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SOME THREE-POINT SUBSET PROPERTIES
CONNECTED WITH MENGER'S CHARACTERIZATION OF

BOUNDARIES OF PLANE CONVEX SETS

KARSTEN JUUL

An elementary characterization of those plane sets which
are boundaries of convex sets is given together with other results
of the same character.

1. Introduction. A theorem of K. Menger [1], see also F. A.
Valentine [3], states that a plane compact set S is the boundary of some
(bounded) convex set if and only if S satisfies certain simple conditions
expressible in terms of the three-point subsets of S. The main result of
the present note is an extension of Menger's theorem to possibly
unbounded closed sets (Theorem 3). We shall start by studying
subsets of boundaries of convex sets, the main tool being one of
Menger's conditions. Our final result (Theorem 4) is an extension of a
theorem of Valentine [3], giving a description of those sets satisfying
another of Menger's conditions. The results of this note may be
related to an unpublished work of W. M. Swan [2].

The assertion of Theorem 3 is illustrated in the figure: A closed set
S containing three noncollinear points is the boundary of a convex set if
and only if, for any noncollinear points JC, y, z E 5, firstly, each of the six
closed areas with strong hatching (the dotted lines are medians in
triangle xyz) contains points from S other than JC, y, z, and secondly, the
interior of triangle xyz contains no points from S. Instead of the
second condition we might have required that the interior of each of the
three weakly hatched angles contained no points from S.

2. Terminology, Everything takes place in the plane. The
interior, boundary, and convex hull of a set S are denoted by int 5, bd 5,
and conv 5, respectively. The closed and open segments with end-
points x and y are denoted by [JC, y] and ]JC, y [, respectively. If x, y, z
are noncollinear points, L(JC, y) and H(x, y z) denote the line through x
and y, and the closed half-plane H with JC, y GbdH, z EH,
respectively. A convex curve is a connected subset of the boundary of
a convex set.
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3. Results and proofs.

PROPOSITION. A plane set S fulfils

(§) V JC, y, z E S: S Π int conv{jc, y, z} = 0

// and ott/y // 5 (5 e/fΛer a subset of the boundary of a convex set, or an
X-set, that is a set {JC,, X2, X3, JC4, X5} wίίΛ ]*i,x2[ n]x3,*4[ = Us}-

Proof. The "if" statement is obvious. To prove the "only if"
statement, assume (§) and S^bdconvS. There are noncollinear
p, w, JC E 5 with p E int conv 5. Let V denote the complement of
H(p,jc; w)UH(p, w x). Then S ΠV = 0by (§). Since p E int conv 5,
there is an open half-plane H with p E bd H, V C H such that there are
y, z E 5 Π H with y E i/(p, w JC), Z E //(p, JC w). By (§) we see that
pE]jc, z[, pE]w, y[ and that S cannot contain more points than
p, w, x, y, z. Thus S is an X-set.

THEOREM 1. A connected set S is a convex curve if and only if (§).

Proof. Since an X- set is not connected, the assertion follows by
the proposition.
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THEOREM 2. A connected set S is a convex curve if

V x , y E S : S ( Ί ] x , y [ = 0 .

Proof Suppose S is a connected set fulfilling (§'), but not being a
convex curve. By Theorem 1 there are H>, x, y, z E S with w E
int conv{x, y, z}. Let the points r and t be determined by r£[x,y],
w£[r,z] and f E[y, z], wE[x,t], respectively, and the point u by
u E [y, w] Π [r, ί] By (§'), S Π L(w>, z) = {w, z}, SΠL(x,w) = {x, w}9

and ugzS. Since 5 is connected, either ]u,r[ or ]iι, f[, say ]w, r[,
contains a point p G 5. By (§'), S Π L (y, p) = {y, p}, hence x and w are
not in the same component of S, a contradiction.

THEOREM 3. A closed set S containing three noncollinear points is
the boundary of a convex set if and only if (§) and

(*) V x, y, z E S: S Π V(*, y, *) ^ 0 ,

where we define V(X y> z) to be the whole plane if x, y, z are collinear,
and otherwise, letting V denote the closed convex cone with vertex y
whose boundary contains z and the midpoint x 0 z of [x, z], to be V
deprived of z and the part contained in the open half-plane I with
x, z E bd / and y E I.

Proof. First we shall prove the "only if" statement. Suppose
S = bd C where C is a closed convex set. Then (§) is obvious. To
prove (*), let x, y, z E S be noncollinear. Letting V denote the com-
plement of H(xy z;y)Uίf(y, z x), we have CΠV = 0. Let
rEV. Now x 0 z E C and r ^ C so 5 Π [ x 0 z , r ] ^ 0 , whence SΠ
V(*,y,z)^0.

Next we shall prove the "if" statement. Observing that (*)
implies that S is not an X- set and using (§) we get 5 C bd conv 5 by
Proposition 2. Assume a E (bd conv 5 ) \ S .

Let H be a closed half-plane with a E bd H, S CH. There is a
point in S Π bd H, and hence a point x E bd H fulfilling 5 Π [x, a] = {x},
for assume S Π bd /ί = 0, and let (xn) be a sequence in S such that the
distance from xn+x to /f is less than half of the distance from xπ to
JFί. . We may assume that all the xn9 n ^ 2 are in the same open
half-plane K with x,, a E b d K In addition, consider a half-plane N
with x2E bd N, 5 C N. Then it is seen that (xn) has an accumulation-
point lying in bd H, a contradiction.

There are y, z E 5 such that yEint/f, z £ JF/(X, y a), for the
assumption i GS, a E]x,v[ would contradict (*). Choose p E 5 Π
V(z,x, y) and let M denote the closed half-plane with x 0 y EbdM,
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MCH. Now p G M Π i n t f f ( j c , y ; z ) since S ί l L ( x , y ) = {xj}.
Choose q G S Π V(y, P, * ) , then g G H \ int ( ί/ (y , α x) U M).

Consider a closed half-plane R with q G bd R, S C1?, and consider
all the half-planes Γ such that aET and bd T cuts ]q,a[ and
]JC, a[. Since all the Γ contain points from 5, there is a point uES
with a G]JC, ιι[, a contradiction.

THEOREM 4. For α connected set S such that

(**) V x , y , z G S : y E ] x , z [ φ [ x , z ] C S,

one of the following four conditions holds:
(1) int S is convex and S C cl int 5.
(2) S is a convex curve.
(3) S is the union of two non-disjoint linear elements, a linear

element being a connected subset of a line.
(4) S is the union of three linear elements P, Q, R with a common

endpoint contained in S and intconv(P U Q U R).

Proof. Suppose S is a connected set fulfilling (**), but none of the
four conditions.

We have int S = 0 since otherwise (1) were true.
By Theorem 1 and non(2) there are points a,b,c,d£ίS with

d G int conv{α, b, c}. An argument resembling the one in Theorem 2
shows that one of the segments [a, d], [b, d]9 and [c, d], say [a, d], is
part of S.

Put R = S ΠL(a,d) and let i be the point determined by /G
L(a,d)Pι[b,c]. Now ifέS, for otherwise S Π(L(a,d)\JL(b9c))
fulfils (3) so S \ ( L ( α , d ) U L ( f c , c ) ) ^ 0 , whence int 5 ^ 0 , a
contradiction. By a similar argument we see that for a point m,
R Π]m,b[^0 implies m&ίS. Hence, letting n denote the endpoint of
R nearest to /, there is an open half-line T with endpoint n and
S Π T = 0 such that T together with L(α, d)\R and {n} separates c
from JR. Thus n G 5. By non(4), S cannot contain both [b,n] and
[c,n], hence we may assume S ΠL(b,n) = {b,n}.

Let jGR\{n} and let the points k and / be determined by
k E P ] Π L ( n , c ) and / G [k, i] Π [n, b], respectively. By non(3) we
get SΠL(c,tt) = {c,n} and SΠ]Jt,/[ = 0 . Moreover S Π]lJ[ is
empty, for if it contained a point p, then, since SΠ]n,i[ = 0 , (**)
would imply that 5 had no point in L(p,b)Π H(n, i c) contradicting
that 5 is a connected set containing b and c. But then we have a new
contradiction to the connectedness of S, and the proof is complete.
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