BIRNBAUM-ORLICZ SPACES OF FUNCTIONS ON GROUPS

IRACEMA M. BUND

It is natural to ask how far the theory of closed invariant subspaces for $\mathfrak{L}_p(G)$ can be extended to Birnbaum-Orlicz spaces $\mathfrak{L}_A(G)$. If G is a compact group and A satisfies the Δ_{2^-} condition for $u \ge u_0 \ge 0$, the class of all closed invariant subspaces of $\mathfrak{L}_A(G)$ is exactly the family $\{(\mathfrak{L}_A)_P \colon P \subset \Sigma\}$ where Σ is the dual object of G. Distinct subsets of Σ engender distinct subspaces.

The generalization of the classical \mathfrak{L}_p -spaces foreshadowed by Z. W. Birnbaum in 1930 [1] was the subject of a long article by Z. W. Birnbaum and W. Orlicz [2]. In the next four decades their theory has been extended by many writers, among them G. Weiss [9] and W. Luxemburg who invented convenient new definitions. More recently M. Jodeit and A. Torchinsky [7] introduced a generalization of the concept of Young's function which we adopt here.

The essential introductory definitions and theorems are stated in §1; proofs may be found in [3], [8] and [9]. In §2 we show that if G is a locally compact group, the Birnbaum-Orlicz space $\mathfrak{L}_A(G)$ is a left Banach \mathfrak{L}_1 -module and a right Banach $(\mathfrak{L}_1 \cap \mathfrak{L}_1^*)$ -module. Finally in §3 we establish the result stated in the synopsis. Our notation is as in [4], [5] and [6].

1. Preliminaries. (1.1) A function A on $[0,\infty[into[0,\infty]will]$ be called a generalized Young's function if it is left continuous on $]0,\infty[$, A(u)/u is nondecreasing for u > 0, and A(0) = 0. It easily follows that

(i) $A(\alpha u) \leq \alpha A(u)$ for $0 \leq \alpha \leq 1$ and $0 \leq u < \infty$.

The zero function and the function $A(u) = \infty \xi_{j_0,\infty}(u)$ are trivial generalized Young's functions. Throughout the remaining of this work the letter A will denote a nontrivial generalized Young's function. We also fix $a = \sup\{u : A(u) = 0\}$.

A Young's function A_0 is associated to A by the equality $A_0(u) = \int_{a}^{u} A(t)/t \, dt$.

(1.2) Let (X, \mathcal{M}, μ) be an arbitrary measure space. The set $\mathfrak{L}_A(X, \mathcal{M}, \mu)$ of all complex-valued, \mathcal{M} -measurable functions defined μ -a.e. on X, such that $\int_X A(\alpha |f|) d\mu < \infty$ for some positive number α is

called a Birnbaum-Orlicz space. Where no confusion seems possible, we will write $\mathfrak{L}_A(X)$ for $\mathfrak{L}_A(X, \mathcal{M}, \mu)$.

The equality

(i)
$$p_A(f) = \inf\{k \in]0, \infty[: \int_X A(|f|/k) d\mu \le 1\}$$

defines a nonnegative finite-valued function on $\mathfrak{L}_A(X)$ which is a norm in case A is convex. This suggests that we define a norm on $\mathfrak{L}_A(X)$ by the equality $||f||_A = p_{A_0}(f)$. With this norm, $\mathfrak{L}_A(X)$ is a Banach space.

- If $f \in \mathfrak{L}_A(G)$ the following hold:
- (ii) $||f||_{A} \leq p_{A}(f) \leq 2||f||_{A};$
- (iii) $\int_X A(|f|/p_A(f)) d\mu \leq 1$, provided that $p_A(f) > 0$.

Denoting the Young's complement of A by \overline{A} , for f in $\mathfrak{L}_A(X)$ and g in $\mathfrak{L}_{\overline{A}}(X)$ we obtain

(iv)
$$\int_X |fg| d\mu \leq 2p_A(f)p_{\bar{A}}(g).$$

If $\mu(X)$ is finite, $\mathfrak{L}_A(X)$ is contained in $\mathfrak{L}_1(X)$ and for $f \in \mathfrak{L}_A(X)$ we have

(v) $||f||_1 \leq [4/(\bar{A})^{-1}(1/\mu(X))]||f||_A$, where $(\bar{A})^{-1}$ denotes the right inverse of \bar{A} .

(1.3) THEOREM. Let f be a complex-valued measurable function vanishing outside of a σ -finite set. Suppose that

$$N_A(f) = \sup\left\{\int_X |fg| d\mu : g \in \mathfrak{L}_{\bar{A}}(X), p_{\bar{A}}(g) \leq 1\right\} < \infty.$$

Then $f \in \mathfrak{L}_A(X)$ and we have $||f||_A \leq N_A(f)$.

(1.4) THEOREM. Let X be a locally compact Hausdorff space. Let μ be a measure obtained from a nonnegative linear functional on $\mathfrak{S}_{00}(X)$, and let \mathcal{M} be the σ -algebra of all μ -measurable subsets of X. Then each function f in $\mathfrak{L}_A(X)$ can be written as $f_1 + f_2$, where $f_1 = f \xi_F$ for some σ -compact set F, and $|f_2| \leq ap_A(f) \mu$ -a.e. on X. In particular, if a = 0, then f vanishes μ - a.e. outside of a σ -con pact set.

2. Birnbaum-Orlicz spaces of functions on groups. From here on we consider spaces $\mathfrak{L}_{A}(G, \mathcal{M}, \lambda)$, where G is a locally compact group, λ is a left Haar measure on G, and \mathcal{M} is the σ -algebra of λ -measurable subsets of G. We will often write $\int_{G} f d\lambda$ as

 $\int_{G} f(x) dx.$

Our first theorem follows easily from (20.2) in [4], and the fact that $\mathfrak{L}_1(G, \mathcal{M}, \max\{1, 1/\Delta\}\lambda)$ is complete.

(2.1) THEOREM. A complex-valued measurable function f belongs to $\mathfrak{L}_1(G) \cap \mathfrak{L}_1^*(G)$ if and only if $\max\{1, 1/\Delta\}f \in \mathfrak{L}_1(G)$. The equalities (i) $\|f\| = \|f\|_1 + \|(1/\Delta)f\|_1$,

and

(ii) $||| f ||| = || \max\{1, 1/\Delta\} f ||_1$

define equivalent norms on the linear space $\mathfrak{L}_1(G) \cap \mathfrak{L}_1^*(G)$. Precisely, we have

(iii) $||| f ||| \le ||f|| \le 2 ||| f |||$ for all $f \in \mathfrak{L}_1(G) \cap \mathfrak{L}_1^*(G)$. With either of these two norms, $\mathfrak{L}_1(G) \cap \mathfrak{L}_1^*(G)$ is a Banach space.

(2.2) THEOREM. Let f be a function in $\mathfrak{L}_A(G)$ and let s be an arbitrary element of G. Then the functions $\mathfrak{s} f$ and $\mathfrak{f} \mathfrak{s}$ belong to $\mathfrak{L}_A(G)$ and we have:

(i)
$$p_A({}_{s}f) = p_A(f);$$

(ii) $p_A(f_s) \leq \max\{1, \Delta(s^{-1})\}p_A(f)$.

Proof. It is clear that sf and f_s are λ -measurable. Relations (i) and (ii) trivially become equalities if $p_A(f) = 0$. Suppose that $p_A(f) > 0$.

Theorem (20.1.i) in [4], and (1.2.iii) yield the inequality $p_A(f) \leq p_A(f)$, from which (i) easily follows. Using (20.1.ii) in [4], and once again (1.2.iii) we write

(1)
$$\int_G A(|f_s|/p_A(f)) d\lambda \leq \Delta(s^{-1}),$$

which establishes (ii) in case $\Delta(s^{-1}) \leq 1$. For $\Delta(s^{-1}) > 1$, use (1) and (1.1.i).

The following result is part of (20.7) in the Russian edition of Hewitt and Ross "Abstract Harmonic Analysis", to be published.

(2.3) LEMMA. Let f be a λ -measurable function on G. The following functions are $\lambda \times \lambda$ -measurable on $G \times G$:

- $(x, y) \rightarrow f(xy^{-1}), \qquad (x, y) \rightarrow f(y^{-1}x), \qquad (x, y) \rightarrow f(x),$
- $(x, y) \rightarrow f(x^{-1}), \qquad (x, y) \rightarrow f(y), \qquad (x, y) \rightarrow f(y^{-1}).$

(2.4) THEOREM Let f be a function in $\mathfrak{L}_A(G)$ vanishing outside of a σ -compact set F and let g be a function in $\mathfrak{L}_1(G)$. The integral

(i)
$$g * f(x) = \int_G f(y^{-1}x)g(y)dy$$

exists and is finite for almost all x in G. The function g^*f is in $\mathfrak{L}_A(G)$ and we have (ii) $||g * f||_A \leq 4||f||_A ||g||_1$. If $g \in \mathfrak{L}_1(G) \cap \mathfrak{L}_1^*(G)$, the integral (iii) $f * g(x) = \int_G \Delta(y^{-1}) f(xy^{-1}) g(y) dy$

exists and is finite for λ -almost all x in G. The function f * g is in $\mathfrak{L}_A(G)$ and we have

(iv) $||f * g||_A \leq 4||f||_A ||g||,$ where $||\cdot||$ is as in (2.1.i).

Proof. We may suppose that g vanishes outside of a σ -compact set E. Thus the function $(x, y) \rightarrow f(y^{-1}x)g(y)$ vanishes outside of the σ -compact set $(EF) \times E$.

Let v be an arbitrary function in $\mathfrak{L}_{\bar{A}}(G)$. From (2.3) we know that the mapping $(x, y) \rightarrow v(x)f(y^{-1}x)g(y)$ is $\lambda \times \lambda$ -measurable. Plainly this function vanishes outside of $(EF) \times E$.

Recalling (1.2.iv) and (2.2.i), we obtain

(1)
$$\int_{G} \int_{G} |v(x)f(y^{-1}x)g(y)| dxdy$$
$$\leq 2p_{A}(f) p_{\bar{A}}(v) ||g||_{1}.$$

Thus we may apply (13.10) of [4] to conclude that

(2)
$$\int_{G} \int_{G} |v(x)f(y^{-1}x)g(y)| dy dx$$
$$= \int_{G} \int_{G} |v(x)f(y^{-1}x)g(y)| dx dy$$

From (13.10) and (13.8) in [4], we see that the integral $\int_{G} v(x)f(y^{-1}x)g(y)dy$ exists and is finite for λ -almost all x in G, and that

(3)
$$x \to v(x) \int_G f(y^{-1}\dot{x})g(y)dy.$$

is a function in $\mathfrak{L}_1(G)$; in particular it is a λ -measurable function.

We define g * f(x) by the equality (i), provided the integral exists, and put g * f(x) = 0, otherwise. It is easy to see that g * f(x) is finite λ - a.e. on G.

In (3) we may take v to be any function in $\mathfrak{C}_{00}(G)$. Recalling (11.42) in [4], we see that g * f is λ -measurable.

354

Consider v in $\mathfrak{L}_{\bar{A}}(G)$ with $p_{\bar{A}}(v) \leq 1$. Taking account of (1) and (2), we obtain

$$\oint_{G} |v(x)(g * f)(x)| dx \leq \int_{G} \int_{G} |v(x)f(y^{-1}x)g(y)| dy dx$$
$$= \int_{G} \int_{G} |v(x)f(y^{-1}x)g(y)| dx dy \leq 2p_{A}(f) ||g||_{1}.$$

This implies that

(4)
$$N_A(g * f) \leq 2p_A(f) ||g||_1$$

Now we observe that g * f(x) = 0 for x outside of the σ -compact set *EF*. Thus from (4) and (1.3), we conclude that $g * f \in \mathfrak{L}_A(G)$ and that $||g * f||_A \leq 2p_A(f) ||g||_1$. Applying (1.2.ii) to this last inequality, we obtain (ii).

Next suppose that $g \in \mathfrak{L}_1(G) \cap \mathfrak{L}_1^{\star}(G)$. Consider the function

(5)
$$(x, y) \rightarrow v(x) f(xy^{-1}) g(y) \Delta(y^{-1}),$$

where v is an arbitrary function in $\mathfrak{L}_{\overline{A}}(G)$. As in the previous case, we see that the function (5) is $\lambda \times \lambda$ -measurable and vanishes outside of the σ -compact set (FE) $\times E$. From (1.2.iv) and (2.2.ii) we obtain

$$\int_{G} |v(x)f(xy^{-1})| dx \leq 2\max\{1,\Delta(y)\}p_{A}(f)p_{\bar{A}}(v).$$

Thus we have

$$\int_{G} \int_{G} |v(x)f(xy^{-1})g(y)\Delta(y^{-1})| dxdy$$

$$\leq 2p_{A}(f)p_{\bar{A}}(v) \int_{G} \max\{1, \Delta(y^{-1})\}|g(y)| dy$$

$$= 2p_{A}(f)p_{\bar{A}}(v) \|\max\{1, 1/\Delta\}g\|_{1}$$

$$\leq 2p_{A}(f)p_{\bar{A}}(v) \|g\|,$$

the last inequality being a consequence of (2.1.ii) and (2.1.iii).

From this point on the proof is completely analogous to that presented above for g * f and we omit it.

Theorem (2.4) serves as a lemma for the following general result.

(2.5) THEOREM. Suppose that $f \in \mathfrak{L}_A(G)$ and $g \in \mathfrak{L}_1(G)$. Then the integral

(i)
$$g * f(x) = \int_G f(y^{-1}x)g(y)dy$$

exists and is finite for λ -almost all x in G. The function g * f is in $\mathfrak{L}_A(G)$ and we have

(ii) $||g * f||_A \leq k ||f||_A ||g||_1$,

where k = 4 if a = 0 or if G is σ -compact, and k = 6 otherwise. If $g \in \mathfrak{L}_1(G) \cap \mathfrak{L}_1^*(G)$, the integral

(iii)
$$f * g(x) = \int_G \Delta(y^{-1})g(y)dy$$

exists and is finite for λ -almost all x in G. The function f * g is in $\mathfrak{L}_A(G)$ and we have

(iv) $||f * g||_A \leq k ||f||_A ||g||,$ where k is as above and $||\cdot||$ is as in (2.1.i).

Proof. If G is σ - compact, the assertion follows immediately from (2.4). If a = 0, it follows from (1.4) and (2.4). Thus we may suppose that a > 0 and that G fails to be σ - compact.

Using (1.4), we may write $f = f_1 + f_2$, where $f_1 = f\xi_F$ for some σ -compact set F, and $|f_2| \leq ap_A(f)$. It follows that

(1)
$$\int_{G} |f_{2}(y^{-1}x)g(y)| dy \leq ap_{A}(f) ||g||_{1}$$

for all x in G, and hence that $g * f_2(x)$ exists and is finite for all x in G. A short computation, in which we use (1), gives us

$$g * f_2(x) ||g * f_2||_A \leq p_A(g * f_2) \leq a^{-1} ||g * f_2||_{\infty} \leq 2 ||f||_A ||g||_1.$$

Applying (2.4.i) to f_1 , we conclude that

$$\int_{G} f_{1}(y^{-1}x)g(y)dy + \int_{G} f_{2}(y^{-1}x)g(y)dy$$

exists and is finite for λ -almost all x in G. Hence the same is true of g * f(x).

Inequality (ii) follows from (2) and (2.4.ii) applied to f_1 . The remaining assertions are similarly established.

(2.6) THEOREM. The space $\mathfrak{L}_1(G) \cap \mathfrak{L}_1^*(G)$ is a Banach algebra.

Proof. For f and g in $\mathfrak{L}_1(G) \cap \mathfrak{L}_1^*(G)$ we obtain

(1)
$$((1/\Delta)g) * ((1/\Delta)f) = (1/\Delta)(g * f).$$

Thus (2.1) and (2.5.i) tell us that $g * f \in \mathfrak{L}_1(G) \cap \mathfrak{L}_1^*(G)$. We use (1) to prove that $\mathfrak{L}_1(G) \cap \mathfrak{L}_1^*(G)$, with the norm $\|\cdot\|$ defined in (2.1.i), is a normed algebra:

$$||g * f|| \le ||g||_1 ||f||_1 + ||(1/\Delta)g||_1 ||(1/\Delta)f||_1 \le ||g|| ||f||.$$

(2.7) THEOREM. The space $\mathfrak{L}_A(G)$ is a left Banach \mathfrak{L}_1 -module and a right Banach $(\mathfrak{L}_1 \cap \mathfrak{L}_1^*)$ -module.

Proof. For g in $\mathfrak{L}_1(G)$ and f in $\mathfrak{L}_A(G)$, (2.5.ii) tells us that there is a positive number k such that $||g * f||_A \leq k ||f||_A ||g||_1$.

Next we show that, for f as above, and g_1 and g_2 in $\mathfrak{L}_1(G)$, we have $g_1 * (g_2 * f) = (g_1 * g_2) * f$. Using (20.1) of [4], we obtain the equality

$$\int_G f(v^{-1}y^{-1}x)g_2(v)dv = \int_G f(v^{-1}x)g_2(y^{-1}v)dv,$$

which implies that

(1)
$$g_1 * (g_2 * f)(x) = \int_G \int_G f(v^{-1}x)g_2(y^{-1}v)g_1(y)dvdy.$$

By (2.5.i), $g_1 * (g_2 * f)$ is in $\mathfrak{L}_A(G)$, and hence the integral in (1) exists and is finite λ - almost everywhere in G. From (1.4) we know that g_1 and g_2 vanish outside of σ - compact sets E_1 and E_2 , respectively. Thus the function $(v, y) \rightarrow f(v^{-1}x)g_2(y^{-1}v)g_1(y)$ vanishes outside of the σ compact set $(E_1E_2) \times E_1$. By (2.3) this function is $\lambda \times \lambda$ - measurable.

We apply (13.10) in [4] to conclude that for λ - almost all x in G we have

$$g_1 * (g_2 * f)(x) = \int_G \int_G f(v^{-1}x)g_2(y^{-1}v)g_1(y)dydv$$
$$= \int_G f(v^{-1}x)(g_1 * g_2)(v)dv = (g_1 * g_2) * f(x).$$

It is now clear that $\mathfrak{L}_A(G)$ is a left Banach \mathfrak{L}_1 -module. The proof that $\mathfrak{L}_A(G)$ is a right Banach $(\mathfrak{L}_1 \cap L^*)$ -module is similar and we omit it.

3. Closed ideals in $\mathfrak{L}_{A}(G)$ for G a compact group. Throughout this section we suppose that G is compact and that $\lambda(G) = 1$.

(3.1) THEOREM. If f and g are in $\mathfrak{L}_A(G)$ the equality $g * f(x) = \int_G f(y^{-1}x)g(y)dy$ defines a function in $\mathfrak{L}_A(G)$. We have (i) $\|g * f\|_A \leq (16/(\bar{A})^{-1}(1))\|f\|_A \|g\|_A$.

Proof. Follows from (2.5.i), (1.2.v) and (2.5.ii).

(3.2) THEOREM. The Birnbaum-Orlicz space $\mathfrak{L}_{A}(G)$ is a Banach algebra under a norm which is a positive constant times $\|\cdot\|_{A}$.

Proof. Define $n_A(f) = (16/(\bar{A})^{-1}(1)) ||f||_A$ and use (3.1).

(3.3) THEOREM. Suppose that A satisfies the Δ_2 -condition for $u \ge u_0 \ge 0$. Then the space $\mathfrak{T}(G)$ of trigonometric polynomials on G is $\|\cdot\|_A$ -dense in $L_A(G)$.

Proof. Our hypothesis imply that $\mathfrak{C}(G)$ is $\|\cdot\|_A$ -dense in $\mathfrak{L}_A(G)$: see [3] or [8]. Theorem (27.39.ii) of [5] tells us that $\mathfrak{T}(G)$ is uniformly dense in $\mathfrak{C}(G)$, and it is easy to see that $\mathfrak{T}(G)$ is also $\|\cdot\|_A$ -dense in $\mathfrak{C}(G)$.

(3.4) THEOREM. Let A be as in (3.3). Suppose that S is a closed linear subspace of $\mathfrak{L}_A(G)$. Then S is a left [right] ideal in $\mathfrak{L}_A(g)$ if and only if S is closed under the formation of left [right] translates.

Proof. Since G is unimodular, it follows from (2.1) and (2.7) that $\mathfrak{L}_A(G)$ is a Banach \mathfrak{L}_1 - module with respect to convolution. From (3.2) we know that $\mathfrak{L}_A(G)$ is a subalgebra of $\mathfrak{L}_1(G)$ which is a Banach algebra with the norm n_A . Taking (3.3) into account, we see that $L_A(G)$ has the properties stated in (38.6.a) in [5]. Thus the theorem follows immediately from (38.22.b) of [5].

(3.5) THEOREM. Let A be as in (3.3). Then the class of all closed two-sided ideals in $\mathfrak{L}_A(G)$ is exactly the family $\{(\mathfrak{L}_A)_P \colon P \subset \Sigma\}$. Distinct subsets of Σ engender distinct ideals.

Proofs. This is a direct application of (38.7) in [5].

References

1. Z. W. Birnbaum, Uber Approximation im Mittel, Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Fachgruppe I, Nr. 15, (1930), 338-343.

^{2.} Z. W. Birnbaum und W. Orlicz, Uber die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math., 3 (1931), 1-67.

3. I. M. Bund, Fourier Analysis on Birnbaum-Orlicz spaces, Dissertation, University of Washington, 1973, unpublished.

4. E. Hewitt and K. A. Ross, *Abstract Harmonic Analysis*, Vol. I, Heidelberg, Springer-Verlag, Grundlehren der Math. Wiss., Band 115, 1963.

5. ——, Abstract Harmonic Analysis, Vol. II, Heidelberg, Springer-Verlag Grundlehren der Math. Wiss, Band 152, 1970.

6. E. Hewitt and K. R. Stromberg, *Real and Abstract Analysis*, Heidelberg, Springer-Verlag, 1965.

7. M. Jodeit Jr. and A. Torchinsky, Inequalities for Fourier transforms, Studia Math., T. XXXVII (1971), 245-276.

8. M. A. Krasnosel'skii and Ja. B. Rutickii, *Convex functions and Orlicz spaces*, Groningen (The Netherlands), transl. from Russian, 1961.

9. G. Weiss, A note on Orlicz spaces, Portugaliae Math., 15 (1956), 35-47.

Received February 22, 1974. This research was supported by the Fundacão de Amparo à Pesquisa do Estado de São Paulo. This work is part of a doctoral dissertation written at the University of Washington. The author is grateful for the invaluable guidance of her research adviser, Professor Edwin Hewitt.

UNIVERSITY OF SÃO PAULO.