LOGARITHMIC CONVEXITY RESULTS FOR HOLOMORPHIC SEMIGROUPS

Keith Miller

Abstract

The classical logarithmic convexity inequality, for solutions of $u^{\prime}=-A u$ with A a self adjoint operator on Hilbert space, yield that u is small at intermediate times, $0<t \leqq T$, provided that u is small at T and bounded at 0 . Use of the Carleman inequality for analytic functions allows one to easily generalize this result to the case of operators A which are generators of holomorphic semigroups on Banach space.

The basic logarithmic convexity result states that $\log \|u(t)\|$ is a convex function of t for solutions of the ordinary differential equation on Hilbert space, $u^{\prime}=-A u$, where A is a self adjoint operator. The simplest and earliest proof known to the author appears in [1]; it involves merely differentiating $\log \|u(t)\|$ twice and use of symmetry and the Cauchy-Schwartz inequality.

Log convexity is equivalent to the following inequality: if $0 \leqq t \leqq T$,

$$
\begin{equation*}
\|u(T)\| \leqq \epsilon, \quad\|u(0)\| \leqq E, \quad \text { then } \quad\|u(t)\| \leqq \epsilon^{t / T} E^{1-t / T} . \tag{1}
\end{equation*}
$$

It thus provides a stability estimate for the problem of backward solution of $u^{\prime}=-A u$ with a prescribed bound, for if u and v are two solutions to this equation, both closely fitting measured data g at time T and satisfying prescribed bounds at time 0 ; i.e.,

$$
\begin{align*}
& \|u(T)-g\| \leqq \epsilon, \quad\|v(T)-g\| \leqq \epsilon \tag{2}\\
& \|u(0)\| \leqq E, \quad\|v(o)\| \leqq E,
\end{align*}
$$

then at intermediate times we have

$$
\begin{equation*}
\|u(t)-v(t)\| \leqq 2 \epsilon^{t / T} E^{1-t / T}, \quad 0 \leqq t \leqq T . \tag{3}
\end{equation*}
$$

We wish to show that the basic log convexity inequality (1) generalizes quite easily, by use of the Carleman inequality, to the class of operators A on Banach space which are generators of holomorphic semigroups. Such operators are usually defined in terms of existence and certain bounds for the resolvent operator $(A-z I)^{-1}$ in certain sectors of the complex plane, see Kato [4], or see Friedman [2] for a
more concise and introductory treatment. From these bounds it follows that there exist constants $M \geqq 1, k$ real, and $0<\psi \leqq \pi / 2 k$ such that:
(4) (i) A generates a semigroup $e^{-\tau A}$ which is strongly continuous at $\tau=0$ and satisfies the semigroup property, not only for real τ, but also for all complex $\tau=t+i$ is ine closure of the sector $\Gamma_{\psi}=\{\tau \neq 0$: $\arg \tau<\psi\}$,
(4) (ii) $e^{-\tau A}$ is analytic with respect to τ in Γ_{ψ},
(iii) $\left\|e^{-\tau A}\right\| \leqq M e^{k t}$ on $\bar{\Gamma}_{\psi}$.

This is a particularly large and interesting class of operators. It includes, for example (see [2]), essentially all elliptic operators on $L^{2}(\Omega)$ corresponding to zero Dirichlet data on $\partial \Omega$ for which the Gärding inequality applies, and all elliptic operators on $L^{p}(\Omega)$ corresponding to regular elliptic boundary value problems.

In the Hilbert space case it suffices that A be a "sectorial operator," i.e.,
(5) (i) the numerical range of A lies in the $\operatorname{sector}\{z: \arg (z+k) \leqq$ $\pi / 2-\psi)$,
(5) (ii) A is closed,
(5) (iii) the resolvent $(A-z I)^{-1}$ exists at at least one point z outside this sector. Under these hypotheses (4) holds with $M=1$.

Theorem. Let A be the generator of a holomorphic semigroup on Banach space, with corresponding $M \geqq 1,0<\psi \leqq \pi / 2,0<\psi \leqq \pi / 2$, and real k, in (4). Let $u(t)$ be a solution of the ordinary differential equation $u^{\prime}=-A u\left(\right.$ that is, $\left.u(t)=e^{t A} u(0), t \geqq 0\right)$ satisfying

$$
\begin{equation*}
\|u(T)\| \leqq \epsilon,\|u(0)\| \leqq E \tag{6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\|u(t)\| \leqq M e^{k(t-T w(t))} \epsilon^{w(t)} E^{1-w(t)}, \quad 0 \leqq t \leqq T \tag{7}
\end{equation*}
$$

where $w(\tau)$ is the harmonic function on the "bent strip"

$$
S=\{\tau=t+i s:|\arg \tau|<\psi,|\arg (\tau-T)|>\psi\}
$$

which is bounded and continuous on \bar{S}, and which assumes the values 0 and 1 respectively on the left and right hand boundary arcs of S.

Proof. It suffices to assume that $k=0$, for the general case then follows by considering $e^{-k \tau} u(\tau)$ instead of $u(\tau)$ itself.

The vector valued function $u(\tau)=e^{-\tau A} u(0)$ is analytic on S, continuous and bounded on $\overline{\mathrm{S}}$, and bounded in norm by $M E$ and $M \epsilon$ respectively on the left and right hand boundary arcs of S. The same conditions then hold for the complex valued function $f(\tau)=v^{*}(u(\tau))$, where v^{*} is any element of unit norm in the dual Banach space. The Carleman inequality (whose proof after all merely involves dominating the subharmonic function $\log |f(z)|$ by the harmonic function $(\log \epsilon) w(z)+(\log E)(1-w(z))$, see [3]) then yields that

$$
\begin{equation*}
\mid f(\tau) \leqq \epsilon^{w(\tau)} E^{1-w(\tau)} \text { on } \bar{S} . \tag{8}
\end{equation*}
$$

Since the norm of a vector u is the supremum of its values $\left|v^{*}(u)\right|$ over all v^{*} of unit norm, we obtain (7) as desired.

Remark. Notice that when A is self-adjoint and semi-bounded from below, then the numerical range of A lies on the segment $[-k, \infty)$ of the real axis, $\psi=\pi / 2, S$ is the vertical strip $\{\tau=t+i s$: $0<t<T\}, w(\tau) \equiv t / T$, and we hence obtain (1) as a special case of (7).

References

1. S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math., 16 (1963), 121-239, see p. 163.
2. A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969, see Chapter II.
3. A. Gorny, Contribution à l'étude des fonctions derivables d'une variable réelle, Acta Math., 71 (1939), 317-358, see p. 346.
4. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966, see pp. 487-490.

Received July 25, 1974.

University of California, Berkeley

