A COUNTEREXAMPLE IN THE THEORY OF DEFINABLE AUTOMORPHISMS

MARTIN ZIEGLER

As it is well known, the groups of definable automorphisms of two elementary equivalent relational structures satisfy the same \forall_1 -statements. We show that this does not hold in general for \forall_2 -statements, thus correcting an error in the literature.

0. An automorphism φ of a model \mathfrak{M} is said to be definable if there is a formula H of the (first-order) language of \mathfrak{M} and elements $a_1, \dots, a_n \in M$, such that for all $x, y \in M$

$$\mathfrak{M} = H(x, y, a_1, \cdots, a_n) \quad \text{iff} \quad \varphi(x) = y.$$

Let Def Aut (\mathfrak{M}) denote the group of definable automorphisms of \mathfrak{M} (see [5]).

In [1] it is remarked that if \mathfrak{M} and \mathfrak{N} are elementary equivalent, then Def Aut (\mathfrak{M}) and Def Aut (\mathfrak{N}) are universally equivalent. In this note we show that this is the best possible result. We give an example of an $\forall \exists$ -statement, which holds in Def Aut (\mathfrak{M}) but not in Def Aut (\mathfrak{M}'), where \mathfrak{M} and \mathfrak{M}' are two elementary equivalent models. In fact our \mathfrak{M}' is an elementary extension of \mathfrak{M} . This disproves Theorems 1,2 in [3] (p. 109).

We construct our example from the Prüfer group $Z(3^{\circ})$ and investigate definability using the method of Ehrenfeucht games.

1. Our example is as follows. H is the (group theoretical) statement

$$\forall x \exists y \ x = y^2.$$

We define \mathfrak{M} to be $(M, Z, \omega, <, f)$, where M is the disjoint union of Z and ω . Z is the underlying set of the Prüfergroup $\mathbb{Z}(3^{\circ})$, which is defined as

$$\left\{\frac{n}{3^m}\,\middle|\,n,m\in\mathbf{Z}\right\}/\mathbf{Z}.$$

< is the natural ordering of ω , the set of natural numbers. f is a binary function defined by

$$f(n, z) := z + \frac{1}{3^n} \mathbb{Z} \quad \text{if} \quad n \in \omega \quad \text{and} \quad z \in \mathbb{Z}$$
$$(+ \text{ stands for the addition in } \mathbb{Z}(3^{\infty}))$$
$$:= 0 \ (\in \omega) \quad \text{otherwise.}$$

We shall denote by f_n the function

$$\lambda z f(n,z): Z \to Z \qquad (n \in \omega).$$

Every automorphism of \mathfrak{M} operates on ω as the identity and therefore commutes with each f_n . The f_n generate the group of all translations of $\mathbb{Z}(3^{\infty})$, and so it is easily seen (see e.g. [4] p. 43) that the automorphisms of \mathfrak{M} are just those permutations of M, which leave ω fixed and operate on Z like a translation. Since the f_n are definable, all automorphisms are definable and hence

Def Aut
$$(\mathfrak{M}) \cong \mathbb{Z}(3^{\infty}) \models H.$$

Let $\mathfrak{M}' = (M', Z', W', <', f')$ be an elementary extension of \mathfrak{M} such that $W' \neq \omega$. We claim that Def Aut $(\mathfrak{M}') \not\models H$.

2. First we look at definability in \mathfrak{M} .

Every element x of $Z(3^{\infty})$ has an unique representation

$$x = \sum_{i=1}^{\infty} \frac{k_i}{3^i} \mathbb{Z}, k_i \in \{-1, 0, 1\}, \text{ almost all } k_i = 0.$$

We define

$$|x|: = \sum_{i=1}^{\infty} |k_i|, v(x): = \max\{i | k_i \neq 0\}$$
 and
 $\bar{v}(x): = \min\{i | k_i \neq 0\}$

We note that

(i)
$$|-x| = |x|$$

(ii) $|x+y| \le |x|+|y|$
(iii) $|x+y| = |x|+|y|$ if $v(x) < \bar{v}(y)$
(iv) $v(x+y) \le \max(v(x), v(y))$

Let I_n be the set of all partial functions φ from Z in Z with the following property:

dom φ is finite and for all $a, b \in \operatorname{dom} \varphi$

$$|a-b| \leq 2^n$$
 iff $|\varphi(a)-\varphi(b)| \leq 2^n$

666

and in this case $a - b = \varphi(a) - \varphi(b)$.

Clearly $I_{n+1} \subset I_n$ and if $\varphi \in I_0$, $a, b \in \operatorname{dom} \varphi$ and $f_m(a) = b$ then $f_m(\varphi(a)) = \varphi(b)$.

We show that the family I has the back and forth property: Let $\varphi \in I_{n+1}$ and $a \in Z \setminus \operatorname{dom} \varphi$. We want to extend φ to $\varphi' \in I_n$ with $\operatorname{dom} \varphi' = \operatorname{dom} \varphi \cup \{a\}$.

There are two possible cases

(1) There is $b \in \operatorname{dom} \varphi$ such that $|a - b| \leq 2^n$. Define $\varphi'(a)$: = $\varphi(b) + (a - b)$. Then $\varphi' \in I_n$. For let e.g. $c \in \operatorname{dom} \varphi$ and $|c - a| \leq 2^n$. It follows from (i) and (ii)

$$|b-c| \le |a-b| + |c-a| \le 2^n + 2^n = 2^{n+1}$$

hence

$$\varphi(b) - \varphi(c) = b - c.$$
 It follows
 $\varphi(c) - \varphi'(a) = c - a.$

(2) For all $b \in \operatorname{dom} \varphi |a - b| > 2^n$.

Choose $a' \in Z$ such that $|a'| > 2^n$ and $\bar{v}(a') > v(\varphi(b))$ for all $b \in \operatorname{dom} \varphi$. Define $\varphi'(a) := a'$. From (iii) it follows that for all $b \in \operatorname{dom} \varphi$

$$|\varphi'(a)-\varphi(b)|>2^n.$$

Since $\varphi^{-1} \in I_n$ iff $\varphi \in I_n$ it is clear that for all $\varphi \in I_{n+1}$ and $a \in Z$ there is an extension φ' of φ such that $\varphi' \in I_n$, $a \in rg\varphi'$.

Let H_n be the set of all formulas (of the language of \mathfrak{M}), which contain at most *n* quantifiers and where all function symbols are applied to variables only. It is shown in [2] that, if $\varphi \in I_n$, $a_1, \dots, a_k \in \operatorname{dom} \varphi$ $b_1, \dots, b_e \in \omega$ and $H \in H_n$

$$\mathfrak{M} \models H(a_1, \cdots, a_k, b_1, \cdots, b_e) \quad \text{iff} \\ \mathfrak{M} \models H(\varphi(a_1), \cdots, \varphi(a_k), b_1, \cdots, b_e).$$

This is a consequence of the back and forth property.

Let now $z \in \mathbb{Z}$, $|z| > 2^n$ and g be the translation

$$\lambda x(x+z): Z \rightarrow Z.$$

We show that g is not definable using a formula in H_n .

Assume that there is a $H \in H_n$, $a_1, \dots, a_k \in Z$, $b_1, \dots, b_e \in \omega$ such that for all $a, b \in Z$

$$\mathfrak{M} \models H(a, b, a_1, \cdots, a_k, b_1, \cdots, b_2) \quad \text{iff} \quad g(a) = b.$$

Choose $c \in Z$ such that $|c| > 2^n$ and $\bar{v}(c)$ and $\bar{v}(2c)$ are greater than all $v(a_i)$ and v(z). (Choose a c of the form $\sum_{i=m}^{m'} 1/3^i$). Define $\varphi(a_i) := a_i$ $(i = 1, \dots, k), \varphi(c) := c$ and $\varphi(z + c) := z - c$. It is easily seen that $\varphi \in I_n$. For

$$|(z+c) - a_i| = |z - a_i| + |c| > 2^n \text{ by (iii), (iv)}|$$

$$|(z-c) - a_i| = |z - a_i| + |-c| > 2^n \text{ (by (i))}|$$

$$|(z+c) - c| > 2^n$$

$$|(z-c) - c| = |z - 2c| = |z| + |2c| > 2^n \text{ (by (iii))}|$$

Therefore we have, $\mathfrak{M} \models H(c, z - c, a_1, \dots, b_e)$

since
$$\mathfrak{M} \not\models H(c, z + c, a_1, \cdots, b_e)$$

Whence z - c = z + c and we have the contradiction c = 0. We prove now that $\mathcal{M}' \models H$. First note that

$$\left|\frac{1}{2}\cdot\frac{1}{3_m}\right| = \left|\sum_{i=1}^m \frac{-1}{3^i}\right| = m.$$

This and the last result imply that for all $m > 2^n$, $H(x, y, x_1, \dots, x_r) \in H_n, a_1, \dots, a_r \in M H(x, y, a_1, \dots, a_r)$ does not define an automorphism ψ of \mathfrak{M} such that $\psi^2 = f_m \cup id_{\omega}$. This is expressible by a set of sentences which hold also in \mathfrak{M}' . If we choose $m \in W' \setminus \omega$, we have for all $n \in \omega$ $m' > 2^n$, hence $f'_m \cup id_w$, is a definable automorphism such that there is no definable automorphism $\psi \psi^2 = f'_m \cup id_{W'}$. Whence $\mathcal{M} \neq H$.

References

Received May 27, 1974.

TECHNISCHE UNIVERSITAT BERLIN

^{1.} J. Denes, Definable automorobisms in model theory I, (abstract), J. Symbolic Logic, 38 (1973), 354.

^{2.} A. Ehrenfeucht, An application of games to the completeness problem for formalized theories, Fund. Math., 49 (1961), 129-141.

^{3.} J. Grant, Automorphisms definable by formulas, Pacific J. Math., 44 (1973), 107-115.

^{4.} B. Johnsson, *Topics in Universal Algebra*, Lecture Notes in Math. 250 (Berlin, Springer 1972) 220 pp.

^{5.} W. E. Marsh, Definable automorphisms, Notices of Amer. Math. Soc., 16 (1969), 423.