-
tive, see [8].

For the remainder of this section, T will denote an arbitrary
isometry of A. Consider the closed set Γ(Γ) = {z eΓ]|77(z)| = 1 and
there is a point t{z) in Γ such that Γ/(z) = 7Ί(z)/(Γ (z)) for all / G A}.
Since A separates the points of Γ, it follows that the mapping z —> Γ(z),
denoted by Γ, is well defined and continuous on Γ(Γ). In [5], we showed
that t maps Γ(Γ) onto Γ. The following proposition gives a simple
description of Γ(Γ).

PROPOSITION 1.2.

| = l and | |

Proof. It is enough to show that if | 7Ί(z,)| = |ΓZ(z,)| = 1, then
). By the Hahn-Banach theorem, there is a measure μ on Γ

having total variation ^ 1 such that Tf{zλ) = I fdμ for all / G A Let

a = I Idμ and b = Zdμ, where Z is the identity on D U Γ. Since dμ

has total variation ^ 1 and δdμ, = 1, it follows that άdμ is nonnega-

tive. Note that ί Re(l - abZ)adμ = 0. Thus, Re(l - abZ) is 0 on the

support of μ. Hence the support of μ consists of a single point, i.e.,

THEOREM 1.1. Suppose m(Γ(Γ))>0, where m denotes Lesbegue
measure on Γ. Then T is of the form (1).

Proof. For /,gGA, we have

Γl(z)Γ(/g)(z)=T/(z)Γg(z)
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for every z E Γ(Γ). Any two functions in A which agree on a subset of
Γ having positive Lesbeque measure are equal. (See [3, p. 52].) Thus
7Ί T(fg) = TfTg. It follows by Proposition 1.1 that T is of the form (1).

THEOREM 1.2. Assume that T1 is an inner function. Suppose that
T(A) contains a function G having the following properties: \\G || = 1,
m(G~ι)(Γ))>0, the set of connected components of G~ι(Γ) is countab e,
and G is not a constant multiple of 7Ί. Then T is of the form (1).

Proof. Let H = ΎΪG. Note that H'\Γ) - GΛΌ Let
{Ji,/2, * } denote the collection of connected components of
H~\Γ). Suppose it can be shown that, for some q, m(H(Jq ΓΊ Γ(T))) >
0. Then Jq is necessarily a nontrivial sub-arc of Γ. By a form of the
Schwartz reflection principle (See, e.g. [2, p. 187].), G can be continued
analytically across the interior of Jq. It follows that the restriction of H
to the interior of Jq is continuously differentiate. If H were constant
on Jq, then we would have G = cTί where c is a constant. Thus, H is
not constant and, hence, m (Jq Π Γ(Γ)) > 0. It now follows by Theorem
1.1 that T is of the form (1).

It remains to be shown that m (H(Jq Π Γ(T))) > 0 for some q. It is
claimed that

H(Hι(Γ)) = H(Hι(Ό Π

For each zGΓ, there exists a measure μz, having total variationS 1,

such that \fdμz = Tf{z) for each /€= A In particular, we have 1 =

T\{z)dμz. It follows that the measure T\(z)μz is nonnegative.

Suppose that z is choosen so that |G(z) | = |H(z) | = 1. Let F be the
unique function in A such that G = TF. Then

ί Rφ-H(z)F)Tl(z)dμ =0.

It follows that H(z) = F(w) for each w in the support of μz. Since the
mapping f is onto, there exists a ZiGΓ(T) such that

= H(Zι).
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Next it is claimed that m (H(Hι(Γ))) > 0. If m (H(H\Γ))) = 0, then H
is constant on all of the Λ's. Since at least one of the Λ's is a
nontrivial sub-arc of Γ, it follows that G = cTί for some constant c - a
contradiction to the hypothesis that G not be a scalar multiple of
Γl. Finally, we have

0 < m {H{H\T))) =§ Σm (H(Jn Π Γ(Γ))).

It follows that m(H(Jq ΠΓ(Γ)))>0 for some q.

COROLLARY. Suppose that T\ is an inner function. If TA con-
tains an inner function which is not a scalar multiple of Tl then T is of
the form (1).

REMARK. Let si denote the sub-algebra of A consisting of func-
tions which are analytic in a neighborhood of D U Γ. By arguments
similar to those used to prove Theorem 1.2, one can show that every
isometry of si must be of the form (1).

2. Approximation of arbitrary isometries. As in the
previous section, T will denote an arbitrary isometry of A. Let B
denote the space of bounded linear operators: A —> A and let Bx denote
the set of members of B having n o r m a l . As in [5], we define
E{T) = {U<ΞBx\Uf{z)=Tf{z) for every zEΓ(T) and every / E
A}. In [5] we showed that E(T) is a face of Bu that E(T) is closed in
the weak operator topology, and that each member of E(T) is an
isometry. Thus, the set of isometries of A is the union of weak
operator-closed faces of B,. It follows from Proposition 1.2, that

E(Γ) = {E/eJ3,| t/Z|Γ(Γ) = TZ\Γ(T) and C/1|Γ(Γ) = 7Ί|Γ(Γ)},

where Z denotes the identity function o n D U Γ . If m(Γ(Γ))>0, it
follows that E(T) = {T}. Suppose that m(Γ(Γ)) = 0. Let A, denote
the unit ball in A, let S, = {/eΛ,|/|Γ(Γ) = f}, and let S2 =
{g e A, \g |Γ(Γ) = Tl |Γ(T)}. By a result due to Rudin [9], both 5, and
S2 have infinitely many members. Let h E Sx and k E S2. The
operator U defined by Uf = k(f<>h) is in E(T). Thus, E(T) contains
infinitely many elements iff m(Γ(T)) = 0. For the remainder of the
paper, we will consider only isometries T for which m(Γ(Γ)) = 0.

Let F(T) = {U<= E(T) \ U is of the form (1)}. In view of [5, Th. 3],
it is natural to ask whether E(T) is the closed convex hull of F(Γ),
where the closure is taken in the weak operator topology? Although we
are unable to answer this question, we will show that there is a family ©
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of locally convex Hausdorff topologies on B with the following
properties: for each SΓ E @, E(T) is the SΓ-closed convex hull of F(Γ),
and the weakest topology containing all the members of © is the weak
operator topology.

The weak operator topology on B is the weakest topology in which

all linear functionals of the form H —> Hfdμ, where / is in A and μ is a

Baire measure on Γ, are continuous. It follows that the space B* of
weak operator continuous linear functionals on B is the direct sum of
sub-spaces s£ and 5^ where d is the sub-space of B * spanned by linear

functionals of the form H-> (Hf)gdm with g^Lx{m), and where Sf is

the sub-space of B* spanned by functionals of the form fί-» Hfdv

with v being singular with respect to ra. (See [1, p. 421]). Let Ll(m)
denote {gEL,(m) |gS0 a.e.}. For each gE.L\{m) we define the
ίfg-topology on B to be the weakest topology in which the linear

functionals of the form H —> {Hf)gdm with / in A, and the linear

functionals in if, are continuous. Set © = {ifg \g ^L\{m)}. Let W
denote the weak operator topology on B. Note that ίfg CW for each
g GL+

{(m). By [1, p. 421], the ^-continuous linear functionals on B

are those of the form 1{H) = I Hfgdm +Σ%A Hf4μh where the meas-

ures μh i = 1,2, , n, are singular with respect to m and /,/i,jy * * fn Ξ

A. Let % denote the smallest locally convex topology on B which

contains all members of ©. Any functional of the form L(H) =

Hfdv, where / E Λ, and v is a regular Baire measure, can be written in

the form

= ίHfdμ+Σ lmi
J n = \ J

L(H)

where μ is singular with respect to m, and gug2,g3,g4EL+\(m). It
follows that L is °U- continuous. Hence, by the definition of W, we
have °U C W.

THEOREM 2.1. For each g E Lt(m), E(T) is the ϊfg-closed convex
hull of F(T).

REMARK. It is not possible to prove Theorem 2.1 by using argu-
ments based on the Krein-Milman theorem. For in order for the
Krein-Milman theorem to apply to E{T) it would be necessary for
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E(T) to be compact in the ϊfg-topology, but the following argument
shows that E(T) is not S^g-compact for any g ^L\{m): Let K be a
"Cantor" subset of Γ which is disjoint from Γ(Γ). Let Cλ{K) denote
the set of continuous complex valued functions on K having absolute
valued 1. Define /: E(T)-+CX(K) by j(U)=UZ\K. If C,(K) is
equipped with the topology of pointwise convergence, then j is ίfg-
continuous for each gGLt(m). By [9], the map / is onto. Since
Cλ(K) is not compact in the topology of pointwise convergence, it
follows that E(T) is not compact in the ϊfg-topology.

Our proof of Theorem 3 will depend on the following two lemmas:

LEMMA 2.1. For z in D, and t E [— TΓ, π] let

i.e., Pz{eιt) is the Poisson kernel. Consider the set V = {ΣΓ=, c,PZi | c* g 0
and Zi E D for i = 1,2, , n). Then the Lrclosure of V is Lt(m).

Proof. Suppose that gλ^L+

x{m), but g, is not in the closure of

V. Then there exists an h in Lx(m), such that gxhdm > 0 and

v hdm g 0 for every υ EV. In particular

['
for all z in D. Fatou's Theorem [3, p. 34] implies that h ^ 0 almost

everywhere with respect to m. Hence, ghdm ^ 0 . Thus, we have

reached a contradiction.

LEMMA 2.2. Let E be a closed subset of Γ such that m(E) =
0. Let φ0: E -» D U Γ be continuous. Consider z,, z2, * , zn, w E
D. 77i£re w α function φ in the unit ball Aλ of A which extends φ0 and
satisfies φ{zt) = w for i = 1,2, , n.

Proof Suppose that w = 0. Let

For each u in Γ, we have |JB(iι)| = 1. Define β0 on E by βo(u) =
B(u)φo(u). The function β0 has an extension β in A}. It follows that
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Bβ satisfies the assertion of the lemma in the case where w = 0. If
w^O, we choose a Mobius transformation τ of D such that τ(0) = w,
and apply the preceeding argument to obtain a function φx in A, which
extends τ']°φ0 and maps z1, ?zn into 0. Thus, the function φ =
τ °φu extends φ0, lies in At, and statisfies φ(zt ) = w for ί = 1,2, n.

Proof of Theorem 2.1. (The argument used here is an adaptation
of one due to Morris and Phelps [6, Th. 2.1].)

Suppose U GF(T) but it is not in the ϊfg-closed convex hull of
F(Γ). By [1, Th. 9, p. 421], there are functions /,/,,/2, ,/n G A,
measures μ,, μ2,

# * , μ* on Γ which are singular with respect to m, and a
real number r > 0 such that

Re (I (Uf) gdm + g I Itfdμ,) g Re ( J(F/) gdm + g J jγ,dμ,) + r,

for every F in E(T).
By Lemma 2.1, there are points zu z2, , zp GD and nonnegative

real numbers cu c2, , cp such that

(3)

> Re ( £ c,Ff(zl) + Σ JFf4μή + \,

for every F in F(Γ). We can assume without loss of generality that
μ, g 0 for / = 1,2,, , n. Since Uf = F/ on Γ(Γ) for i = 1,2, , n
and F G F ( Γ ) , we can also assume that μf(Γ(Γ)) = 0 for / =
1,2, , n. Let x̂  = ΣΓ=1 μ,. Given β > 0, there is a closed subset y of
Γ-Γ(T) such that m(y) = 0 and v{T~Y)<e. Let ft, denote the
Radon-Nikodym derivative of μt with respect to v for i =
1,2, , n. Choose continuous functions h on Γ such that 0 g ft g 1

and I ft, -h\\dv <e for i = 1,2, ,n.

Let g = Σ?-, ft l/f,. For each y G Γ, define /cy = Σ?., ft 5(y)/,. Then
g(y)= t//cy(y). g(y) is also equal to (U*ey) (ky), where U* is the
adjoint of U and ey represents the "evaluation at y" functional on
A. Let 5 denote the unit ball in the dual space of A. Since U* maps
S into S, it follows that U*ey G S. The function W(p) = Rep(fcy) is
weak* continuous on S and sup W(S)^RεU*ey(ky) = Reg(y). The
extreme points of S are exactly the functional cey, where c, y G Γ. It
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follows from the Krein-Milman theorem that, for each y G Γ, there exist
Φ(y), c(y)GΓ, such that

For each y G Y choose an open neighborhood Vy of y such that
Vy ΓΊ Γ(Γ) = φ and

for every w G Vy. Let {Vy,, , Vyp} be a finite collection of V/s which
covers y. We can easily find another open cover {t/,, , Up} of Y
such that Lζ C Vyi and (̂{y |y is in more than one Uj}) < e. Consider
the sets

Then fl, 's are closed and disjoint and v(Y~ \Jp

i=xHi)<e.
Define mappings 0O, fc0: Γ(Γ) U [ U f.iiί ] -> Γ by

f/ if ^ E ί ί
lt(y) if yGΓ(Γ).

fc(«i) i f ^ E ί ί
IΓl(y) if yGΓ(T).

Note that m(Γ(Γ) U [ U T=iϋ,]) = 0. Since f/ is an isometry, there are
points w0 and w, in D such that Re u>0/O,)gRe Uf(Zi)-e for / =
1,2, ,p. By Lemma 2.2, there are extensions θ and /c, of θ0 and k0

respectively, which lie in Ax and satisfy θ(Zj) = wx and k(z}) = w0 for
/ = 1,2, , n. Define the linear operator Fx: A —> A by Fλh =
k(h°θ). Clearly, we have FXGF(T). By a straightforward argu-
ment, we can find a constant M > 0 independent of e such that

Σ ί
i=l J

We can obtain a contradiction to (3) by taking e to be sufficient small.



ISOMETRIES OF THE DISK ALGEBRA 151

COROLLARY 2.1. Suppose 7Ί = 1. Let Eί(T) = {U\U<=E(T)
andUl = 1}, and let F,(Γ) = £,(Γ) Π F(Γ). Then for each g<ΞL\{m),
the set £j(Γ) is the closed convex hull ofFλ{T) where the closure is taken
in the ίfg-topology.

Proof. Let 5, = {L E 5 |L(1) = 1}. The adjoint T* of Γ maps 5,
to Si. The extreme points of S, are the functionals of the form ey with
y E Γ . Thus, in the proof of Theorem 2.1 we may take c(y) =
1. Also, it is clear that, in this case, we may take wo =
1. Consequently, it can be asumed that the function k is identically 1.

3. T h e case T1 = 1. In this section it will be assumed that
Tί = 1. We will investigate the closure in the weak operator topology
of the set covF,(Γ).

Let Ha* denote the space of bounded analytic functions on D and let
jB(ίfoo) denote the space of bounded linear operators on //«,. Denote by
9 the weakest topology on B(HX) such that all linear functionals of the
form M-^Mg(z), where gEHx and zED, are continuous. The
following property of B(Hoo) will be very useful in this section: The unit
ball ofB(Hn) is 3P-compact. To verify this property it sufficies to use a
result due to Kadison [4] together with the fact that the unit ball Hi of
Hoo is compact in the topology of pointwise convergence.

Let Aτ = {φ E Λ,| φ |Γ(Γ) = f}. Let Hτ denote the closure of Aτ

in the topology of pointwise convergence on D. Since Hτ C HI, it
follows that Hτ is compact in the topology of pointwise convergence on
D. Each F e F , ( Γ ) is of the form Ff = f°φ for all feA, where
φ E Aτ. Thus, F has an extension to H* denoted F * which is defined
by F*g = g °φ for every g E Hx. Similarly, each V E cov Fλ{T) has
an -extension V* lying in cov F*(T), where Ff(Γ) =
{F*IF E F,(Γ)}. Since F?(Γ) is contained in the unit ball of B(HJy it
follows that the <3>-closed convex hull of Ff(T), denoted by R, is
compact in the £P-topology. Let Q denote the ^-closure of
FUT). Suppose that W E J R . By the integral form of the Krein-
Milman Theorem [7, p. 6], there is a probability measure μw supported
by Q such that

Wg(z)= ί W'g(z)dμw(W)
Q

for every gEHx and every zED. Note that Q ={W\Wg = g °φ,
where φ E Hτ}. Thus, Q may be identified with Hτ. Consequently,
we can write

Wg(z)= I goφ(z)dμw(φ)
JHT
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for all g EίL and all z ED. Suppose now that U is in the weak
operator closed convex hull of F^T). Then there exists a net {Va} in
cov F,(Γ) which converges in the weak operator topology to U. In
particular, Uf(z) = lim VJ(z) for each f EA and each z ED. The net
V* has a subnet V% which converges to some U* E R. By the
definition of the ̂ -topology, we have U*f(z)= Uf(z) for f E A and
z ED. Thus, we have proved the following:

THEOREM 3.1. Let U be in the closure of covFi(Γ) in the weak
operator topology. Then there exists a probability measure μ on Hτ

such that

Uf(z)= ί foφ(z)dμ(φ)
JHT

for each f EA and each z ED.

We will now use Theorem 3.1 to derive another sufficient condition
for an isometry to be of the form (1).

THEOREM 3.2. Suppose U is in the weak operator closure of
COVFJCΓ). If there is a nonconstant inner function G such that UG is
an extreme point of Aί9 then U is of the form (1).

Our proof of Theorem 3.2 depends upon the following technical
lemma.

LEMMA 3.1. Let G be a nonconstant inner function in
A. (a) Suppose that k EA is of the form k = G°h on D, where
h EHi. Then h has an extension to DUΓ which is
continuous, (b) Let hu h2EAx. Consider the set

= {zGDUΓ|/ιI(z) =

Suppose that h^S) is infinite. Suppose also that G°hi = G°h2. Then
h, = h2.

Proof. Since G is an inner function and is a member of A, it
follows that G is of the form
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where the zn 's are (not necessarily distinct) points of D. It follows that,
given any point w0 E Γ U D, there exists a disk Do about M0 and analytic
functions gi,g2, ,gn defined on Do, such that if G(w) = u ED0 then
w - gj(u) for some /. Suppose that u0 = fc(z0), where z0 £ Γ. Choose
a set W containing z0 which is open relative to Γ U D and satisfies
k (W) C Do. On W Π D, we have k = G ° Λ. It follows that for some /,
ft (z) = 8i ° k(z) f° r all z e W Thus, h can be extended continuously to
H^ΠΓ. A simple compactness argument now shows that h can be
extended continuously to all of Γ.

Consider the set Y = {z GD UΓ|σ'(Λ,(z))^0 and hλ{z) =
h2(z)}. We will show that Y is open relative to D UΓ. Since Y is
nonempty, it will follow that hx = /ι2. Let z0 £ Y. Since G;(/ii(z0)) 7̂  0,
there exists an open disk Do about fti(z0)

 s u °h ^ a t G is one-to-one on
Do. Choose a set N, which is open relative to D U Γ, such that
ft,(N) C Do and Λ2(N) C Do. Then, for zEN, G{hx{z)) = G(h2(z)). It
follows that hi = h2 on N.

Proof of Theorem 3.2: By Theorem 3.1, we may write

Uf(z)= ί foφ(z)dμ(φ)
JHT

for all /G A and all z ED. For each zED, let

/ 2 = { φ 6 fίΓ I Re UG(z) < Re G <> φ( z)}.

Suppose that for some u E D, we have c = μ (Ju) > 0. Define measures
μx and μ2 on Hτ by

= (l - c r y (K n (Hτ - JU)).

By [7, Prop. 1.1], there are operators C7, and ί/2 in R such that

t//U)= ί fQΦ(z)dμi ( = 1,2,
J H T

for each f EA and each z E D. (Note that for / E A, I// is not
necessarily in A.) It follows that

17/(2) = cl7,/(z) + (l-c)l7 2/(z)

for / G A and z E D. Since [7G is an extreme point of A,, it is also
extreme point of HI (See [3, p. 139].) Thus, we have 17G = ί7,G =
L/2G on D, but
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Re UG(u) = f Re UG(u)dμι(φ)
JHT

< ί RcGoφ(
JHT

a contradiction. It follows that for each z ED we have
μ{φ I Re UG(z) < Re G °φ(z)}) = 0. Similarly, we can show that

μ({φ I Re UG(z)>ReGoφ(z)}) = μ{{φ |Im [/G(z)^ImG°φ(z)}) = 0.

Thus, UG(z) = G oφ(z) for all φ in the support of μ. It follows that
the support of μ consists of finitely many functions φ1 ?- ,φm €Ξίίr,
where each φ, satisfies G °φ, = [/G on D. By Lemma 3.1, each φt is
continuous on D U Γ . Thus, there exist positive numbers cί9-—9cm

such that Σc, = 1 and

fpr each / E A and each z E D U Γ . For z G Γ(Γ), we have φt{z) =
ίXz) for i = 1,2, - , m. It follows by Lemma 3.1, that φx = φ2 = =
φm. Hence UEFX{T).

REMARK. Theorem 3.2 provides a possible approach to the prob-
lem of finding an isometry T such that Γl = 1 and Eι(T) is not the weak
operator closure of cov F{(T). If an isometry T can be found such
that: Γl = 1, T is not of the form (1), and TG is an extreme point of A,
for some nonconstant inner function G E A, then it will follow from
Theorem 3.2 that T& weak operator closure of cov
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