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INTEGRATION OF COMPACT SET-VALUED FUNCTIONS

Zvi ARTSTEIN AND JOHN A. BURNS

A theory of integration of compact set-valued functions is
provided by applying the McShane ^-integral. This integral is a
Riemann-type integral and includes the Bochner, Lebesgue and
other types of integrals, and by using Riemann sums it avoids
deep measure theory. Thus, the ^-integral of set-valued
functions contains other types of integrals such as the Hukuhara
and Debreu integrals. Generalizations of known results,
including the convexity of the integral, are obtained, and the
techniques do not require measure theory. Further, if a
set-valued function is 9 -integrable, then its integral equals the
Aumann integral, where the latter is defined as the collection of
integrals of selections.

1. Introduction. Considerations of summation and integra-
tion of set-valued functions go back to Minkowski. Recently, the
calculus of set-valued functions was found to be very applicable in
several mathematical fields, especially in control theory, mathematical
economics, and statistics. Accordingly, many recent papers deal with
the basic theory of integration of set-valued functions, and several
approaches were established. One approach, due to Hukuhara [7], is to
consider formal Riemann integration into the space of convex-compact
sets. The Lebesgue integral is obtained by taking appropriate limits. A
second approach was employed by Debreu [6], who used an embedding
of the convex-compact sets into a Banach space and then considered
the Bochner integral into this space. Yet another approach was
developed by Aumann [3], which considered integration of selections of
the set-valued functions. The Aumann integral is well suited for
applications to various mathematical fields, and we shall give below the
precise definition of this integral. In the three approaches outlined
above, the main tools are measure theoretic techniques. Also, because
of the usefulness of the Aumann integral, the relationships between the
three types of integrals were investigated in [4], [5], and [6].

McShane [8] gave a definition of a Riemann type integral, which
includes many former integrals such as the Lebesgue and Bochner
integrals. Moreover, the definition has two very nice properties. First
of all, the definition of McShane's integral (called the ^-integral) does
not require measure theoretic concepts and is defined as a limit of
Riemann-type sums. The second advantage of the McShane 0*-integral
is that it is defined for functions that take values in semi-groups, and
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there is no need to assume linearity of the range space. The main
purpose of the present paper is to apply the McShane ^-integral to
set-valued functions. We shall deal with functions defined on the real
line with values in the set of compact subsets of Rq. With the Hausdorfϊ
metric on the compact subsets of Rq, the ^-integral will include the
Debreu and Hukuhara integrals. (The latter are defined only for
convex-compact valued functions.) Moreover, we obtain many proper-
ties of the integral without using measure theory. Thus, it is not
necessary to consider an exceedingly elaborate measure theory to
obtain a powerful integral, and even though measure theory is elegant, it
sometimes fails to supply the simplest and most revealing proofs.

The main results are stated below. Some notations and pre-
liminaries will be given in §2 and the proofs are given in §§3-6.

The first result, Theorem A, is similar to the first theorem in
Aumann [1], but its proof does not require any measure theory. The
space of compact subsets of Rq is denoted by ^(1?*).

THEOREM A. If F:[a,b]-^(€{Rq) is P-integrable, then its ®-
integral is a convex set.

The following result is similar to Aumann's third theorem.

THEOREM B. The function F: [a,b]-^c€(Rq) is Φ-integrable if
and only if the set-valued function coF, defined by coF(0 equals the

fb Cb

convex hull of F(t), is &-integrable. Moreover, {<3»)\ Fand (0>) coF
J a J a

are equal.

For vector-valued functions the ^-integral is equivalent to the
Lebesgue integral, and hence there are the obvious measure theoretic
characterizations of the έP-integral. The following result provides a
characterization of 0>- integrable set-valued functions and indicates the
connection between 0>- integrability and measurability of set-valued
functions. We say that a set-valued function F is measurable if for
each closed set C in Rq, the set {t: F(t)ΠC^0} is a Lebesgue
measurable subset of [α,b]. A set-valued function F is said to be
Integrably bounded if there exists a ^-integrable real-valued function g
such that x EF(t) implies ||jc||

THEOREM C. The function F:[a,b]-^c€{Rq) is Φ-integrable if
and only if it is integrably bounded and coF is measurable.

In [2] it was shown that for convex and compact valued functions
the same conditions characterize the Debreu integral.
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If F is a set-valued function, then a selection of F is a vector-
valued function /: [α, frl—>Rq such that / is Lebesgue measurable and
f(t)EF(t) almost everywhere in [a, b]. The Aumann integral of F,

Γb Γb

denoted by (A) F, is the set of all vectors of the form /, where / is a
J a J a

Lebesgue integrable selection of F. It is to be noted that the Aumann
integral is defined for every set-valued function, and it may be empty.
Since for scalar-valued functions the Lebesgue integral and the Φ-
integral are equal (see §2), it follows that the Aumann integral is also
given by

(A) ίb F = {{9) ί" f: f is Φ- integrable and f(t) E F(t)}.
Ja Ja

For the case where F is a convex and compact set-valued function, it
was shown in references [5] and [6] that the Hukuhara and the Debreu
integrals equal the Aumann integral. We have the following similar
result for the 0>-integral, and again the proof does not use measure
theoretic techniques.

THEOREM D. If F: [ayb]-*ζ€(Rq) is ^integrable, then
b

The Aumann integral exists for any compact set-valued function
even if it is not ^-integrable. The following theorem clarifies the
relationship between the two. It is also similar to a known result for a
real-valued function, namely that if g(t) is an integrably bounded
real-valued function, then there exists an integrable function /O(0 such
that /0(0 = g(0 almost everywhere, and if / is any integrable function
satisfying / ( ί )^g(O a.e., then f(t)^fo(t) a.e.

THEOREM E. For every integrably bounded F:[a,b]-*(β(Rq)
Cb

such that (A) F ^ 0 , there is a ^integrable function
J a

G: [a,b]-*(£(Rq) such that G(t)CF(t) a.e., and G is maximal with
respect to this property. Moreover the ̂ -integral of G is equal to the

Γb

Aumann integral of F. If (A)\ F = 0 , then there is no ̂ integrable G
J a

such that G(t)CF(t) for every t.

2. Notations and preliminaries. Let A and B be subsets
of Rq and λ E R. The sum of A and B is the set A + B given by
A+B={a + b:aEA and bEB}, and λA is the set defined by
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λA = {λa: a E A}. The Hausdorff distance between A and B is defined
by

/ι(A,JB) = inf{λ > 0 : A CB+λU and BCA+λU},

where U is the closed unit ball in Rq. The set of all non-empty compact
subsets of R*, with the Hausdorff distance Λ, is a complete metric space
which will be denoted by c€(Rq). The convex hull of a set A will be
denoted by coA, and p x will represent the scalar product of p GRq

and JC e Rq. For A E ^(Rq), the "norm" of A is defined by ||Λ || =
h (A, {0}). It is easy to verify that <#(JRq) is a topological semi-group and
has many interesting properties. However, we shall only be concerned
with the properties needed in the context of this paper.

The following definitions are found in greater generality in
McShane's memoir [8]. However, the "simple" ίP-integral is equivalent
to the Lebesgue integral for a vector-valued function defined on an
interval. (See Theorem 13.6 and the remarks in §14 of reference [8].]

Let a < b be real numbers. A finite collection Π =
{(ί1,A1),(ί2,A2), -,(tn,AH)} is said to be a partition of (α,b] if each
tf E [α, b], each A} is either empty or an interval of the form (ah bt] with
a ^a} < bj g b, and each point of (α, b] belongs to exactly one of the
sets Aj. The length of A] is given by ΔA, = b} - a] if A } φ 0 and Δ 0 = 0.
A gauge on [a, b ] is a real-valued function δ: [a, b ] -»(0, + °°). There is
no requirement that δ be continuous or bounded away from zero.
Given a gauge δ, a partition Π is said to be δ-fine if A} C
(t} - δ(ti), tj + δ(ί,)) for each / = 1,2, , n.

Digressing for a moment, it is not at all obvious that for a given
gauge δ there exists any δ-fine partitions of (α, b]. However, this may
be shown to be true by an indirect proof using only the completeness of
the real line. Also, it should be noted that only slight modifications are
needed to extend the definitions to include infinite intervals. This will
not be pursued in the present paper.

If / is a function defined on [α, b] with values in R (resp. c€(Rq))
and Π is a partition of (α, b], then the Riemann sum corresponding to f
and Π is given by

Such a function / is said to be Φ-integrable over [a,b] if there exists an
element / E JR (J E <£(!?«)) with the property that for each β > 0, there
exists a gauge δ such that if Π is any δ-fine partition of (a,b], then

The element / is said to be the ^-integral of / and we write (^) / = /.
Ja
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At this point, we note that it is possible to derive the basic
properties of the ^-integral directly from its definition, without mention
of measure theory. However, since a primary objective of this paper is
to compare the 9- integral and the Aumann integral of compact set-
valued functions, we shall make double use of the equivalence of the
^-integral and the Lebesgue integral for vector-valued functions. That
is, we shall use properties of the 9-integral of a I?4-valued function that
are well known for the equivalent Lebesgue integral. In particular, we
use the fact that a 9- integrable function must be Lebesgue measurable
and conversely that a Lebesgue integrable function is έ?-integrable.

3. Proofs of Theorem A and B. We shall need the following
lemma which is due to L. Shapley and J. H. Folkman. A proof can be
found in [1, Theorem 9. page 396]. It is to be noted that the proof is of
combinatorial type and uses only simple properties of finite dimensional
spaces.

LEMMA 3.1. (Shapley-Folkman). IfAu -,Ak is a finite family of
sets in Rq such that || A] || ^ L for a fixed L and for each j = 1,2, , K,
then

y=l

Proceeding to the proof of Theorem A we assume that
F: [a, &]-» ^(Rq) is 9-integrable. For a given e > 0 let δ be the gauge
associated with e. Define δ' by

δ'(ί) = min{δ(0, €(V^(1 +1| F(ί) ID)"1}.

Note that by this choice, if Π is a δ'-fine partition, then every element

F(ί,)ΔAy in the sum S(F; Π) = Σ?», Fit^ΔAj has norm less than e/Vq
and therefore Lemma 3.1 implies that

Since a δ'-fine parition is also δ-fine partition we know that h(S(F; Π),

(0>) F) ̂  e and the latter together with the displayed inequality imply
J a

that the Hausdorff distance between (9) F and the convex set
J a

ίb

coS(F Π) is less than 2e. Therefore (9)1 F is the limit in the
Ja
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Hausdorff metric of convex sets and hence is convex. This proves
Theorem A.

In order to verify Theorem B notice that since the co operation is
linear, and in particular coS(F; Π) = S(coF; Π), we have shown that

coF is SMntegrable and (Θ>) F = (SP) coF. Moreover the inequal-
J a J a

ity, h(S(F;Il), coS(F;Π))^β in our proof, did not depend on the
integrability of F. Therefore the reverse implication may be proven by
exactly the same method and this completes the proof of Theorem B.

4 The Proof of Theorem C. For a set A in Rq and a vector p in
R\ (Rq equals the dual of Rq) we define s(p,A) by s(p,A) =
sup{p x: x E A}. The function s(-,A) is known as the support
function of A. It is a convex and positively homogeneous function and
clearly real-valued if A is compact. If F is a set-valued function we
shall use for simplicity s(p,t) instead of s(p,F(t)). The following
properties are easy to verify.

(i)
(ϋ) If ||p || SI, ihcn\s(p9A)-s(p9B)\£h(A9B).

(iii) If A and B are convex, then

(iv) If Pi,p2, is a dense sequence inRq and A is compact, then

Now suppose that F is ^-integrable. Properties (i) and (ii) directly
imply that s(p,t) is 0>- integrable for each pGRq. Let 5(0 =

Σyl, \s(eht)\, where eue2, - ,e2q are the 2q vectors (0, ,0, ±

1,0,- ,0). The function 5(0 is 0*-integrable, (i.e. it is Lebesgue
integrable) and the definition of the support function implies that
| |F(0 | | = 5(0- Thus F is integrably bounded. If px,p2, is a dense
sequence in Rq, then property (iv) implies that coF(0 =
Π JL, {x: Pjf x g 5(p;, ί)}. The measurability of 5(p/? ί) implies that the

set-valued function Gt (t) = {x: p, x g 5(pi9 0} is measurable. By Roc-
kafellar [9; Corollary 1.3] it follows that coF (0 = Π JL, Gy(0 is measur-
able, and this completes the proof of the "only i f part of Theorem C.

Suppose that coF is measurable and F is integrably bounded. Then
for each p the support function s(p, t) is integrably bounded. Also,
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since s(p, A) = s(p,coA) for any set A, we have that s(p, t) is measur-
able. To see this, notice that for each a the set

{ί: s (p, ί) g a } = {ί: coF (t) Π {JC : p x g a } φ 0}

is a Lebesgue measurable subset of [a9b].
Therefore, it follows that s(p, t) is Lebesgue integrable, or equival-

ently, ^-integrable. Let p 1 ?p 2, ••• be a dense sequence in the unit
sphere of Rq, and suppose e > 0 is given. Let δ,, / = 1,2, , be the
gauge that established the (e/4)-approximation of the ^-integral of
s(ph t). Since F, and hence coF, is integrably bounded, there is a gauge
δ and a compact set B such that if Π is any δ-fine partition, then
S(coF; Π) C B. Moreover, it is easy to verify that the family of support
functions {s( ,K): K is a compact subset B} is equicontinuous. Let
y > 0 be such that if K is a compact subset of B and || p - q \\ < γ, then
I s (p, K) - s (q, K) I < e I A. Since the unit sphere is compact, there exists
a finite collection, say Pi,p2,

 m,PmΎh s u c h that if | | p | | = l , then
UP ~PK II < γ for some K,\^K^ ΛΓ(γ).

Let δe = min{δ, δ1? ,δN(γ)}, and suppose that Ux and Π2 are any
two δ€-fine partitions. Note that Si = S(coF; Π,) and S2 = S(coF; Π2)
are compact subsets of B, and hence for each p in the unit sphere we
have that

\s(p, S,) - s(p, S2)I ^ I s(p, S,) - s(pκ, S,)|

+ \s(pκ,Sί)-s(pκ,SJ\

+ \s(pκ,S2)-s(p,S2)\

But, s(p, S(coF; Π)) = S(s(p, ); Π), and hence it follows that \s(p, S,) -
s(p, S2) I < β. Property (iii) implies that /ι(S(coF; U{), S(coF; Π2)) < €,
and we can conclude that the net of Riemann sums of coF over δ€-fine
partitions is a Cauchy net. It is clear that this net converges to

coF and by Theorem B we have that F is ^-integrable.Γ
J a

REMARK 4.1. Notice that directly from the basic definitions it
follows that

' s(p, F(t))dt = s (p, {9) j

This equality is a useful tool in the study of integrals of set-valued
functions.
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5. The Proof of Theorem D. Recall that if F is a set-valued
function then the Aumann integral of F is given by

We first show that if F: [a,b]->cβ(Rq) is 0>-integrable then
Γb Γb

(A) \ F C ( ^ ) F. Let / be a 0>-integrable selection of F. For a given

6 > 0 let δ, and δ2 be gauge functions that establish the e-approximation
of the ^-integrals of / and F respectively. Let δ = min(δi, δ2). If Π is a
δ-fine partition then 5(/; Π) is an element of 5(F; Π). Since the sums
are 6-approximations of the respective ^-integrals and since e is
arbitrarily small it follows that

(&)Γf belongs to (&) ΓF.
J a J a

We now show that the Aumann integral of F contains the 9-
integral of F. Recall the e is an exposed point of the compact set A if e
is the only point in the intersection of A and a certain support
hyperplane of A. In terms of the support function the point e is an
exposed point of A if there exists a p G J ? " such that

p - e = s(p,A) and p x <s(p,A) if e/xEA.

The exposed points are dense in the extreme points of a set A. We

shall show that if e is an exposed point of (0*) F then e belongs to the
J a

Aumann integral of F. Since the latter is convex and compact (Aumann
[3, Theorems 1,2]) it follows that the closure of the convex hull of the

exposed points of (&)\ F, which is (9) I F itself, belongs to the
J a J a

Aumann integral of F.
fb

Let e be an exposed point of (&) I F. Let p be such that
J a

ίb

e ̂  x E (£P) F implies that p x < p e. For every set A in Rq denote
J a

Ap ={x £ΞA:p JC = s(p,A)}. The operator A -+AP is linear, i.e.,
Ap + Bp = (A + B)p. We shall prove that Fp(ί) is ^-integrable and that
(9) I"Fp =((9) Γ F)p ={e). Let K = (&) ΓF and for η > 0 define

J a J a J a

Kη ={x G K: p - x ^s(p,K)-η}. In particular we have that Ko = {e}.
Since e is the unique point in Ko it follows that the diameter of Kη tends
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to zero when η goes to zero. Let e > 0 be fixed. Choose η so small that
the diameter of K2η will be less than e. Let δ be a gauge function for F
associated with η, and suppose Π is a δ-fine partition. Since

(5.1)

it follows that S(F; Π) Π {x: p x g (p e) - η} / 0 . Therefore,

On the other hand, (5.1) implies that

S (F Π)p C {x: there exists y G K2r} such that || y - x || ̂  η },

and hence S(F; U)p is included within an € + η neighborhood of {e}.
This completes the proof of the equality

Since Fp has at most dimension n - l w e can use an induction argument
in order to show that the Aumann integral of Fp equals {e}. The first
step of the induction, i.e. for n = 0, is obvious.

REMARK. We showed that (3^) ί Fp = \A&) ί Fj if p determines

a hyperplane which supports at an exposed point. The proof does not
use measure theoretic arguments. For the Aumann integral of measura-
ble set-valued functions it is easy to verify the same equality for every

p. Thus Theorems C and D imply that (0>) J Fp = ((&) ί F) for every

p. We do not have a simple proof for this which will not use measure
theory.

6. Proof of Theorem E. Let F be an integrably bounded set-
valued function. Denoted by & the collection of equivalence classes of
Lebesgue measurable selections of F. If & is empty then Theorem D
implies that no integrable subfunction G of F exists. This proves the
second statement of the theorem. Suppose now that & is not empty.
For a vector p in Rq denote by p(p, 0 the supremum of the functions
p /(ί), i.e. the smallest measurable function such that if / E ^ then
p f(t) ^ ρ(p, t) for almsot every t. The function p(p, t) is defined up to
a set of measure zero. If H(p, t) = {x: p x ^ p(p, OK then H(pJ) is
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measurable. Let P i ,P2 # # * be a dense set in Rq. Define
G(t):[a9b]-*<€(R*) by

G(t)= Q (H(pht)ΠF(t)).

obviously, G(t)CF(t). Moreover, if p G Rq and / E 9, then / is also a
selection of F(t) Π H(p, t). Consequently, \ifE.& then / is a selection
of G, and hence the Aumann integral of F equals that of G. In order to
show that G is SMntegrable notice that s(p,G(t)) = ρ(p,t). This
follows from the fact that 5F is also the collection of selections of G.
Therefore,

coG(f)= Q H(pht)

and it is measurable as a denumerable intersection of measurable
functions (see Rockafeller [9, Corollary 1.3]). Remarks 4.1 and
Theorem D imply that G is maximal and this completes the proof.

7. ^-integration into the Semigroup of all Bounded Sets, As was
noted in Section 1 the ^-integral is defined for functions which might
take values in general topological semigroups. In particular, we may
consider the semigroup of all bounded sets with the Hausdorff semi-
metric. Obviously, such a set-valued function will be έMntegrable if
and only if the pointwise closure of it will be 0>-integrable and they will
have the same 0>-integral. In particular, the Riemann sums will
converge in the Hausdorff semi-metric. Although the Aumann integral
is defined for all set-valued functions, Theorem D cannot be generalized
to the case where compactness is not assumed. Indeed, one can easily
construct a set-valued function F(t) such that the closure of F(t) will be
constant, but there is no measurable selection of F.
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