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BRANCHED IMMERSIONS BETWEEN 2-MANIFOLDS
OF HIGHER TOPOLOGICAL TYPE

JOHN D. ELWIN AND DONALD R. SHORT

In this paper, branched immersions between compact or-
ientable 2-manifolds are considered. Branched immersions are
smooth maps whose only singularities are branch points, i.e.,
points of the domain where the map is locally topologically
equivalent to z —> zr (r = 2,3, •)• Originally these maps were
studied in connection with Douglas' solution to Plateau's
problem.

The maps considered here are required to satisfy natural
boundary hypothesis which have been motivated by minimal
surface studies. The main result completely decides the ex-
istence question for a branched immersion between compact
orientable 2-manifolds with or without boundary.

I. It has been shown [2] that for a suitable collection of boundary
curves, the minimal surface solutions include surfaces of positive
genus. It is of interest then to study the existence question for
branched immersions between surfaces of higher topological
type. Throughout this paper all manifolds considered will be compact
orientable 2-manifolds with or without boundary.

The organization of the paper is as follows: §11 contains basic
definitions and previous results obtained by the authors; §111 is devoted
to constructions utilized in the proof of the main theorem which appears
in §IV. Let us now state this theorem under the boundary hypothesis
restriction of §11.

Suppose M and N are manifolds of genus g, and g2 with mx and m2

discs removed respectively. Then

THEOREM 3. There exists a branched immersion M-*N satisfying
boundary conditions (1) if and only if

Case I. (m, = 0): g, = g2 or g, ̂  2g 2 - 1
Case Ha. (m,^0, gi^g 2 ): m 1 ^2(g 2 -g,) + m2

Case lib. (m,^0, gi>g2): mι>m2.
This result extends those which appear in [4]

II. Basic definitions and previous results necessary
for the main theorem are presented in this section. Suppose
f: M->N is a smooth map between compact orientable 2-manifolds
with or without boundaries dM and dN. p G M is called a branch point
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of order r - 1 if / is locally topologically equivalent to z -> zr at p. In
this work we will assume the following additional boundary conditions:

(1) (i) dN Cf(dM)

(ii) f\m is a homeomorphism.

Since M is a compact 2-manifold, ΘM is a disjoint union of
1-spheres and by the above assumptions f(dM) is a disjoint union of the
same number of 1-spheres. Let B denote the set of branch point
images of / and let γ(q) represent the cardinality of the fiber over
q GN. From the local product structure of these maps γ is constant
on the components {A, } of N-f(dM) U B and changes by exactly one
across any boundary image. The value of γ on a boundary image point
q is the largest value γ attains on the adjacent components {A,} which
meet every neighborhood of q.

If we denote each boundary image 1-sphere with all of its branch
point images removed by Ch then γ(A, ) and γ(Q) are defined as the
constant value y assumes at every point of A, or Q. Using this
notation we may now state the basic Euler characteristic formula whose
proof may be found in [4].

THEOREM 1. Suppose f: M —»N is a branched immersion between
compact orientable 2-manifolds. Assume that f\m is a homeomorph-
ism and in addition that dN Cf(dM). Then

(2)
beB

The most useful form of the above formula may be stated as a
corollary which eliminates the need to distinguish between interior and
boundary branch point images. An equivalent version of this formula
appears in Ahlfors [1]. However, to state this corollary another
multiplicity function which incorporates the branching order must be
defined. If q G N, define o(q) to be the sum of the orders of the
branch points in f~\q) or zero if f~\q) contains only regular
points. Define μ at each point q G N by μ(q) = y(q) + o(q). From
its definition it is immediate that μ is constant on the topological
components {N,} of N - f(3M) and on each boundary image 1-sphere.

COROLLARY 1. Under the hypothesis of Theorem 1

χ(M) = Σμ(Ni)χ(Ni)-V
i

where V denotes the total branching order Σb(ΞBo(b).
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Proof. Let B, = Nt Π B and let |B, | denote its cardinality. From
these definitions we have Nf = A t U 2?, and

Since A, contains only images of regular points

Hence

(3)

Similarly denoting the /th image 1-sphere by 5] and B, = S)Π B we
have 5} = Q U B̂ . Since £, is finite

and thus

(4) 0 = γ(q)^(C,)- Σ Ύ(ί>)" Σ o(b).
bB bB

Substitution of equations (3) and (4) into Theorem 1 completes the
proof.

If dM = ΘN = φ we may express the formula in Theorem 1 in terms
of the genera of M and N. The resulting equation is a generalization of
the classical Riemann-Hurwitz formula [5].

COROLLARY 2. Suppose f: M -> N is a n-sheeted branched cover-
ing between compact orient able 2-manifolds without boundary of genus
gι and g2 respectively. Then
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In [4], Theorem 1 was applied to the question of existence or
nonexistence of a branched immersion from the 2-sphere with m discs
removed onto a compact orientable 2-manif old N of genus g. Letting
SI represent the above sphere the main result of the paper is the
following:

THEOREM 2. There exists a surjectiυe branched immersion
f: Si->N satisfying boundary conditions (1) // and only if m ^ 2g.

The goal of the present paper is to completely decide the existence
question for branched immersions between compact orientable 2-
manifolds each having any number of discs removed subject to the
boundary restrictions (1).

I I I . This section contains three constructions which will be
utilized in the proof of the existence theorem in §IV. Construction 1 is
equivalent to the classical Riemann surface construction of cutting p
slits in two branches and identifying opposite sides.

Construction 1. Suppose N is a compact 2-manifold with or
without boundary. Let X be a submanifold formed by removing from
N the interiors of p disjoint homeomorphic images of the disc.

χ = N- V (intD).
= 1

Now form the disjoint union of p copies of the 2-sphere with each
parameterized by geodetic co-ordinates. From this disjoint union
construct the manifold Y by removing the interior of n identical disjoint
discs centered at (2τr//n,0) (/ = 1, , n) from each sphere.

γ= v (s2- V ( intD)).
i=l \ ΐ=l /

Attach X to Y via a homeomorphism of the boundaries of the removed
discs of N with the removed discs centered at (0, 0) from each sphere in
Y. Adjust this homeomorphism by adding 2ττ/n to the
longitude. Then using this new map attach another copy of X to
y. Proceed in this fashion until n copies of X art attached. Denote
the resulting manifold by Λί.

EXAMPLE 1, Let N be the torus and set p =3 and n = 2. M
becomes the compact orientable 2-manifold of genus 4.
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FIGURE 1

The Euler characteristic of M is related to that of N by the formula

= πχ(ΛΓ)-2p(ιi-l).

LEMMA 1. There exists a suήective branched covering f: M-^N
having 2p branch points each of order n - 1 and satisfying μ(f) =
n. The total branching order is V = 2p(n - 1).

Proof Define / by the formula

incl(jc) xeX

/(*) = hi(nθx, φx) x G Y with geodetic co-ordinates

(0JC, φx) in the ith sphere

where ht is a homeomorphism of the 2-sρhere with the disc at (0, 0)
removed onto the ith disc removed from N.

Construction 2. Suppose M is a compact 2-manifold with or
without boundary. Let X be a sub manifold formed by removing from
M the interior of a homeomorphic image of a disc

X = M - i n t D .

Now suppose T is a torus paramaterized by toriodal co-ordinates. Let
{D}} be identical disjoint homeomorphic images of the unit disc centered
at (2π//n,0) (j' = 1, , n). Define N to be the manifold formed by
attaching T - int Dn to X via a homeomorphism of the boundaries of
the removed discs. Now remove the interiors of the remaining discs
{D}}(j = 1, , n - 1) from N. Attach X to N - vtf int Dj via the
homeomophism used to form N adjusted by 2πln in the longitudinal
co-ordinate. Proceed as in Construction I, attaching copies of X to the
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remaining boundary images of the removed discs. Denote this man-
ifold by M.

EXAMPLE 2. Let M be the double torus and set n = 3. M is then
the 2-manifold of genus 7, and N the manifold of genus 3.

FIGURE 2

The Euler characteristic of M is given by the formula

LEMMA 2. There exists a covering projection f:M->N having
multiplicity n.

Proof. Define / by the formula

incl(x)

f(x) = (nθx, φx) x e T - V (int D,) with

x = (ft, φx) in toroidal

co-ordinates.

Construction 3. This construction is a combination of Construc-
tions 1 and 2. Again, let M be a compact 2-manifold with or without
boundary. Suppose {Dt}(i = 0., 1, ,p) is a set of disjoint
homeomorphic images of the disc in M. As in Construction 2 form N
by attaching a handle to the boundary of Do. Then proceeding as in 2,
attach n - 1 copies of M — int Do around the handle on N. Denote the
resulting manifold by M. Now form the disjoint union of p copies of
the 2-sphere each having 2 discs removed. As in construction 1 attach
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M- Vf=1(intA) to one side of these spheres and N - Vf=I(intA) to
the other. Denote this manifold by M.

EXAMPLE 3. Suppose M is the torus and set p = 3 and n = 3. M
is then the 2-manifold of genus 8, and N the manifold of genus 2.

FIGURE 3

The Euler characteristic of M is given by

χ(M) = nχ(N)-2p+χ(N)€

where

= ί0 if
11 if

p = 0
p

LEMMA 3. There exists a surjective branched covering f: M —>ΛΓ
such that μ (/) = n + e. f has 2p branch points each of order 1 giving a
total branching order V = 2p.

This lemma follows by combining the proofs of Lemmas 1 and 2.
A slight modification of Construction 1 gives the following techni-

cal lemma:

LEMMA 4. // D is the homeomorphic image of a disc in a 2-
manifold M' then there is a branched covering f: M' -intD—»M'

Proof, Construction 1 with p = 1, n=2 and N = M' gives a
branched covering /: M -^>Mr. Now let W denote the submanifold of
M obtained by attaching just one copy of M' - int D to S2- V =1 int D,
instead of two. Thus we may define g: W—>M'by/ = /°incl. From
the definition of / we know that g is a surjective branched
covering. However, W is just M' - int D with an attached collar and
hence W is homeomorphic to M1 - int D. Thus the composite of g
with this homeomorphism is the desired map.
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IV. Let M and N denote compact orientable 2-manifolds of
genus gi and g2 with mx and m2 discs removed respectively. In addition
we will require any branched immersion M -*N to satisfy boundary
restrictions (1). Consider the following cases: J(mi = 0), IIa(mx^0,
g,gg2), and Πb(mx-έ0,gx>g2).

THEOREM 3. There exists a branched immersion M-+N satisfying
boundary conditions (1) if and only if

(Case I), g, = g2 or g, S 2g2 - 1,
(Case Πa). m, g2(g 2-g,) + ra2,
(Case lib). mι>m2.

Proof. Case l(mx = 0). Note that boundary conditions (1) imply
m2 = 0. Hence if a branched immersion M -» N exists it must satisfy
Corollary 2 of Theorem 1 which states

V = 2(n(l-g2) + gx-l).

If n = 1 the total branching order must be zero and hence gx =
g2. If n g 2 we have

or

Thus the only possibilities are gi = g2 and g j^2g 2 - l . gi = g2 is
immediate and thus we need only show a branched immersion exists
whenever gx ^ 2g2 - 1.

Assume g 1 > 2 g 2 - l . Choose N of Construction 1 to be the
compact orientable surface of genus g2 and let n = 2. Under the above
assumptions, p =gi — 2g 2 +l, and upon rotation the desired map is
obtained. If gx = 2g 2 - 1 (g2 = 0 is impossible) we may use Construc-
tion 2 with M the compact orientable surface of genus g2— 1. In this
case V = 0.

Case Ha. (mx ^ 2(g2 - gx) -f m2). If gi < g2 we can map M onto
surfaces of genera gx + 1, ,g2 by successively stretching and identify-
ing with overlap, pairs of boundaries from M. We then have sufficient
boundaries remaining to map onto those of N. Additional holes in the
domain may be mapped into the boundary overlap region. If gx = g2

consider the identity map id: N-+N. Let Nk denote the manifold
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obtained by removing k discs from N. Note that M = Nmι-m2 and that
No = N. Lemma 4 of §11 provides a branched immersion
fk: Nk-^Nk-u By successively composing the maps {fk} with id, we
obtain a branched immersion M -» N.

Assume m,<2(g 2-g,) + m2. The above proceedure for gx<g2

describes a map Mk-*M where Mk has genus gx-k and has mx + 2k
discs removed. Note that Mgl is the 2-sρhere S2 with mi + 2gi discs
removed. If there exists a map from M-~*N then by composition
there must also exist a map from Mgί -> N. Theorem 2 states that there
exists a branched immersion from the 2-sphere with m discs removed
onto a compact orientable 2-manifold without boundary of genus g if
and only if m ^ 2g. We may attach m2 discs to the boundary of N and
m2 discs to the corresponding portion of the boundary in Mgi to obtain a
map from the 2-sphere with mx-m2 + 2gx discs removed onto a 2-
manifold without boundary. Thus from Theorem 2

m,-m2-f 2g,^2g2

or

By assumption the reverse inequality is true and hence no branched
immersion M-+N exists.

Case lib ( m ^ O , gi>g 2). For existence, boundary conditions
(1) require mx S m2. If mx = m 2 ^ 0 we may attach mx discs to both M
and N to obtain a covering projection with covering multiplicity
one. This implies that V = 0 and hence gx = g2. Therefore, if a
branched immersion exists when g i>g 2 it follows that mx>m1.

Initially let us assume mx= 1 and m2 = 0. As in the proof of
Lemma 4 we will use a slight modification of Construction 1. In the
range g, ^ 2g2 choose n = 2, p = g, + 1 - 2g2 and let one copy of N be
the target manifold of this theorem and the other copy the target
manifold with a disc removed. Note that the image of the above map is
a manifold of genus g2 covered twice by the map with the exception of
the interior of a contractible disc which is covered once. Additional
holes may be added simultaneously to the domain and the target by
using the portion covered once. Lemma 4 of §11 allows additional
holes in the domain and hence for g, ^ 2g2 the result is proved.

For gx < 2g2 we will again use a modification of Construction 1 and
initially assume mx = 1 and m2 = 0. Choose n = 2, p = 1 and let one
copy of N in Construction 1 have genus g2. Let the other copy have
genus gi^-g2 and have a single disc removed. Upon rotation the
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surface of genus g\~g2 will form a "collar" on the surface of genus
g2. Additional holes in the target or domain may be added in the same
fashion as in the case gγ g 2g2. An example will clearly illustrate the
process.

EXAMPLE 4. Assume M has genus 5 with 3 discs removed and N
has genus 3 with 1 disc removed.

FIGURE 4

The following corollary may be obtained as a consequence of the
constructions. This corollary states that in the case g2>0 and m{ = 0
the formula V = 2(μ (/)(1 - g2) + gi - 1) gives the best possible informa-
tion on the existence and the nature of branched immersions satisfying
our hypotheses.

COROLLARY. For g2>0 and m ι = 0, each choice of total branching
order V and covering multiplicitiy μ(f) which satisfies the formula
V = 2(μ(/)(l-g2) + g i - 1) can be realized by a branched immersion

Proof. We have two cases which both use Construction 3. _ For
V = 0, choose n = μ(f), /? =0, 6 = 0 and let the genus of M be
g2- 1. For W 0, choose n = μ(f) - 1, p = V/2, e = 1 and again let the
genus of M be g2 — 1. Construction 3 then gives the desired mapping.
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