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RELATIVELY INVARIANT MEASURES

SHMUEL GLASNER

A homomorphism of minimal flows X —» Y, has a relatively

invariant measure if there exists a positive projection from
onto r€(Y) which commutes with translasion. Such a relatively
invariant measure does not always exists. However, some
elementary facts from the theory of compact convex sub-sets of a
locally convex topological vector space are used to show that

Φ
given a homomorphism of minimal flows X^Ύ there exists a

commutative diagram

x~Sχ

φ~ φ

where θ and 0~ are strongly proximal homomorphisms and φ~
has a relatively invariant measure, (RIM). Homomorphisms
which have invariant measures are studied and questions of
existence and uniqueness are investigated.

Similar diagrams, where θ and 0~ are replaced by other types of
proximal extensions, and φ~ is replaced by an open map with certain
additional properties, are studied in [12] and [2].

In section one we introduce notions and definitions. Section two is
devoted to the proof of the main theorem about affine flows and then
some corollaries for homomorphisms of minimal flows are deduced.
Another corollary is a generalization of the Ryll Nardzewskie fixed
point theorem. This results are extensions of results in [6].

In section three the notation of a relatively invariant measure is
discussed and it is shown that metric distal extension has a relatively
invariant measure (see [8] and [1]). A homomorphism with a RIM
which has at least one finite fiber is shown to be almost periodic. In
section four we show the existence of the commutative diagram
mentioned above. This is used to show the existence of a universal
strongly proximal extension for any given minimal flow. We conclude
with some questions about the uniqueness of a RIM, and the existence
of almost periodic extensions.
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394 SHMUEL GLASNER

1. Definitions. Let T be a topological group, X a compact
Hausdorff space. We say that (Γ,X) is a flow if there exists a jointly
continuous map from Γ x X onto X, denoted (f,jc)->ta, such that
s(tx) = (st)x and ex = x for all x E X and s,t E Γ;e is the identity
element of Γ. Let Q be a compact convex sub-set of a locally convex
topological vector space. We say that (T,Q) is an affine flow if (T,Q)
is a flow and if in addition the map JC —> tx from Q onto Q is an affine
map for each t E.T. In particular an affine flow is a flow and one can
talk about minimal sets of Q, proximal points in ζ), etc.

Usually when referring to a flow (Γ,X) (or an affine flow (T, Q)) we
shall omit the group Γ and write just X (Q respectively).

A sub-set of a flow X is minimal set if it is nonempty, closed,
invariant and contains no proper closed invariant sub-set. A sub-set of
an affine flow is irreducible if it is nonempty, closed, convex and
invariant and contains no proper sub-set with these properties.

A continuous equivariant map from the flow X into the flow Y is a
homomorphism. If Q and P are affine flows and φ from Q into P, is a
homomorphism which is also an affine map we say that φ is an
affίne-homomorphism.

.Let Q -ΛP be an affine homomorphism. We say that a sub-set Qo

of Q is P-irreducible (with respect to φ) if Qo is closed, convex,
invariant, φ(Q0) = P and Qo contains no proper sub-set with these
properties.

Let Q be an affine flow, X = ex(Q) the closure of the set of
extreme points of Q. Clearly X is a closed invariant set and by the
Krein Milman theorem cδ(X), the closed convex hull of X, is equal to
Q. We say that Q is a primitive affine flow if X is a minimal set.

Given a flow X we denote by ^(X) the algebra of real valued
continuous functions on X. If / E <£(X) and t E T then f E % (X) is
the function defined by /'(*) = f(tx). Let Jί(X) be the set of regular
Borel probability measures on X. We consider M(X) as a closed
convex sub-set of ^(X)*, the dual space of ^(X), equipped with the
weak * topology. The action of T on X induces an action of T on
M{X) in the following way. Let μ G i ( X ) , t E T and / E ^(X), then
define ίμ, EJί(X) by

For a point JC E X we denote the point mass at x by δx. Clearly
tδx = δίJC and thus the homeomorphism x —> δx of X into J<(X) is also an
isomorphism of flows. Sometimes we shall identify X with the sub-set
{δx | jcEX}of M{X).

With the above action M(X) is an affine flow. Since cx(M(X)) =
X,Jt(X) is primitive iff X is a minimal flow.
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Let X -^ Y be a homomorphism of minimal flows (φ is necessarily
onto). This homomorphism induces an affine homomorphism
M(X)-*>Jt(Y), as follows. Let μ G M(X) and let / G <β{Y) be given,

is defined by

We say that φ is a strongly proximal homomorphism (or extension) if
for every measure μ EM(X) with φ(μ) = point mass on Y, there exists
a net ί, G Γ such that limf, μ = point mass on X. In particular X is a
strongly proximal flow if X is a strongly proximal extension of the
trivial flow.

Let X-^> Y be a strongly proximal extension and x,,x2GX with
φ(x,) = φ(x2). The measure μ =(δxι +8X2)/2 satisfies φ(μ) =
δφ(xi). Hence there exists a net t{ G T such that limfyz = δx for some
xEX. But limfyx = (lim ί,δxi + lim ί/δX2)/2 and since δx is an extreme
point of M(X) this implies limfjX; = limί(x2, i.e. the points x, and x2 are
proximal points in X

We say that a homomorphism is proximal if every two points with
the same image are proximal points. Thus we have shown that a
strongly proximal homomorphism is proximal.

A homomorphism X -± Y is distal if whenever x, φ x2 and φ(x,) =
φ(x2) then Xι and x2 are not proximal. A flow is distal if it is a distal
extension of the trivial flow.

2. Affine flows. Let Q be a compact convex sub-set of a
locally convex topological vector space, and let X be a closed sub-set of
Q such that cδ(X) = Q. We shall use the following theorems from the
general theory of convex sets (see for example [11]).

I (Krein Milman) cδ(ex(Q)) = Q.
II (Milman) ex(Q)CX
III For every measure μ G M (X) there exists a unique point

zEQ such that for all affine functions / on Q, f{z) = ί f{x)dμ. The
Jx

map μ -^ z sends M (X) onto Q, and is a weak * continuous affine
map. The point z is called the barycenter of μ.

IV (Bauer) A point x G X is an extreme point of Q iff δ x is the
only measure in M{X) whose barycenter is x.

THEOREM 2.1. Let Q-^Pbe an affine homomorphism of an affine
flow Q onto a primitive affine flow P. Then

(1) There exists a P-irreducible subset of Q.
(2) Every P-irreducible sub-set of Q is primitive.
(3) IfQoQQ is P-irreducible, X = ex(Q0) and Y = ex(P). Then

φ(X) = Y and (φ |X):X-> Y is a strongly proximal homomorphism.
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(4) IfQ0CQ is P-irreducible, Y = ex(P) and xί9x2 E Qo are such
that φ(Xι) = φ(x2)E Y then xx and x2 are proximal points (see [6]
Theorem 5.3).

Proof. (1) Use Zorn's lemma.
(2) Let Qo be a P-irreducible sub-set of ζ), X = ex(Q0) and

Y = 6x(P). Let xeφ-\Y)DQQ then by the minimality of Y
φ(ch{tx 11 E T}) D y. Hence φ(cδ{ίx | ί e Γ}) = cό{Y) = P. But Qo

is P-irreducible and thus cό{tx \t 6 Γ } = Qo. By II we conclude that

ex(Qo)CXCcls{ίjc \t ET}Qφ'ί(Y)ΠQQ

Thus if JC E X we have

XQcls{tx\t GT}CX and X = cls{ta \t E T}.

This proves that X is a minimal set.
(3) Consider the map M(X)-§>Q0 which sends a measure on X to

its barycenter on Qo. Let y EY, and let μ EM{X) be a measure with
Supp(μ)Cφ- 1 (y)nX (i.e. (φ |X) Λ (μ) = δ r)

If / is an affine function on P then f°φ is an affine function on

Q. Hence (f°Φ)(βμ)= (f°φ)dμ =/(y) and since the affine func-
Jx

tions on P separate points we can conclude that φ(β(μ)) = y. Hence
φ(β(cls{tμ 11 G Γ})) = y and φ(cό(β(cls{ίμ 11 E Γ}))) = P.

Since Qo is P-irreducible we have

cδ(j3(cls{fμ \t E Γ})) = Qo.

Now by II, this implies ex(ζ) 0)CXC j8(cls{ίμ \t E Γ}), and if
Xo£ex(C?0), then there exists v E cls{ίμ 11 E Γ} such that β(v) =
JCO- But by IV v = δxo and ( φ | X ) : X - ^ y is a strongly proximal
homomorphism.

(4) Let X = ex«2o) and y = φ(jc,) = φ(x2). Choose y o eex(P),
then there exists a net s, in T such that lim^.y = yo We can assume
that lim îX, = zx and lim5fX2 = z2 exist. Let μ, E Jί(X) satisfy j3(μ.) =
Zi(i = 1,2), If we use β to denote also the barycenter map from M(Y)
onto P, then j8((φ|X)A(μ l)) = φ(/8(μl) = φ(z i) = y0. Hence by IV
(φ|X)Λ(μ ι) = δyo.

By (3) there exists a net ί, in Γ such that limί/μ, = limf,μ2 = point
mass on X. By III we have

limtjZί = β(limtjμι) = β(\imtjμ2) = li

and x, and JC2 are proximal.
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PROPOSITION 2.2. Let X-^Y be a homomorphism of minimal
flows.

(1) There exists an M(Y)-irreducible affine sub-flow Qo of
M(X). If y~ = ex(Qo), then Y~ is a minimal sub-flow of M(X),
φ(Y~)=Y and the homomorphism θ = φ | Y~, Y~-*>Y is strongly
proximal,

(2) Conversely if Y~QM (X) is a minimal set such that φ( Y~) = Y
and such that θ = φ\Y~ is a strongly proximal homomorphism, then
Q = cό(Y) is an M(Y)-irreducible affine sub-flow of M(X).

Proof (1) In Theorem 2.1. take P = M(Y), Q = M(X) and ζ>0 a
P-irreducible sub-set of Q with respect to φ. Since M(Y) is primitive
Y~ = ex«2o) is minimal, φ(Y~) = y and y~-*- Y is a strongly proximal
homomorphism.

(2) Let β :Jl(Y~)-+ Q denote the barycenter map. Consider the
diagram

θ I i/φ

M(Y)

If / £ ^(Y) then / can be considered as an affine function on Jt(Y) as

follows. For v e M{Y) f(v) = J fdv. Thus f°φ is an affine function

on M{X) and hence also on Q. It follows that for every fG^iY) and

ί fdθ(ξ)= ί tf*θ)dξ= ί (/
J y Jy~ Jy~

= I fd(φoβ(ξ)).
J Y

Thus θ = φ°β and the above diagram is commutative.
Let now QoQQ be an M{Y)-irreducible sub-set of Q, v E ex(Q0)

and μ E M(Y~) such that β(μ) = v. Then φ(ι>) is a point mass on y,
say δy, and θ(μ) = (φ°β)(μ) = φ(*0 = δ r Since θ is strongly proximal
homomorphism this implies that there exists a net U in T such that

is a point mass on y~, say δη. Now limί,^ = limίiβμ =
= β(δη) = η E y~ and since ex(Q0) is a closed invariant set this

implies Y~ C ex(Q0). Therefore Q = Qo, and Q is Jί (y)-irreducible.



398 SHMUEL GLASNER

COROLLARY 2.3. Let X-^Y be a homomorphism of minimal sets,
then φ is strongly proximal iff M(X) is M(Y)-irreducible.

Proof. This follows immediately from Proposition 2.2 if we ob-
serve that ex(M(X)) = X, and cδ(X) = M{X).

Theorem 2.1 can be applied to prove the following generalization of
the Ryll Nardzewski fixed point theorem, in the same way as Theorem
5.3 in [6] was used in proving this fixed point theorem. (Theorem 7.3 in
[6].)

THEOREM 2.4. Let E be a separable Banach space, Q a weakly
compact convex sub-set of E. Suppose (T,Q) is an affine flow such
that the action of T on Q is distal in the norm topology. Let
φ: (Γ, Q) —> (Γ,P) be an affine homomorphism of Q onto a primitive
affine flow P. Then there exists a minimal sub-flow X of Q such that
(φ \X): X->cx(B) is an isomorphism of minimal flows.

3. Relatively invariant measures.

DEFINITION. Let X - ^ F b e a homomorphism of minimal flows; a
linear map P: cβ(X)^^c€(Y) is called a relatively invariant measure
(RIM) for φ if P satisfies the following properties

(1) P(f) g 0 whenever / G «(X) and / ̂  0.
(2) P ( l ) = l .
(3) P(hoφ) = h for h <Ξ%(Y).
(4) P(f<) = (PfY for / G <β(X) and t e T.

DEFINITION. Let X-^> Y be a homomorphism of minimal flows. A
homomorphism λ: Y—»Jί(X), y—»λy is called a section for φ if for
each y G Y,φ(λy) = δy.

PROPOSITION 3.1. Let X^>Y be a homomorphism of minimal
flows. Then the following conditions are equivalent.

(a) There exists a section for φ.
(b) φ has a RIM.
(C)Λ There exists a convex closed invariant subset Q ofM(X) such

that (φ\Q): Q->M(Y) is an affine isomorphism onto.
(d) There exists an M(Y)-irreducible affine sub-flow Q of M(X)

such that φ\ex(Q): ex(Q)->Y is a flows isomorphism.

Proof, (a) Φ (b) Let λ: Y -> M (X) be a section. Given a func-
tion / G ̂ (X)y define a function Pf on Y as follows

(Pf)(y)= ί fdλy
J X
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Clearly Pf E ^(Y). Since λy is a probability measure, properties (1)
and (2) in the definition of a RIM are clearly satisfied by P. If
ft E <£( Y), then for each y G Y

= ί
J X

Thus P(ft °φ) = ft,and property (3) is satisfied. Finally if / E ^(X) and
ί E Γ, then for each y E Y

= f fdλy = f /ΛA, = ί fdλty =
J X J X J X

Thus P( f ) = (Pty, property 4 is satisfied and P is a RIM for φ.
(b)Φ(c) Let P:<e(X)^><g(Y) be a RIM. Define

by

ί fd(yμ)= ί (Pf)dμ (μ EM(Y),f
J x J Y

Clearly γ is an affine weak * continuous map. Moreover if t G T,
then

f fd(tyμ)= ί f'dγμ = I P(f')dμ = I (Pf)'dμ - -
J X J X J Y J Y

= f {Pf)dtμ = \ fd(γtμ).
J Y J X

Thus ytμ = tγμ and γ is an affine homomorphism.
We now show that μ = φγμ for μ E Jί(Y).
Indeed

ί hd(φγμ)= ί (hoφ)dγμ = ί P(h<>φ)dμ = ί ftφ
JV Jx Jy Jy

for all ft E«(Y). If we denote Q = y(M(Y)) then Q is a convex
closed invariant sub-set of M(X) and φ\Q is 1-1, hence an affine
isomorphism.

(c)Φ(d) Let Q be as in (c) then since φ\Q is one to one it is clear
that Q is M{Y)-irreducible. Moreover φ |ex((2): ex(<?)-* Y is a flow
isomorphism.

(d) φ (a) Assuming Q as in (d) exists, define λ: Y-^M(X) by
clearly λ is a section.

DEFINITION. If X -^ Y is a homomorphism of minimal flows which
has the properties (a)-(d) of Proposition 3.1 we say that φ is a RIM
extension (or homomorphism).
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REMARK. Let X-± Y be a RIM extension then for a particular
choice of a section A: Y—>Jί(X), the following relations between the
objects discussed in Proposition 4 holds:

A RIM for φ is given by

= ί
J

(fe<€(x),yeY)

The map γ: M(Y)->M(X), defined by

f fdΎμ = ί (Pf)dμ = f ί fdλydμ
Jx J Y J Y J X

(f G ̂ (X), μ E it(Y)), is an affine isomorphism into, and Q = γ(Jί(Y)) is
an M{Y)~irreducible affine sub-flow of M(X). The minimal flow
r ~ = ex(Q) is isomorphic to Y via φ \ Y~: Y~->Y. Finally γ | Y =
(φ I Y*")"1 = λ is the original section for φ.

COROLLARY 3.2. Let X-^Y be a RIM extension. (1) // Y has
an invariant measure so does X. (2) IfXis uniquely ergodic then so is
Y.

Proof. By Proposition 3.1 there exists an affine isomorphism γ of
M{Y) into M{X), and clearly (1) follows. If μ and v are invariant
measures on Y then by the unique ergodicity of X, γ(μ) = y{v). Thus
μ — v and Y is uniquely ergodic.

LEMMA 3.3. Let X-±> Y be a RIM extension and λ: y-*M(X) a
section for φ. If X is a metric space then there exists a residual set
OQY such that yEϋ implies Supp(λy) = φ~\y).

Proof. Let 2X denote the compact metric space of closed sub-sets
of X, equipped with the Hansdorff topology. There is a natural action
of T on 2* induced by the action of Γ on X. The map y-»Supp (λy)
from Y into 2X is a lower-semi-continuous map and ί(Supp(λy)) =
Suρp(ίλy) = Supρ(λίy). Let 0 C Y be the set of points in Y at which
the map y—»Supp(λy) is continuous, then 0' is a residual sub-set of
Y. Let Sf = cls{Suρp(λy)|y E Y} then X is a closed invariant sub-set
of 2*. If A E X then A = lim Supρ(λ yj) for some sequence y, E Y and
we can assume that limy,=y exists. Since SuppίλyJCφ"1^) and
since φ~ι: Y—»2X is an upper-semi-continuous map, it follows that
A C φ~ι(y). Thus each element of % is contained in a fiber. Now if
y Eθ' then there is a unique element of X which is contained in φ" !(y),
namely Suρρ(λy).

Consider now the set X' = U {A \ A E 3?}. Clearly this is a closed
invariant sub-set of X, and since X is minimal X' = X. This implies
that for y E 0 Supp(λy) = φ~\y).
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LEMMA 3.4. A strongly proximal hompmorphism has a RIM iff it
is an isomorphism.

Proof. Let X -^ Y be a strongly proximal homomorphism with a
RIM. By Proposition 3.1 (d) there exists an Jί(Y)-irreducible affine
sub-flow Q of M(X) such that φ|ex(Q): ex(ζ>)-» Y is an
isomorphism. By Corollary 2.3 M(X) itself is M(Y)-irreducible,
hence Q = M(X) and ex«?) = X

This lemma showes that not every homomorphism of minimal flows
has a RIM. For example every almost 1 - 1 (almost automorphic)
extension is strongly proximal and hence unless it is 1 — 1, it does not
possess a RIM. Of course any minimal flow without an invariant
measure is an extension (of the trivial flow) without a RIM.

LEMMA 3.5. Let

be a commutative diagram of minimal flows.
(1) // x has a RIM so does φ.
(2) If ψ and φ have RIM then so does χ.
(3) // χ has a unique RIM and ψ has a RIM, then φ has a unique

RIM.

Proof. (1) Let P: <€(Z)-+<€(Y) be a RIM for χ, then
f->P(f°φ)(fe<e(X)) is a RIM for φ.

(2) Clear.
(3) Let P\%(Z)-*%{Y) be the unique RIM for χ and let

P,: «(Z)-» %(X) be a RIM for φ. By (1) there is also a RIM for φ, say
P2: ^(X)-*^(Y). Now by the uniqueness of P, P2°Pι = P and since
Px{<e{Z)) = «(X),P2 is unique.

DEFINITION. Let (T,Z)-*>(T, Y) be a homomorphism of minimal
flows. We gay that x is a growp extension if there exists a compact
Hausdorff topological group K such that

(1) There is a jointly continuous action of K on Z, (Denoted by
(z,Jfc)-*zfc, z E Z , fceK).

(2) For zGZ, ί G Γ and feGK (ίz)fc =ί(zfc).
(3) For every zEZ, χ~ι(χ(z)) = zK.
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A homomorphism (T, X)-^(Γ, Y) of minimal flows is called an
almost periodic homomorphism (or extension)., if there exists a group
extension (Γ,Z,K)-MΓ, Y) and a homomorphism (Γ,Z)^>(Γ,X) such
that χ = φ°ψ. (Notice that ψ is also a group extension.)

LEMMA 3.6. Let X -Λ Y be an almost periodic extension. Denote

N = {μ E M(X)\φ(μ) is a point mass on Y}.

Then N as a sub-flow of M (X), is pointwise almost periodic (i.e. N is a
disjoint union of minimal sets), and φ\Jί: N->Yisa distal extension.

Proof. Let (T,Z,K), ψ and χ be as in the definition of almost
periodic extension. We can assume that the action of K on Z is
free. Define

SB = {μ E Jί (Z) I x (μ) is a point mass on Y}.

Fix a point z0GZ, let yo = *(*<>) and choose μ EJ£ such that χ(μ) =
yo By our assumption the map k~->zok is a homeomorphism of X
onto ^"'(yo) and thus we can lift μ to a measure μ on K:

I f(z)dμ = I f(zok)dβ: fe<€(Z).
J Z J K

In this way we can define an action of K on χ~\δyo) namely kμ =
kμ. (This depends of course on zo)

Let μ, θ E.χ'\δyo), we shall show that θ is in the Γ-orbit closure of
μ iff θ - kμ for some k E K. Indeed suppose there exists a net tt in T
such that limfjμ = 0, without loss of generality we can assume that
Iimii2o = Zi, exists and it follows that χ(Zι) = y0. Hence there exists
krGK such that zι = zoku Now for every / E ^(Z) the net of func-
tions ftι(zok) converges uniformly in k to the function f{zλk). Hence

ί f(z)dθ = lim ί f{z)dUμ = lim ί fti{z)dμ
J z J z J z

= lim ί fHzok)dβ = lim f fihz^dβ
J K J K

= ί f(z,kλk)dμ = I f{zQk)dkxμ = ί f(zok)d~k^L
J K J K J K

= ί f(z)dkiμ.

Jz

Thus kxμ = θ.
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Conversely if θ = kxμ for some kλ E K, then there is a net f, in T
such that lim ίfz0 = *ofci and for / G <#(Z) we have

ί f(z)dθ = ί /(z)dfc,μ = ί f(zok)dl^
J Z J Z J K

= ί f{z,kxk)dμ =l imί fHzok)dβ
J K J K

.= lim f /'•(*)<*/* = lim ί f{z)dUμ.
J z J z

Hence limfyx = 0.
It is now easy to see that i? is pointwise almost

periodic. Moreover if μ, v E X with χ(μ) = χ(v) and there exists a net
ti in Γ such that lim fj/i = lim *,-!> = 0. Then we can assume that
χ(θ) = χ(μ) = yo and that limίιz0 = ̂ i exists. Now as above there
exists ίίiGK such that zQkλ = z, and kλμ = 0 = fc,κ Hence^ = ̂  and
^ |i?: <S?-> y is distal. Finally since ψ(i?) = JV and since φ°Φ=χ it
follows that Jf is point-wise almost-periodic and that φ\N: N-^>Y is
distal.

REMARK. In the notations of Lemma 3.6, there is always an action
of K on M{Z) namely μ —>μfc where

f f(z)d(μk) = ί f(zk)dμ (f E «(Z), μ E Λί(Z) and k E K).

When X is abelian the map μ ->μ of ^"^yoίonto M(K), does not
depend on the point z 0E ̂ "'(yo). Moreover /cμ = μ/c and thus under
the action μ -*μfc, (T, «S?0, K)-^(Γ, y) is a group extension for every
minimal set 5£QQ<£. Thus N0-2>Y is an almost periodic extension for
every minimal set Jf0CJf.

The following corollary was first proved by A. W. Knapp [8]. We
include a proof which makes use of Lemma 3.6.

COROLLARY 3.7. Let X-^Y be an almost periodic extension then
φ has a unique RIM.

Proof, Let Q be an M{Y)-irreducible affine sub-flow of
M(X). By Proposition 2.2. €x(Q)-^ Y is a strongly proximal exten-
sion of Y and by Lemma 3.6 €x(Q)^Y a distal extension of
y. Hence φ |ex(Q) is 1 - 1 and by Proposition 3.1 (d), φ has a RIM.

Let (T,Z,K), x and ψ be as in the definition of an almost-periodic
extension. Assume again that the action of K on Z is free. The
extension Z-*>Y is a group extension hence an almost periodic
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extension and by the first part of this proposition χ has section
λ: Y—» Jί(Z). As in the proof of Lemma 3.6 one can show that for
each k ELK and y E Y, λy = fcλr Hence λy is the Haar measure on K
and A is unique. The uniqueness of a RIM for φ now follows from
Lemma 3.5 (3).

PROPOSITION 3.8. Let X be a quasi-separable minimal flow (i.e., X
has sufficiently many metric factors) and let X-^Y be a distal
homomorphism. Then φ has a RIM.

Proof, By the Furstenberg-Ellis structure theorem for quasi-
separable distal extensions, [1], there exist an ordinal η, a family of

flows {Xa \a ̂  η} and a family of homomorphism {Xβ+i—^X« \<x.< v)
such that X o = Y9Xη = X,φa is an almost periodic extension and for
limit ordinals β ^η Xβ is the invers limit of the system {Xα,φa \a <
β}. Using Corollary 3.7 and Lemma 3.5 (2), and using the fact that for
a limit ordinal β ^ η the union of the images of <#(Xa) in ̂ (Xβ) (α < β)
is dense in ^(Xβ), one constructs inductively a RIM for φ.

REMARKS. (1) Since there exist distal flows which are not uni-
quely ergodic [3], it is clear that a RIM for a distal extension is not
necessarily unique.

(2) Let X -*> Y be a distal homomorphism, is it true that for every
Φ

minimal set Jf0C φ~\Y)CM(X) the homomorphism JfQ—>Y is
distal? If this is true, and it can be proved without the use of the
structure theorem, then the existence of a RIM will follow as in the
proof of Corollary 3.7. In particular when Y is the trivial flow, a proof
of the fact that a minimal set in M{X) is distal whenever X is distal will
produce a new proof for the existence of an invariant measure for a
distal flow. (In [9] there is an example of a distal flow on the torus X,
such that M{X) is not distal.)

PROPOSITION 3.9. Let X^Y be a RIM extension. If for some
section λ: Y-»M{X), and some point y0E. Y, Supp(λyo) is a finite set,
then φ is a finite to one almost periodic extension. In particular if for
some y 0E Y,φ~ι(y0) is finite then, φ is finite to one everywhere and is
almost periodic.

Proof We show that φ is a finite to one distal extension and this
implies that φ is almost periodic.

Let λ yo = ΣΓ=i atxι where 0 < a{ < 1, Σ",i a{ = 1, x{ 6 X satisfy
Φ(*ι) = yo and if k^ I then xt^ xk. Since λ is a section it follows that
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tλ yo = A tyo = ΣΓ=I aitXi. If ta is a net in Γ then clearly lim taλ yo exists and
is equal to λy iff, in Xn, lim(ίβxi, ,ίβjcn) = (zi, ,zn) exists and λy =
ΣUiβiZi. Thus if we denote Z = clsftίx,, , txn)\t E Γ} then Z as a
sub-flow of Xn is isomorphic to Y via the map y -»λy -»(Zi, ,z#I)
where λy = Σ/n

=1 axzx (If some of the ax-s are equal we can reorder them,
if necessary, so that zx = limία*/ whenever limίαyo = y.)

Since y is a minimal flow we conclude that for each y E Y9 the
point (zi, , zn) of X" where, λy = Σ"-i α/Z;, is an almost periodic point.
In particular if \jt\ then z, and z, are not proximal. Now U{z, |z, is
some coordinate of some zGZ}= U{Suρρ(λy)|y E Y} is clearly a
closed invariant sub-set of X. Since X is minimal this set is equal to X
and we can conclude that for each y E Y with λy = Σ,=1 atzh φ~ι(y) =
{zi, * , zπ}. Thus φ is a finite to one distal homomorphism. The proof
is completed.

In a similar way one can show that a homomorphism X -** Y of
minimal flows, which is finite to one and open, is almost-
periodic. Thus for a finite to one homomorphism of minimal flows the
properties of having a RIM, of being open and of being almost-periodic
are equivalent. Using this fact and a construction due to W. A. Veech
[12] one can deduce the following proposition, which is probably well
known.

PROPOSITION 3.10. Let X be a minimal metric flow and X-^Y a
homomorphism. Suppose there exists a point y0 E Y such that φ~ι(yo)
is a finite set. Then, either φ is almost 1-1 or, there exists a
commutative diagram

θ* X

φ

such that X* is a minimal flow, θ andθ* are almost 1-1 extensions and
θ* is a nontrivial almost-periodic extension.

4. How to obtain a homomorphism with a RIM from
a given homomorphism. Let X -Λ Y be a homomorphism of
minimal flows. By Proposition 2.2 we can find an Jί(Y)-irreducible
affine sub-flow Q in M{X), and then the map φ |ex(Q): ex(Q)-» Y is a
strongly proximal homomorphism. Denote ex(Q) = Y~ and φ | Y~ =
θ. Consider now the set R C X x Y~ defined by R =
{(x,v)\φ(x) = θ(v)}. We have the following theorem.
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THEOREM 4.1.

(1) R contains a unique minimal set, X~.
(2) The following diagram is connutatiυe

X X

φ

θ

Where θ~ andφ~ are the projections ofX~ onto Xand Y~ respectively.
(3) θ and θ~ are strongly proximal homomorphisms.
(4) φ~ has a RIM. In fact for each v EY~ the measure v xδvon

X x Y~ is supported in X~ and the map λ: Y~->M(X~): λ, = v x δv is a
section for φ~.

Proof (1) Let X~ be an arbitrary minimal set in R, we shall
prove that statements (2)-(4) holds for this particular choice of a
minimal set and then it will follow from (4) that X~ is the unique
minimal set in JR.

(2) Let ( J C , ^ ) G X ~ then (φ °θ~)((x, v)) = φ(x) and
(θ°φ~)((x,v)) = θ(v). Since X~QR,φ(x) = θ(v)mdφ°θ~ = θ°φ~.

(3) We know already that θ is a strongly proximal
homomorphism. Let ζ be a measure in M(X~) whose support is
contained in a set of the form {θ~Y\x) = {(*, v)\vE.Y~ and (JC, v) G X~}
for some x EX. Then(φ~)Λ(£) is supported in the set {v G Y~\(x,v)&
X~}. But for (jc,i/)GX~, θ(v) = φ(x) and thus Supp(φ~)Λ(£)C
θ-ι(φ(x)).

Now θ is a strongly proximal extension, hence there exists a net tx

in T such that liπU(φ~)Λ(£) = 8V EM(Y~), for some v G Y~. Since
ζ = δx x (φ~)Λ(ζ) it is now clear that for a sub-net tti of ii5 lim^ ζ is a
point mass on X~. Thus θ~ is also a strongly proximal homomorphism.

(4) The commutative diagram of minimal flows, in (2), induces a
commutative diagram of afϊine flows

(ΘΎ

(ΦΎ Φ
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We recall that Q = cδ( Y~) CM{X) is an M{Y)-irreducible sub-set
of M{X).

Denote by Q~ the affine sub-flow, ((βTΓ'ίQ) of M(X~\ then

= Φ(ΘΎ(QΊ =

But θ is a strongly proximal extension, and by Corollary 2.3,
M(Y~) is M(Y)-irreducible, hence (φ~)Λ(Q~) = Λί(Y~). Let 1/ E Y~
be fixed and choose £ E ζ)~ such that (φ~)Λ(£) = δy £^<(Y~). This
implies that ζ =-(θ~)Λ(ζ)x δv. Denote (θ~)Λ(ζ) = η and note that

By the commutativity of the above diagram φ(v) - θ(v) = θ(δv) =
(β°(ΦΊ A )(ί) = (Φ°(ΘT)(^) = Φ(τf), but ^ e Y~ hence φ(v) = φ(η) =
a point mass on Y.

It now follows from Theorem 2.1. (4) that ^ and η are proximal
points of Q. Therefore there exists a net U in T such that limtiv =
limί,η. Since Y~ is a minimal set and v G Y~, the common limit lies in
Y~ and we can assume that it is actually equal to v. Now

limί,f = limί,(τi x δv) C M(X~).

Thus for every Ϊ/ E Y~ the product measure ι̂  x δv is supported in X"*,
and it is now clear that the map λ: Y~~>M(X~) defined by λ, = ι̂  x δv

is a section for φ~. This completes the proof of Theorem 4.1.

Consider now a minimal flow Y and let M be the universal minimal
flow. There exists a homomorphism M-^Y. Using the construction
of Theorem 4.1 (with X = M) we obtain a commutative diagram

where Y~ C Jί(M), 0 is strongly proximal and φ~ has a RIM. (By the
universality of M,0~ is 1 - 1).
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If Y' > Y is a strongly proximal homomorphism then there
exists a homomorphism 17, such that the diagram

is commutative.
Let Q=cδ(y~)CΛί(M), <2' = η(Q); then Q' CM(Y') and since

φ = φoη we have φ(Q') = ψ°η(Q) = φ(Q) = M(Y). But ψ is
strongly proximal, hence M(Y') is M(Y)-irreducible (Corollary 2.2) and
ζ)' = Ji(Y'). In particular η(Y~)= Y' and ψo(ή\Y~) = ψo(fj\γ~) =
0o((φ~)*|y~) = 0o((φ~)*|γ~). Now the map λ: Y~^M(M): λv = v
is a section and (φ~)Λ | Y~ = λ" !. Thus for 1/ e y~ C Jί(M), (φ^")Λ(1/) =
δ v E J ί ( y ^ ) and ψ°(ή\Y~) = θ. This shows that Y~ is a universal
strongly proximal extension of Y.

If y ' -^ y, is another universal strongly proximal extension of Y,
then there exist two homomorphism η and 1 such that the diagram

is commutative.
Now for yG Y~, ψ((ι °τ/)(y)) = (θ °η)(y) = ψ(y). Hence (t

and y are proximal points. But t °η is an automorphism of the flow
y~, hence this is possible only if (t° 17) (y) = y i.e. ι°η = identity. This
shows that Y~ is unique up to an isomorphism.

Incidentally this shows that for every minimal flow Y and a
homomorphism M-^Y, any two M(Y)-irreducible afline sub-flows of
M(M) are aflfinely isomorphic.

In particular when Y is the trivial flow y~ = Πs, the universal
minimal strongly proximal flow (see [6]), and every irreducible aflfine
sub-flow of M(M) is affinely isomorphic to M(ϊls).
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The flow Y~ has the property that every homomorphism Z -^ Y~
where Z is minimal, has a RIM. (Lemma 3.5 (1)).

The observation that any two M(Y) irreducible affine sub-flows of
Jί(M) are isomorphic raises the following question. Given a
homomorphism X-^Y of minimal flows, is it true that any two
J£(y)-irreducible affine sub-flows of M{X) are aflfinely
isomorphic? Taking Y to be the trivial flow the question is whether
any two irreducible affine sub-flows of M(X) are necessarifiy
isomorphic. In particular if X is a minimal flow with an invariant
measure is it true that every irreducible affine sub-flow of M(X) is
trivial?

A particular case in which the answer to the above questions is
clearly affirmative, is the case in which there is a unique Jί(Y)-
irreducible affine sub-flow of M{X). This is the case iff in the
construction of Theorem 4.1 the homomorphism X~-^ Y~ has a unique
RIM.

The following example of a minimal flow X such that M{X)
contains a unique irreducible affine sub-flow (which is an invariant
measure), is due to Professor H. Furstenberg.

Let G be a semi-simple connected Lie group with finite center,
G - KAN an Iwasawa decomposition for G and let M be the central-
izer of A in K. Then H = MAN is a closed amenable sub-group of
G. Theorem 2.6 of [4] states that the action of H on any homogeneous
space of G is uniquely ergodic. Let Γ be a discrete uniform sub-group
of G and let Q C M(GIΓ), be an affine G- invariant irreducible sub-flow
of M(GIΓ). In particular Q is //-invariant, and since H is amenable
the unique //-invariant measure on GIT lies in Q. Thus Q is
unique. Since G/Γ carries a unique G-invariant measure, m, it follows
that Q ={m}.

This example can be generalized as follows

PROPOSITION 4.2. Let (Γ,X) be a minimal flow. Suppose there
exists a sub-group S of T which is amenable and such that (S,X) is a
uniquely ergodic flow. Then, M(X) contains a unique T-invariant affine
irreducible sub-flow.

We conclude with the following question which, in fact, is the
reason for our interest in relatively invariant measures.

Generalizing results of H. Furstenberg in [5] and H. Keynes and J.
B. Robertson in [7], R. Peleg proved the following theorem [10,
Theorem 11, where Y is the trivial flow].

THEOREM. Let (X, T) be a minimal metric flow with an invariant
measure. Then X is topologically weakly mixing (i.e. X x X is
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topologicaly ergodic), iff the only almost periodic factor of X is the
trivial one.

We state the following conjecture.

CONJECTURE. Let X -*> Y be a RIM-extension and suppose X is
metric. Let R be the sub-set of X x X, defined by

R ={(xι,xj\φ(xί) = φ(x2)}.

Then R is topologically ergodic iff the only almost periodic extension of
Y, which is a factor of X, is Y itself.
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