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THE INVERSE OF A CONTINUOUS
ADDITIVE FUNCTIONAL

JEAN-MARIE ROLIN

Let X be a standard process and A be a continuous additive
functional of X. The inverse of A is defined by τt -
mί{sΆs> t}. The aim of this paper is to prove that the
process τ has conditionally independent increments with respect
to the σ -algebra generated by the time changed process Xt =
XTt. However these increments are not necessarily
stationary. Another interesting result is derived: the contin-
ous part of the process T is a continuous additive functional of
the process X.

The existence of regular conditional probabilities permits to
consider the process r as an additive process and under a
necessary and sufficient condition, it is in fact a Levy process
with increasing paths. The general theory of such processes is
then used to obtain a Levy representation of the jumps of the
process r.

1. Introduction. Let us consider a standard process X =
(Ω, M E, %, Δ Mty Xt, θt, P

x) and a continuous additive functional
(C.A.F.) of X. We refer to [1] for all the notations and definitions of
such concepts.

It is well known in the theory of the Lebesgue-Stieltjes integral that
if we define

(1.1) T, =inf{s:Λ f > ί }

then for all nonnegative Borel functions / on [0,°o] vanishing at infinity,
the following formula holds

(1-2) Γf(t)dAt= Γ/(τ,)Λ.
Jo Jo

The aim of this paper is to investigate some of the probabilistic
properties of this "inverse" of the continuous additive functional A.

It is easy to see that for each 5, τs is a stopping time for X and it is
known that under some additional assumptions, the time changed
process Xτt is a standard process (see [l]-V-2, 11, and [3]).

Some important results have been established by Blumenthal and
Getoor in the case where the fine support of A consists of a single point
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jc0. That is the theory of local times that shows in particular that the
process (τt9P

x°) is more or less equivalent to a subordinator. For a
precise statement of this theorem, refer to [l]-V-3.

We are now going to show that in the general case, the process r
has conditionally independent increments with respect to the σ -algebra
generated by the process X.

II. The conditioning. Let X = (Ω, M, E, %Δ; X,, Jίt, 0,, Px)
be a standard process with lifetime ξ and A be a continuous additive
functional of X. We will suppose that for all ω in Ω, the functions
f —>A,(ω) are continuous on [0, oo] and the paths functions t-*Xt(ω)
are right continuous on [0, oo] and have left-hand limits on
[0,£(ω)). Let us introduce some notations. We will write

ft = ft,

Φ*t and Φ° will have their usual meanings relative to the process X and
Φt and Φ will be their respective completions by the family Pμ as
sub-σ-algebras of 2F. To make this precise, A will be in Φtφ) if for
each finite measure μ on (EΔ, <£Δ) there exist sets Bμ in &°tφ

Q) and Nμ

in ^° such that Pμ(Nμ) = 0 and Bμ - Np C A CBμ U Nμ. Let us remark
that Y in & will be in Φt φ) if for each finite measure μ on (EΔ, ̂ Δ)
there exists Zμ in Φt φ) such that Y = Zμ almost surely Pμ.

It follows immediately from these definitions that Φt is contained in
Φt and ^ is contained in 3*. Since by definition, Xt is in ^° | ^ Δ , it is
clear that Xt is in Φ\ %\ for each ί, where %\ denotes the σ-algebra of
universally measurable sets over (f?Δ, ^ Δ ) . It is also easy to see that 0,
is in Φt+S I Φs for all ί, 5 and in particular, 0, is in §> \ & for each t.

Now if we consider the lifetime ξ of the process X, i.e. £ =
inf {t: Xί = Δ} we note that

(2.1) ξ = Aξ=A» a.s.

since {X, = Δ} = {τt ^ξ} = {Aξ ^ t}.
We are now ready to state some lemmas. The simplicity of their

proofs will permit us to omit them.

LEMMA 2.1. Let T be a {Φt} stopping time. Then ττ is a
stopping time and §τ = ^ Moreover for all t,

(2.2) ττ+t =ττ + τt°θτ a.s.
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and

(2.3) ATT = T on {T<ξ}.

LEMMA 2.2. Let T be a {ίFJ stopping time. Then Aτ is a {Φt}
stopping time and &τ is contained in §*AΎ. Moreover for all t,

(2.4) τA r + f = Γ + τ, °0T a.s. on {Aτ<oo}.

LEMMA 2.3. Let Ybe in Φand Tbe a {3<t} stopping time. Then

(2.5) Y°θAτ = Y°θτ a.s. on {Aτ<oo}.

In particular, if we take T = 0, then

(2.6) Y=Yo§o a.s.

Let us turn now to some considerations related to the support of
the continuous additive functional A. We will denote it by F. By
definition

It is known (see [l]-V-3) that F is a nearly Borel set which is finely
perfect, i.e. the set of regular points for F is precisely F, and that is a
consequence of the fact that

(2.7) TF = τo a.s.

where TF is the hitting time of the set F. Moreover for all x in £Δ,

Px [Xt £ F for some t < ξ] = 0.

Using this result, we can and we will from now on, suppose that the
process X lives on F U{Δ}. It is also easy to prove that for all {^}
stopping times Γ,

(2.8) {X Γ eF} = {τo°0τ=O} a.s.

In the sequel, we will have to deal with expressions of the form
Ex(Zffi)(ω) where Z is in b&. It is not difficult to see, using the fact
that &\ is countably generated and the martingale convergence theorem,
that we can choose a version which is jointly measurable in x and
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ω. More precisely: if Z is in bS* and ί^α>, then there exists Zx(ω) in
b%\§§ψt such that for all JC in EΔ, Ex{Z\&t) = Z? a.s. P\ Since
Ex(Z\Φt) is only defined a.s. P\ we will always suppose when writing
expressions such as Ex{Z\Φt){ω) that it is jointly measurable in x and
ω.

We now come to an important lemma.

LEMMA 2.4. Let Zx(ω), Zx

2(ω) be in b%\ξ£>Φ and such that, for
each x in F U {Δ}, Z\ = Z\ a.s. Px. Then

Z*° = Z$ a.s.

Proof. Clearly Zf is in bΦ and by the preceding lemma, for all
finite measures μ on (J5Δ, ̂ Δ) and for all A in Φ

= ί
J FU{Δ}

Now if x is in F, τ 0 = 0 a.s. Px and Xo = ̂  a.s. P \ If x = Δ, τ 0

a.s. P Δ and Xo = Δ a.s. P Δ . Hence for all J c i n F U { Δ } ,

Ex(lAZh = EX{\AZ\) = E*(UZ5) = JS'(

and

That implies that

Zf> = Z$> a.s. P μ ,

and the conclusion holds since μ is arbitrary.
In the sequel, we will usually omit the ω 's when writing expressions

such as E*<«°ω)[Z\&u](θυω). We will write

For instance, we have almost surely

We are now ready to state the main theorem of this section.
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THEOREM 2.5. Let μ be a finite measure on (FΔ,<£Δ) and let Y be
in bΦt and Z be in b&. Then

(2.9) Eμ (YZ o θt IΦ) = Eμ (YI $)E \Z \ &) ° θt

a.s. P μ for all t.

This theorem has several immediate corollaries.

COROLLARY 2.6. Let μ and Z be as in 2.5. Then

(2.10) Eμ(Zo§t\&) = E\Z\&)oθt a.s. Pμ for all t.

If we take μ = ex and if we apply Lemma 2.4, we get the following
results.

COROLLARY 2.7. Let Y be in bΦt and Z be in b&. Then, for all
t, almost surely

(2.11)

In particular, if we set Y = 1,

(2.12) EHZ°θt I Φ) = E\Z\Φ)oθt a.s. /or all t.

Proof. Let us consider the following random variable

W = ήf(Xti),

where f are in b<£Δ for 1 ̂  i: ̂  n and 0^t]<t2< < ίn. Clearly we
can write W = W, W2 ° <9f a.s. where Wx is in # ? and W2 is in #°. Now

We know that Xt is in F almost surely on {t < ξ}. On {t ^ | } τf = ™ and
consequently Xf = Δ. On the other hand, we already saw that Xo = x
a.s. Px for all x in F U {Δ}. Therefore for all x in F U {Δ},

= EX[W2E
X(Z\&)] = EX(W2Z).

So, we have
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if we recall that by convention E*°(Z\Φ) is in Φ, and θt is in
Φ\Φ. Using the monotone class theorem, we see that the last equality
is true for all W in bΦ\ If W is in bΦ there exists Wμ in bΦ° such that
W = Wμ a.s. P μ . Hence the equality holds for every W in bΦ and the
theorem is proven. Using the corollary 2.6, we see that the formula of
the Theorem 2.5 may be written

(2.13) Eμ(YZo θt\Φ) = Eμ(Y\Φ) Eμ(Z° θt\Φ) a.s. Pμ for all t.

The intuitive meaning of the Theorem 2.5, is now clear. What
happened before and after the time τt9 are conditionally independent
given the process in the support of the continuous additive functional.

We will end this section by a proposition which is closely related to
Theorem 2.5.

PROPOSITION 2.8. Let μ be a finite measure on (EΔ, £Δ) and let Y
be in bΦt. Then

(2.14) E μ ( y | # ) = Eμ(Y\£t) a.s. Pμ.

Proof. Let us prove first that for all Z in

(2.15) Eμ(Z\Φt) = Eμ(Z\&t) a.s. Pμ.

If we consider Z = Π / (Xti) where /̂  are in b%A and 0 S ί, < t2 < < ίπ,
1

then as before, we can write Z = ZιZ2°θt a.s. where Zj is in bΦ°t and Z2

is in bΦ\ Hence

a.s.

and since the right hand side is in #„ (2.8) holds. By the monotone
class theorem and the properties of the completion, (2.8) is clearly true
for all Z in &

Now, for Z in bΦ and Y iin

= Eμ[YEμ(Z\Φt)]

= Eμ[YEμ(Z\Φt)]

= Eμ[ZEμ(Y\Φt)].

Hence Eμ(Y\Φ) = Eμ(Y\Φt) a.s. Pμ.
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If we use Lemma 2.4, this proposition has a straightforward
corollary.

COROLLARY 2.9. Let Y be in bΦt. Then E\Y\&) is in &t.

In the following chapter we will be mainly concerned with the
operator T:b&->bΦ defined by

(2.16) TZ = E\Z\Φ),

Even if this operator is not a conditional expectation, it has all its
important properties. For instance

(2.17) Γ(αZ) =

(2.18) T(ZX + Z2) = TZX + TZ2.

(2.19) TZgO if Z ^ O .

(2.20) TZn t TZ if Zn t Z.

(2.21) If Y is in fe^and Z is in b& then T(YZ) = YTZ.
In particular, Y is in bΦ if an only if TY = Y.

(2.22) Γl = 1,

all these statements being true almost surely. They are easy to verify
by applying Lemma 2.4 to the corresponding properties of the condi-
tional expectations with respect to the measures Px. For instance, if
Z^O, let B ={(x,ω):Ex[Z\&](ω)^0}. Then lβ is in b%t®Φ and
lB(x,•)= 1 a.s. Px for all x in EΔ. So lB[X0(ω),ω] = 1 a.s. Hence
TZ ^ 0 a.s. Also if Zn increases to Z,

supEx(Zn\&) = Ex(Z\&) a.s. Px

for all x in £ Δ . Hence sup ΓZΠ = TZ a.s.
n

It is also useful to remark that if Z = 0 a.s. Px for all JC in F U {Δ},
then ΓZ = 0 a.s.

Moreover the main theorem of this section and its corollaries may
be expressed in terms of T by the following statement:
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Let Y be in bΦt and Z be in b& then TY is in bΦt,

(2.23) Γ(YZ°0,) = (TΎ)(ΓZ)°0, a.s.

and in particular

(2.24) T(Zo§t) = (TZ)oft a.s.

The aim of the next chapter will be to prove that under certain
conditions T may be considered as an integral operator.

III. The regularization. In this section, we will suppose
that X is a standard process with the property that the measurable space
(Ω, 9°) is a standard Borel space. This is the case if the process X is of
function space type, i.e., if Ω consists of all the functions from [0,o°]
into EA which are right continuous on [0, <*>) and have left-hand limits on
[0,o°) and if the random variables Xt are the coordinate functions
[Xt(ω) = ω (f)]- In this situation (Ω, &*) is a Polish space and then a
standard Borel space. See for instance [6] and f7].

Under this hypothesis, we can prove the following theorem.

THEOREM 3.1. There exists a function

such that, for each ω in Ω, Pω( ) is a probability measure on 9°, for
each set A in &°, P(A)is in bΦ and for all Z in b&°, the following
relation holds almost surely in ω.

(3.1)

= EωZ= ί Z(ω')Pω(dωf).
JSϊ

Proof. Let Q be the rational numbers. Since (Ω, 9*) is a stan-
dard Borel space, there exists an increasing right continuous sequence
of sets in &°, An r in Q, such that

ΓiAr = φ and U A r = Ω .
reQ r&Q

3F° is the σ-algebra generated by this collection. Moreover, if F is a
probability distribution function on this sequence, i.e., an increasing
right continuous set function on this sequence with the property that



THE INVERSE OF A CONTINUOUS ADDITIVE FUNCTIONAL 593

infreQF(AΓ) = 0 and suprEQF(ΛΓ) = 1, then F can be extended in a
unique way to a probability measure on ^°. Indeed, this statement
becomes evident if we take Ar = φ " 1 ^ - 0 0 , r]] where φ is a bijective
measurable function from Ω into a Borel subset of the real line such that
φ~ι is measurable, and such a function exists by the definition of a
standard Borel space.

Now let Qω(Ar) be versions of ΓlA r(ω). Let us define

,= U
reQ{ s>r

r€ΞQ

N = NιUN2U ΛΓ3.

Clearly, N is in ^. Moreover for all finite measures μ on (EΔ,<£Δ),
Pμ(JV) = 0. Indeed, T\Ar ^ inf s > Γ7ΊΛ s a.s. and if sn decreases to r, lAsn

decreases to \Ar and consequently T\Asn decreases to T\Ar a.s. This
implies that T\Ar = inf s > Γ7ΊΛ s a.s. Similarly sup r e ( ?TΊA r = 1 a.s. and
inf r E Q7ΊΛ r = o a.s.

Now let F be any probability distribution function on the sequence
{Ar: r in Q} and let us define

Pω(Ar) = Q»(Ar) lNc(α>) + F(Ar) lN(ω).

clearly P (Ar) is in bΦ for all r in Q and for all ω in ΩPω is a
probability distribution function on the sequence Ar. Let us also
denote by Pω, the unique extension of Pω to a probability measure on
y°. If we define « ={A G ̂ °: P -(Λ)e # } then ^ is a σ-algebra
containing ΛΓ for all r in ζ). Hence for all A in ^°, P (A) is in
#. Now let H = {ZG b&°: TZ = E Z a.s.}. H is a linear space
containing lAr for all r in ζ). Moreover if Zn in JFf+ increases to Z
bounded, then Z is in H. By the monotone class theorem, the proof is
complete if we remark that the collection {Ar - As: 5 < r, 5, r G Q} is a
7r- system generating ίF°.

From now on, we will restrict our attention to the stochastic
process r = {τt: 0 ^ t < <χ>}. Unhappily, the measures P ω we have just
constructed can only be defined on &° and in the general case, r is not
^° measurable. However, if we suppose that there exists a reference
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measure for X (see [1] V-l), then the C.A.F. A is equivalent to a perfect
C.A.F. B such that each Bt is in ^° (see [1] V-2.1 and 2.10). So without
loss of generality, we may and we will assume that A is a perfect C.A.F.
and each At is 3F° measurable.

Since {τt < s} = {As > t}, that implies that the process τ is 9*
measurable. Moreover in this situation the support of the C.A.F. is a
Borel set for P x (τ 0 = 0) is in b%^

One L.ore remark: Later we will have to consider the increments
of the process r, i.e., τ,+s — τt9 and this is not defined on the set
{τt = °°}. However if we set τ,+,'—τt=«> on {7,=°°}, this random
variable is in ίF° and τt+s - τf = τs ° 0, a.s. Indeed

Px[τs°θt <oo, T, =oo] = Ex[P*<(τ5 <oo); τf =00]

= P\τs <oo)P*(Tf =») = 0

for τ0 = o° a.s. PΔ.

We are now ready to state the main theorem of this section.

THEOREM 3.2. There exists a set N in Φ with Pμ(N) = 0 for all
finite measures μ on (EΔ, gΔ), such that for all ω in {ξ > 0} - N, the
process

is an additive process on (Ω, ̂ °,Pω) (i.e., a process with independent
increments such that τo = O a.s. Pω).

Proof Let us prove first that for all t ^ 0 the σ-algebras

Xt =σ{τ5 O^s^t}

and

Set = σ {τf+s - T, : 0 < s < 00}

are independent with respect to Pω for almost all ω. Indeed the right
continuity of r, implies that % and if, are generated by countable
7r-systems containing Ω, let us say 5ίΓ? and 5£°t respectively. On the
other hand, % is contained in Φt and JJζ is contained in ΘΓ1^). Using
Corollary 2.7, this implies that
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P"(A ΠB) = P"(A)Pω(B) a.s.

for A in % and B in £,.

Let us define

N,= (J U
3r? Be<e°t

Clearly Nt is in Φ and P μ (Nf) = 0 for all μ. Using twice the monotone
class theorem, it is easy to see that for all ω in Nc

t9

Pω(A ΠB) = Pω(A)Pω(B)

for all A in Xt9 B in £x.

Now let N, = U ί 6 Q-N t. Then for all ω in NJ, ί § 0, 5 > 0, τ,+s - τr

is independent of % with respect to Pω. For if A is in % and M § 0 , let
us choose rn in Q+ such that rn [ t and rn < t + 5. Then, by the right
continuity of r, we have

P ω [A Π {τ ί+s - T, ̂  0}] = lim Pω [A Π {τ ί+s - τΓn ^ »
Γn I t

rn i t

Now since {ξ ̂  ί} = {Xt = Δ}, | is in ̂  and so

(3.2) P | |

for almost all ω. Also e "τ° = 1F(XO) a.s. Px for all x in F U {Δ}. Hence
by Lemma 2.4

(3.3) £ω(e-τ°)=lF[Xo(ω)]

for almost all ω. Let N2 be the set of ω's for which either (3.2) or (3.3)
is not satisfied and le tN = N, U N2. Clearly N is in Φ and Pμ(N) = 0
for all μ. If ω is in {ξ > 0} - N, τ0 = 0 a.s. P ω and the process r is finite
a.s. P^ on [0, ξ(ω)) since ξ = ξ (ω) a.s. Pω. Also for all t < ξ (ω) and s
in (0,1 (ω) - t) τt+s - τt is independent of σ {τΌ: 0 ̂  U ̂  ί} with respect
to Pω. That concludes the proof of the theorem.
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Let us remark that there is no interest in considering the process r
with respect to Pω for ω in {ξ = 0} because (3.3) implies that τ0 = °° a.s.
P ω for almost all ω in {ξ = 0}.

Let us also note that the process r is not homogeneous. Indeed

(3.4) P»(τt+S -τtEB) = P*->(τ. E B)

for almost all ω in Ω.
If we consider the particular case where the support of the C.A.F.

is a single point JC0, then

for {Xt =x0} = {Aoo>t}. Moreover there exists γ ^ O , such that
P*°(Aoo > ί) = e'Ύt. If γ = 0, A. = oo a . s . P*° and it follows easily that
Pω = P*° for almost all ω in Ω. In this situation, we have as a corollary
of Theorem 3.2, that the process T = {τt : 0 ̂  t < oo} is a homogeneous
additive process with increasing paths on (Ω, ̂ °, P*°).

It is now clear that Theorem 3.2 generalizes the theorem which
appears in [1J-V-3.21.

In order to obtain a Levy's decomposition of the process r,
Theorem 3.2 is not sufficient. We also need the fact that the process r
is continuous in probability with respect to Pω for almost all ω in { | > 0}
or equivalently the functions t^>Eω(e~Tt) are continuous on [0,|(ω))
for almost all ω in { | > 0 } . Indeed, since Eω(e'Tt)=1

Eω(e-τ-°)Eω(e-(Tt-τ->)) if we let s decrease to zero, we have Eω(e~Tt) =
Eω(e-Tt-)Eω[e-{τrr<-)] and then if t < ξ (ω) τ,_ = T, a.s. Pω if and only if
Eω(e-τ*) = Eω(e-τ<-).

It is easy to see that in the general case, this condition will not be
satisfied. However we have the following theorem.

THEOREM 3.3. There exists N in Φ with Pμ(N) = 0 for all finite
measures μ on (JBΔ, <£Δ), such that for all ω in {ξ > 0 } - N, the function
t-+Eω(e~Tt) is continuous on [0, | (ω)) // and only if the following
assumption holds.

Assumption 3.4. For all { ^ } stopping times Γ,

ττ- = ττ a.s. on {0 < T < £}

Proof Let Ωo = Ω - N where N is the set of measure zero
appearing in the statement of Theorem 3.2. Let us set Ct(ω) = e~τ'(ω)

and Ct{ω) = Eω(e~Tt) if ω is in Ωo and Ct(ω) = 0 otherwise. Then we
define for 6 > 0,
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Te =inf{ί >0:<?,_- C.^e}

and Te = ξ if the set in braces is empty. Now if we prove that for all
finite measures μ on (EΛ,^4),Pμ(7} < | ) = 0, the sufficiency is
established. Indeed if N' = U .{Ti< | } , P"(N') = 0 and for all ω in
{ | > 0 } - N \ 0,-(ω) = C,(ω) for all ί < | ( ω ) . This implies the con-
tinuity of E ω ( e τ ) on [0,|(ω)] for all ω in {£ > 0 } - ( N UN').

Let us write T, = T. Since C, = 0 on {ξ ̂  ί}, T ̂  | . Moreover T
is a {#,} stopping time for {T^t} = {T^t,§ > ί } U { | ^ ί } and if Q,
denotes the rationals in (0,ί)

{r^ί<|}= n u {ί.-Cδe,ι>t}
m reQ,U{t}

0 < Γ - 5 < —.

m

Hence {T^t} is in #, since Ct is clearly in &t. Also if T(ω)<|(ω),

Now if G (ω, ω') is in bΦ <g) ̂ ° and if G(ω) = G(ω,ω) it is easy to see that
for almost all ω,

= ί G{ω,ω')Pω(dω')
Jci

Since for all { ^ } stopping times Γ, τΓ(ω)(ω') and τΓ(ω)-(ω') are clearly in
°, we have

a.s. and

a.s.

Hence

for CT- = CT a.s. on {0 < Γ < ξ}.
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For the necessity of Assumption 3.4, note that for all {&} stopping times
T, Cτ- = Cτ a.s. on {0 < T < | } . Then for all x in F,

0 = Ex[Cτ--Cτ;0<T<ξ]
= Ex[E*°(Cτ--Cτ\&);0<T<ξ]

= Ex[Cτ--Cτ;0<T<ξ]

and so ττ- = ττ a.s. Px on {0 < T < £} for all x in F. Now since τt = τ0+τt

o θ^
for all t almost surely, it is clear that τt- = τo-\-τt-°ΘTQ for all t almost surely and
then ττ - ττ- = (τΓ - ττ-) ° $o a.s. on {0 < T < | } . Hence for all finite measures
μ on (EΔ,gΔ),Pμ(τ τ-τr- = Q, 0<T<i) = Pμ[(ττ-ττ-)°θo = 0,
0<Toθ0<i°θ<hξ>0] = Eμ [P\ττ - TT- = 0, 0 < T < I); ξ > 0] = 0 since Xo

is in F on {ξ > 0}.
This finishes the proof of Theorem 3.3 and we have this straightforward

corollary.

COROLLARY 3.5. Under the Assumption 3.4, there exists N in $
with Pμ (N) = 0 for all finite measures μ on (EΔ, <£Δ), such that for all ω in
{i>Q}-N, the process {τt :0^= t <ξ(ω)} is a Levy process with
increasing paths on (Ω, ^°,P ω ) .

IV. The decomposition. Since r is an increasing right
continuous process, we can decompose it into its continuous and purely
discontinuous parts. Let

(4.1) T, = τ o + τf+τ{

be this decomposition. If we denote by X(ω) the set of discontinuity
points of the function f —»τ,(ω) for t >0, then

(4.2) τc

t = ί lκc(5)dτs.
J(0,(]

( 4 3) i V < \

Let us first restrict our attention to the continuous part of r.

LEMMA 4.1. Let τc

t be the continuous part of τt. Then, almost
surely,

(4.4)
T? = {Tt\F(Xs)ds for all L

Jo
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Proof. Let us recall the following change of variables
formula. If a (t) is a nonnegative increasing right continuous function
on [0,°o] and

a {t) = inf {s : a (s) > t},

then for all nonnegative Borel functions g on [0, <»)

ί g(t)da(t)= Γ}g[ά(t)]dt,
J(0,oo) Ja(0)

where a ((<») = lima (ί). Applying this formula to (4.2), we have

rί = Γl(o,t](As)lκ<(As)ds.
Jτo

It is easy to see that

Moreover As is in K if and only if 5 is in Rc ULC, where R (L) denotes
the set of points of right (left) increase of A. Indeed, since τΛs- ̂  s ^
τAs, if As is in K there exists v ̂  s such that τΛs- < u < τAs. But then

Av = inf {M : τM > t;} = Λs.

On the other hand, if Av = As for t; ̂  5, τAs_ g n s and τAs ^
DV5. Hence As is in K

But we also know that almost surely

RC{s:XsEF}CR ΌL

(see [l]-V-3.8). Moreover RUL-RΠL is a countable
set. Therefore lK'(As)= 1F(^C) for almost all s9 and

ds a.s.
Jτo

Moreover, since τ0 = TF a.s. Xs is in F c for all s < τ0 a.s. and so the
result.

Using this representation, we have the following theorem.



600 JEAN-MARIE ROLIN

THEOREM 4.2. Let τ c be the continuous part of τ. Then rc is a
continuous additive functional of the process X. In particular, τc

t is in
Φt for all t and

(4.5) τ ? + f = τ ? + τ ; o β *

almost surely for all t, s.

Proof It is clear that the function ί—»τf is nondecreasing and
continuous and rS = 0 almost surely. Moreover for all t ^ ξ = A«,

o
*(Xs)ds,

and T? = 0 for all t a.s. P \

Now, let us consider

, = ί'lF(Xs)ds.
Jo

ΰ is a perfect continuous additive functional of X and by its strong
additivity property we have

τf+s = Bτt+S

= τc

t + τc

s°θt a.s.

All that remains to be proved is the measurability of τc,. Let
D = supp B. Since Bm = 0 a.s., ΓD ^ τ0 a.s. and

D = {x :PX[TD = 0] = 1}CF.

Furthermore

WB(WB(x) = f V-'P'ίΛ, G F) Λ ^ - .
Jo «

In this situation, for each finite measure μ. on (EΔ, ^Δ), there exists a
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sequence gn in bΈ*έ such that B" = gn(Xs)dAs converges to Bt on
Jo

[0, oo) almost surely P μ , the convergence being uniform on each compact
subinterval (see [3]). Hence

Bτt l{τ,<°o}~* τc

t l{Tt<oo} a . s . Pμ.

But

Bn

τtl{τt<Oΰ}= gn(Xs)dAs l{τt<oo}

Jo

= ί' gn(Xs)ds ίιo4)(t).
Jo

S o Bn

τ, 1{TI<^ i s i n Φt f o r {τ ( < °°} = {X, EF} = { t < ξ } . T h e n τc, W C H s
in Φ, for all ί. Now since τc, is continuous and constant on {t ^ | } ,

ί = Γ 1(0,1,(5 )dτί.
Jo

Hence

But

2; I k \
τc

t = lim 2 [ τ ( V ) / - T(Vo/2")J l[o,#) I ̂ r t).

( 9«" W

is in #(k/2")f C # f and so TJ is in Φt for all t. This completes the proof of
Theorem 4.2.

Let us turn now to the purely discontinuous part of the process r.
If 38 is the collection of Borel sets on (0, oo), let us define for B in 38

and t in [0,oo)?

(4.6)

i.e., the number of points s in (0, ί] such that τs - τs- is in B. Clearly
for each ω in Ω and 2? in 38 bounded away from zero [i.e., B C (1/n, 00)
for some n<oo] the paths t-*Mt(B)(ω) are right continuous step
functions with jumps of size 1. Also M0(B) = 0 and Mξ(B) =

Now we have the following lemma.

LEMMA 4.3. For each ω in {ξ > 0} and t in [0, |(ω)), Mt(B)(ω) is
a σ-finite measure on 38. Moreover for all positive Borel functions g on
[0,00] such that g(0) = 0 and for all t < ξ,
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(4-7) Σ 8(r,-r,-)={ g(u)M,(du).
Q<s^t J(0,oo)

In particular,

(4.8) τ[ = ί uMt(du).
J(0,oo)

Proof. Clearly Mt(B) is a counting measure such that
M,[(l/rc, oo)] < oo since τt < oo. Now if g = l β for B in £8, both sides of
the equality (4.7) are equal to Mt(B) and so by the monotone class
theorem, (4.7) holds for all positive Borel functions g on [0, oo) with
g(0) = 0, the latter condition preserving the countability of the sum of
the left-hand side.

From now on let us fix ω in {£ > 0} - N, where N is the set of
measure zero appearing in the statement of Corollary 3.5. It follows
from the proof of Theorem 3.2, that we can suppose without loss of
generality that τ0 = 0 and ξ = ξ (ω) since we are now only concerned
with the measure Pω. From the general theory of Levy processes we
have the following theorem.

THEOREM 4.4. Under the Assumption 3.4, there exists N in Φ
with Pμ(N) = 0 for all finite measures μ on (EA, <£Δ), such that for all ω
in {ξ > 0 } - N, for all sets B in Sδ, the process M,(B), O^ί <ξ(ω), is a
Levy process of Poisson type (possibly with infinite parameter) on
(Ω, &\ Pω). In particular,

Proof. We will only sketch the proof since this result is well
known (see, for instance, [5]-I where it is treated in full detail). It is not
too difficult to see that Mt{B) is measurable with respect to % =
σ {τs : 0 < s ^ t} for all B in £$ and t < ξ (ω). And so this process has
independent increments by Theorem 3.2. It is also continuous in
probability since

by Theorem 3.3.
Therefore if B in S3 is bounded away from zero, by the Poisson law

of rare events, there exists A < oo such that

Hence λ = EωMt(B).



THE INVERSE OF A CONTINUOUS ADDITIVE FUNCTIONAL 603

If B is arbitrary, let Bn = B Π (l/n,oo). Then Mt(Bn) increases to
Mt(B) and EωMt(Bn) increases to EωMt(B). Hence

Using this result it is easy to see that if we define

(4.10)

then for all ω in { | > 0 } - N , for all t < | ( ω ) , vt(-)(ω) is a σ-finite
measure on 38 which is finite on the sets in 58 bounded away from zero.

Moreover for each ω in {| > 0} - N and for each B in 38 bounded
away from zero, the function t —• vt(B) (ω) is increasing and continuous
on[0, |(ω)).

Regrouping all the results we have about the structure of the
process r, we can state the following theorem.

THEOREM 4.5. Under the Assumption 3.4, there exists N in Φ
with Pμ (N) = 0 for all finite measures μ on (EΔ, 3?Δ) such that for all ω in
{ξ > 0} - N, and for all t in [0, | (ω)),

( 4 1 2 ) τt = τc

t + I uMt(du) a.s. Pω,

τc

t is a continuous additive functional of X and Mt(B) is a Levy
process of Poisson type for each set B in 38.

Moreover if vt{B) (ω) = EωMt (B), then vt{-) (ω) is a Levy measure
and

(4.13) -aτc

t(ω)- ί (1 - e~au) vt(du)(ω)\
J(0,oo) J

Proof All we have to prove is (4.13). Since τc

t is Φt measurable,
we have

Eω(e~aTt) = g-«?<->£• [ e-«W ".w«>] a # s .

Since both sides of the equality are continuous in t and α, by subtracting
another set of measure zero, the equality holds for all t and a almost
surely in ω.

Now it follows from the general theory of Levy processes that for
Bk, l ^ k έ n , disjoint sets in 38 bounded away from zero, Mt(Bk)
1 ^ k ^ n are independent random variables and so,
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- "f' (' - <-""") * [(? • Ψ}} H
f - ί (l-«—)n(Aι)(
L J(o,oo)

= exp

From this equation, we see that

f (l-e-au)vt(du)(ω)<co,
J(0,oo) \ /

and this implies that vt(-)(ω) is a Levy measure.
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