AUTOMORPHISMS OF COMPACT KLEIN SURFACES WITH BOUNDARY

COY L. MAY

A Hurwitz ramification formula for morphisms of compact Klein surfaces is obtained and used to show that a compact Klein surface of genus $g \ge 2$ with nonempty boundary cannot have more than 12(g-1) automorphisms.

0. Introduction. Let X be a compact Klein surface [1], that is, X is a compact surface with boundary together with an equivalence class of dianalytic atlases on X. A homeomorphism $f: X \to X$ of X onto itself that is dianalytic will be called an *automorphism* of X.

A natural task is to seek an upper bound for the order of the automorphism group of X when X is of (algebraic) genus $g \ge 2$. The corresponding result for Riemann surfaces is well-known; Hurwitz [2] showed that a compact Riemann surface of genus $g \ge 2$ cannot have more than 84(g-1) (orientation preserving) automorphisms. Using this result it is easy to show that the upper bound in the Klein surface case cannot be larger than 84(g-1). In fact, Singerman [6] has exhibited a Klein surface without boundary of genus 7 that has 504 = 84(7-1) automorphisms.

In this paper then we concentrate on Klein surfaces with boundary. We obtain a Hurwitz ramification formula for morphisms of Klein surfaces and show that a compact Klein surface with boundary of genus $g \ge 2$ cannot have more than 12(g-1) automorphisms. We also show that the bound 12(g-1) is the best possible.

1. Let X be a Klein surface. The boundary of X will be denoted ∂X . Let $X^{\circ} = X \setminus \partial X$. X° will be called the *interior* of X.

Let $p \in X$. Then let $n_p = 1$ if $p \in \partial X$ is a boundary point of X, and let $n_p = 2$ if $p \in X^{\circ}$ is an interior point of X.

Now we recall the definition of a morphism of Klein surfaces [1, page 17]. Let $\mathscr{C}^+ = \{z \in \mathscr{C} | \operatorname{Im}(z) \ge 0\}$, and let $\phi: \mathscr{C} \to \mathscr{C}^+$ be the folding map, so that $\phi(\alpha + \beta i) = \alpha + |\beta| i$.

DEFINITION. Let X, Y be Klein surfaces and $g: X \to Y$ a continuous map. Then g is a morphism if $g(\partial X) \subset \partial Y$ and if for every point $p \in X$ there exist dianalytic charts (U, z) and (V, w) at p and g(p)respectively and an analytic function G on z(U) such that the following diagram commutes:

Let $g: X \to Y$ be a nonconstant morphism of Klein surfaces. Let $x \in X$. We can find dianalytic charts (U, z) and (V, w) at x and g(x) respectively, such that $z(x) = 0 = w(g(x)), g(U) \subset V$, and such that $g|_U$ has the form

$$g\mid_{\scriptscriptstyle U} = egin{cases} w^{-1}\circ\phi\circ(\pm z^{st}) & ext{if} \quad g(x)\in\partial\,Y \ w^{-1}\circ(\pm z^{st}) & ext{if} \quad g(x)\in Y^{\circ} \end{cases}$$

where e is an integer, $e \ge 1$ [1, pages 27-30]. The integer e is called the ramification index of g at x and will be denoted $e_g(x)$. We say that g is ramified at x if $e_g(x) > 1$; otherwise we say that g is unramified at x. Also, the relative degree of x over g(x), denoted $d_g(x)$, is defined by

$$d_g(x) = rac{n_x}{n_{g(x)}}$$
.

Note that $d_g(x) = 2$ if $x \in X^\circ$ and $g(x) \in \partial Y$; otherwise $d_g(x) = 1$.

DEFINITION. A nonconstant morphism $g: X \rightarrow Y$ between two Klein surfaces will be called a *ramified* r-sheeted covering of Y if for every point $y \in Y$,

$$\sum_{x \in g^{-1}(y)} e_g(x) \cdot d_g(x) = r$$
 .

In fact, every nonconstant morphism between two compact Klein sufaces is a ramified r-sheeted covering for some r [1, page 102].

Now let X, Y, and T be Klein surfaces, $g: X \to Y$ and $f: Y \to T$ be nonconstant morphisms. Then $f \circ g: X \to T$ is a nonconstant morphisms [1, page 19]. Also, if g is a ramified r-sheeted covering of Y and f is a ramified m-sheeted covering of T, then it is easily seen that $f \circ g$ is a ramified mr-sheeted covering of T.

Let X be a Klein surface. We will denote the automorphism group of X by Aut(X). If X is orientable, we will denote the subgroup of orientation preserving automorphisms by Aut⁺(X).

THEOREM 1. Let X be a compact Klein surface and let $G \subset \operatorname{Aut}(X)$ be a finite group of automorphisms of X. Then the quotient space $\Phi = X/G$ has a unique dianalytic structure such that the canonical map $\pi: X \to \Phi$ is a morphism of Klein surfaces. Moreover, if |G| = r, then π is a ramified r-sheeted covering of Φ .

Proof. Alling and Greenleaf have shown that Φ has a unique dianalytic structure such that π is a morphism [1, pages 52-56]. Actually, in the case of a finite group action (they consider the action of a discontinuous group), their proof shows that π is a ramified *r*-sheeted covering of Φ .

2. Let Y be a compact Klein surface, and let E be the field of all meromorphic functions on Y. E is an algebraic function field in one variable over R, and as such has an *algebraic genus* g. We will refer to this nonnegative integer g as the *genus* of the compact Klein surface Y. In case Y is a Riemann surface, g is equal to the topological genus of Y. For more details, see [1].

Henceforth the term Klein surface will be reserved for those Klein surfaces X that are not Riemann surfaces, that is, for those X that are nonorientable or have nonempty boundary or both.

Let X be a compact Klein surface. Let (X_c, π, σ) be the complex double of X, that is, X_c is a compact Riemann surface, $\pi: X_c \to X$ is an unramified 2-sheeted covering of X, and σ is the unique antianalytic involution of X_c such that $\pi = \pi \circ \sigma$. For more details, see [1, pages 37-40]. It is well-known that the genus of X is equal to the genus of its complex double X_c . The complex double also has the following important property [1, page 39]:

PROPOSITION 1. Let M be a compact Riemann surface, X a compact Klein surface, and $f: M \to X$ a nonconstant morphism. Then there exists a unique analytic map $\rho: M \to X_c$ such that $\pi \circ \rho = f$.

We use the complex double to obtain a Hurwitz ramification formula for morphisms of compact Klein surfaces.

THEOREM 2. Let X and Y be compact Klein surfaces (that are not Riemann surfaces), and let $f: X \rightarrow Y$ be a ramified r-sheeted covering of Y. Let g be the genus of X, γ the genus of Y. Then

$$2g-2 = r(2\gamma-2) + \sum_{x \in X} n_x(e_f(x)-1)$$
 .

Proof. Let (X_c, π, σ) and (Y_c, ν, τ) denote the complex doubles of X and Y respectively. By Proposition 1, there exists a unique analytic map $\tilde{f}: X_c \to Y_c$ such that the following diagram commutes:

 $f \circ \pi = \nu \circ \tilde{f}$ is a ramified 2*r*-sheeted covering of *Y*. But \tilde{f} is a nonconstant analytic mapping between compact Riemann surfaces. Thus \tilde{f} is a ramified *m*-sheeted covering of Y_c for some *m* [3, page 15]. Since ν is a 2-sheeted covering, clearly m = r. Then, since a Klein surface and its complex double have the same genus, the classical Hurwitz ramification formula [3, page 16] gives

$$(2g-2)=r(2\gamma-2)+\sum\limits_{p\in X_o}(e_{\widetilde{f}}(p)-1)$$
 .

Let $p \in X_c$ and note that $e_{\tilde{f}}(p) = e_f(\pi(p))$, since $e_{\tilde{f}}(p) = e_{\nu^\circ \tilde{f}}(p) = e_{f^\circ \pi}(p) = e_f(\pi(p))$.

Therefore

$$egin{aligned} (2g-2) &= r(2\gamma-2) + \sum\limits_{p \in X_c} (e_f(\pi(p))-1) \ &= r(2\gamma-2) + \sum\limits_{x \in X} n_x(e_f(x)-1) \ . \end{aligned}$$

Finally, we recall how the automorphism group of a compact Klein surface can be obtained from that of its complex double [1, page 79]:

PROPOSITION 2. Let X be a compact Klein surface with complex double (X_c, π, σ) . Then

$$\operatorname{Aut}(X) \cong \{g \in \operatorname{Aut}^+(X_c) | \sigma \circ g \circ \sigma = g\}$$
.

COROLLARY. If X is a compact Klein surface of genus $g \ge 2$, then

$$|\operatorname{Aut}(X)| \leq 84(g-1)$$
.

Thus Aut(X) is finite group.

Proof. The genus of X_c is g, so that the corollary follows immediately from the Proposition and Hurwitz's bound for $|\operatorname{Aut}^+(X_c)|$.

3. Applications. Let X be a compact Klein surface of genus g, and let $G \subset \operatorname{Aut}(X)$ be a finite group of automorphisms of X of order |G| = r. By Theorem 1, the quotient space $\Phi = X/G$ is a compact Klein surface and the canonical map $\pi: X \to \Phi$ is a ramified r-sheeted covering of Φ . Let γ denote the genus of Φ .

202

Let $p \in \Phi$. We will call the set $\pi^{-1}(p)$ the fiber above p. If $g \in \operatorname{Aut}(X)$ then $g(\partial X) = \partial X$ and $g(X^{\circ}) = X^{\circ}$. Therefore either $\pi^{-1}(p) \subset \partial X$ or $\pi^{-1}(p) \subset X^{\circ}$. Equivalently, if $x, y \in X$ such that $\pi(x) = \pi(y)$, then $d_{\pi}(x) = d_{\pi}(y)$.

Let $S_x = \{g \in G | g(x) = x\}$ be the stabilizer subgroup of G of a point $x \in X$. We can find a dianalytic chart (U, z) at x such that g(U) = U for all $g \in S_x$. Let $S'_x = \{g \in S_x | z \circ g \circ z^{-1} \text{ is analytic}\}$. Clearly S'_x is independent of the choice of (U, z). Either $S_x = S'_x$ or S'_x is a subgroup of index 2. $S_x = S'_x$ in case (i) $x \in X^\circ$ and $\pi(x) \in \Phi^\circ$ or (ii) $x \in \partial X$ and $e_{\pi}(x) = 1$; otherwise $S_x \neq S'_x$. The ramification index $e_{\pi}(x)$ is the order of S'_x in case $x \in X^\circ$ and $\pi(x) \in \partial \Phi$; otherwise $e_{\pi}(x)$ is the order of S_x . For more details, see [1, page 52-56]. If $\pi(x) = \pi(y)$, then clearly there are isomorphisms $S_x \cong S_y$ and $S'_x \cong S'_y$, so that $e_{\pi}(x) = e_{\pi}(y)$ in any case.

If π is ramified at a point $x \in X$ and $\pi(x) = p$, then we will say that π is ramified above p.

Now the quotient map $\pi: X \to \Phi$ is ramified above a finite number of points of Φ , say a_1, \dots, a_{ω} . Let k_i denote the ramification index $e_{\pi}(x)$ of any point x such that $\pi(x) = a_i$. We will write $n_i = n_{a_i}$.

Fix a_i . First suppose that if $\pi(x) = a_i$, then the relative degree $d_{\pi}(x) = 1$, i.e., $n_x = n_{a_i} = n_i$. Then there are r/k_i points in the fiber $\pi^{-1}(a_i)$, and

$$\sum_{x \in \pi^{-1}(a_i)} n_x(e_\pi(x)-1) = rac{r}{k_i} \cdot n_i \cdot (k_i-1)$$

$$= r n_i \left(1 - rac{1}{k_i}\right).$$

Now suppose that if $\pi(x) = a_i$, then $d_x(x) = 2$, so that $n_x = 2$, $n_i = 1$. In this case there are $r/2k_i$ points in the fiber $\pi^{-1}(a_i)$, and

$$\sum_{x \in \pi^{-1}(a_i)} n_x (e_{\pi}(x) - 1) = rac{r}{2k_i} \cdot 2 \cdot (k_i - 1)$$

= $r n_i \Big(1 - rac{1}{k_i} \Big)$.

Therefore the Hurwitz ramification formula (Theorem 2) can be rewritten in the following form:

(*)
$$\frac{2g-2}{r} = 2\gamma - 2 + \sum_{i=1}^{\omega} n_i \left(1 - \frac{1}{k_i}\right).$$

Henceforth we assume that X is of genus $g \ge 2$. Then, by the corollary to Proposition 2, Aut(X) is a finite group, so that in our calculations here we can let G = Aut(X). The calculations will be divided into several cases.

A. $\gamma \geq 1$.

First suppose that $\gamma \ge 2$. Then, immediately from (*), we have $(2g-2)/r \ge 2$. Thus $r \le g-1$.

Now suppose $\gamma = 1$. Then $\omega \neq 0$, and

$$rac{2g-2}{r} \geqq n_{\scriptscriptstyle 1} \Bigl(1 - rac{1}{k_{\scriptscriptstyle 1}} \Bigr) \geqq 1 - rac{1}{k_{\scriptscriptstyle 1}} \geqq rac{1}{2} \; .$$

Hence $r \leq 4(g-1)$.

B. $\gamma = 0$, three lemmas.

Recall that there are two compact Klein surfaces of genus zero, the disc D and the real projective plane B. Each has a unique dianalytic structure [1, pages 59-60].

Note that with $\gamma = 0$, (*) implies that $\omega \ge 2$.

In the following lemmas we will assume that the Klein surface X has nonempty boundary. Then the quotient space Φ has nonempty boundary, and since $\gamma = 0, \Phi$ is the disc D (with its unique dianalytic structure).

LEMMA 1. Suppose $\partial X \neq \emptyset$. If π is ramified at a boundary point $x \in \partial X$, then the ramification index $e_{\pi}(x) = 2$.

Proof. Let $e = e_{\pi}(x)$. $\pi(x) \in \partial D$, of course.

We can find dianalytic charts (U, z) and (V, w) at x and $\pi(x)$ respectively, such that $z(x) = 0 = w(\pi(x)), \pi(U) \subset V$, and such that

$$\pi|_{U} = w^{-1} \circ \phi \circ (\pm z^{e})$$

 $e \ge 2$, since π is ramified at x. Suppose e > 2. z(U) is an open subset of \mathscr{C}^+ about the origin. Thus for a small enough real number t > 0, both the points $\xi_1 = t$, $\xi_2 = t \exp(2\pi i/e)$ belong to z(U). Then $z^{-1}(\xi_1) \in \partial X$ and $z^{-1}(\xi_2) \in X^\circ$, and clearly $\pi(z^{-1}(\xi_1)) = \pi(z^{-1}(\xi_2))$. But for each point $p \in D$, either $\pi^{-1}(p) \subset \partial X$ or $\pi^{-1}(p) \subset X^\circ$. Thus we have a contradiction. Therefore e = 2.

LEMMA 2. Suppose $\partial X \neq \emptyset$. If π is ramified above a boundary point of D, that is, $a_k \in \partial D$ for some k, then at least two of the fibers $\pi^{-1}(a_i) \subset \partial X$. Further the number of ramified fibers contained in ∂X is even.

Proof. Suppose $a_k \in \partial D$ for some k.

If $\pi^{-1}(a_k) \subset \partial X$, then let $x \in \partial X$ such that $\pi(x) = a_k$. $e_{\pi}(x) = 2$ by Lemma 1, and it is easy to see that there is an interior point $q \in X^{\circ}$ such that $\pi(q) \in \partial D$ (find charts as in the proof of Lemma 1 and look at $\xi = t \exp(\pi i/2)$ for small enought t). Thus regardless of whether $\pi^{-1}(a_k) \subset \partial X$ or $\pi^{-1}(a_k) \subset X^\circ$, there is an interior point $q \in X^\circ$ such that $\pi(q) \in \partial D$.

Now $\pi(\partial X)$ is a compact and hence closed subset of ∂D . Also, $\partial D \setminus \pi(\partial X) \neq \emptyset$. Topologically ∂D is just a circle, of course. Therefore $\pi(\partial X)$ is a finite union of closed intervals.

It is easy to see that if p is an end-point of one of these closed intervals, then π is ramified above p and $\pi^{-1}(p) \subset \partial X$. The number of such end-points is clearly even and not less than two.

LEMMA 3. Suppose X is orientable and $\partial X \neq \emptyset$. If $G \subset \operatorname{Aut}^+(X)$, then π is ramified only above interior points of D.

Proof. Let $x \in X$, and consider the stablizer subgroup S_x and its subgroup S'_x . Since $G \subset \operatorname{Aut}^+(X)$, $S_x = S'_x$, directly from the definition of S'_x . Consequently, if $x \in X^\circ$ then $\pi(x) \in D^\circ$ (π may or may not be ramified at x), and if $x \in \partial X$ then $e_{\pi}(x) = 1$. Hence π is ramified only above interior points of D.

C. $\gamma = 0$, ramification above Φ° only

Suppose $a_1, \dots, a_w \in \Phi^\circ$ are interior points of Φ . Then $n_i = 2$ for each *i*, and by (*)

$$rac{2g-2}{r}=-2+2\sum\limits_{i=1}^{\omega}\left(1-rac{1}{k_i}
ight)$$

or

(1)
$$\frac{g-1}{r} = \omega - 1 - \frac{1}{k_1} - \cdots - \frac{1}{k_{\omega}}$$

Again we see that $\omega \geq 2$.

Suppose $\omega \ge 3$. Since $k_i \ge 2$ for each *i*, by (1)

$$\frac{g-1}{r} \ge \omega - 1 - \frac{\omega}{2} \ge \frac{1}{2} .$$

Hence $r \leq 2(g-1)$.

Suppose $\omega = 2$. $k_1 = k_2 = 2$ is not a possibility, since that would imply g = 1. Clearly then

$$rac{g-1}{r} \geq 2-1-rac{1}{2}-rac{1}{3}=rac{1}{6} \; .$$

Hence $r \leq 6(g-1)$.

These calculations have already yielded two interesting results:

THEOREM 3. Let X be a compact Klein surface without boundary

of genus $g \ge 2$. If G is a group of automorphisms of X such that X/G is the real projective plane B, then

$$|G| \leq 6(g-1)$$
.

Proof. $\partial B = \emptyset$, so the theorem follows from calculations of §C.

THEOREM 4. Let X be a compact orientable Klein surface with boundary of genus $g \ge 2$. Then

$$|\operatorname{Aut}^+(X)| \leq 6(g-1)$$

and

$$|\operatorname{Aut}(X)| \leq 12(g-1)$$
.

Proof. The first fact follows from the calculations of sections A and C and Lemma 3.

Either Aut $(X) = Aut^+(X)$ or $Aut^+(X)$ is a subgroup of Aut(X) of index two. Thus the first fact implies the second.

D. $\gamma = 0$, ramification above $\partial \Phi$, $\partial X \neq \emptyset$.

Now we assume that X is a Klein surface with boundary. Then the quotient space Φ is the disc D (with its unique dianalytic structure).

We also assume that there is ramification above ∂D . By Lemma 2, at least two of the fibers $\pi^{-1}(a_i) \subset \partial X$. We may suppose that this is the case for a_1 and a_2 . Then $k_1 = k_2 = 2$ by Lemma 1. $n_1 = n_2 = 1$, of course, so by (*)

(2)
$$\frac{2g-2}{r} = -1 + \sum_{i=3}^{\omega} n_i \left(1 - \frac{1}{k_i}\right).$$

Therefore $\omega \geq 3$ in this case.

First suppose $\omega \geq 5$. Then by (2)

$$rac{2g-2}{r} \geq -1 + (\omega-2) {\cdot} rac{1}{2} \geq rac{1}{2} \ .$$

Thus $r \leq 4(g-1)$.

Next suppose $\omega = 4$. There are three cases to consider, depending on whether there are 0, 1, or 2 of the points a_3 and a_4 on the boundary of D.

If $a_3, a_4 \in D^\circ$, then

$$rac{2g-2}{r} \geqq -1 + 2{f \cdot}rac{1}{2} + 2{f \cdot}rac{1}{2} = 1$$
 ,

and $r \leq 2(g-1)$.

If one of the two points, say a_3 , is a boundary point and $a_4 \in D^\circ$, then

$$rac{2g-2}{r} \geq -1 + rac{1}{2} + 2 {f \cdot} rac{1}{2} = rac{1}{2}$$
 ,

and $r \leq 4(g-1)$.

If $a_3, a_4 \in \partial D$, then note that $k_3 = k_4 = 2$ is not a possibility. Clearly then

$$rac{2g-2}{r} \geq -1 + rac{1}{2} + rac{2}{3} = rac{1}{6}$$
 ,

and $r \leq 12(g-1)$.

Finally, suppose $\omega = 3$. Then from (2) we see that $n_3 = 2$, i.e., $a_3 \in D^{\circ}$. Then

$$rac{2g-2}{r} = 1 - rac{2}{k_3}$$
 .

Hence $k_3 \ge 3$ and $r \le 6(g-1)$ in this case.

A review of the calculations of A, C, and D gives our main result:

THEOREM 5. Suppose X is a compact Klein surface with boundary of genus $g \ge 2$. Then

$$|\operatorname{Aut}(X)| \leq 12(g-1)$$
.

4. Sharpness of the bounds. Here we consider three compact Klein surfaces of low genus and determine their automorphism groups directly.

EXAMPLE 1. Let Y be a sphere with 3 holes, with the holes placed around the equator, centered around the vertices of an inscribed equilateral triangle. Y is an orientable Klein surface of genus 2. Y has a group (isomorphic to the dihedral group D_3) of orientationpreserving automorphisms of order 6. Reflection in the plane of the equator is an orientation-reversing automorphism. Y therefore has 12 = 12(2-1) automorphisms. The automorphism group is just $C_2 \times D_3$, where C_2 denotes the cyclic group of order 2.

EXAMPLE 2. Let X be a sphere with 6 holes, with the holes centered around the vertices of an inscribed regular octahedron. X is an orientable Klein surface of genus 5. X has a group of automorphisms isomorphic to the complete symmetry group (including

reflections) of the regular octahedron, which is $C_2 \times S_4$. Thus X has 48 = 12(5-1) automorphisms.

EXAMPLE 3. Let X be the Klein surface of Example 2, and let $\tau: X \to X$ denote the antipodal map. The quotient space $W = X/\tau$ is a real projective plane with 3 holes, a nonorientable Klein surface of genus 3. By considering the action of $C_2 \times S_4$ on X, it is easy to see that there is a group of automorphisms of W isomorphic to S_4 .

Thus the bounds obtained in Theorems 4 and 5 are best possible. The bound 12(g-1) is attained for both orientable and nonorientable surfaces. Theorem 3 was obtained incidentally in our proof of Theorem 4. We do not know if the bound of Theorem 3 is the best possible.

In a forthcoming article [5] we study those finite groups that act as a group of 12(g-1) automorphisms of a compact Klein surface of genus $g \ge 2$ with nonempty boundary. There we exhibit several infinite families of values of g for which there is a compact Klein surface with boundary of genus g that has 12(g-1) automorphisms.

5. Nevertheless it is possible to improve the bound 12(g-1) for a large number of topological types of Klein surfaces. Our main tool is a theorem of Maskit.

Let X be a compact orientable Klein surface with boundary. By the *analytic genus* p of X we mean the topological genus of the compact surface X^* obtained by attaching a disc to each boundary component of X. The relationship between p and the (algebraic) genus g of X is given by

$$g=2p+k-1,$$

where k is the number of boundary components of X.

THEOREM 6. Let X be a compact orientable Klein surface of genus g with k boundary components. If

$$rac{6(g-1)}{7} < k \leqq g-3$$
 ,

then

$$|\operatorname{Aut}(X)| \leq 84(g-k-1) < 12(g-1)$$
.

Proof. Let p be the analytic genus of X. Maskit has shown that there exists a compact Riemann surface X^* of genus p and an analytic embedding of X into X^* such that, under this embedding, every orientation-preserving automorphism of X is the restriction of

an orientation-preserving automorphism of X^* [4, page 718]. Thus $|\operatorname{Aut}^+(X)| \leq |\operatorname{Aut}^+(X^*)|$.

Now $2p = g - k + 1 \ge 4$, so that $p \ge 2$ and we may apply Hurwitz's bound for $|\operatorname{Aut}^+(X^*)|$. Hence $|\operatorname{Aut}(X)| \le 2 \cdot 84(p-1) = 84(g-k-1)$.

Note that 84(g-k-1) < 12(g-1) if and only if 6(g-1) < 7k. If g < 16, there are no integer values of k such that $6(g-1)/7 < k \le g-3$. The improved bound of Theorem 6 does apply to orientable Klein surfaces of genus 16 with 13 boundary components.

For large values of g and suitable values of k, Theorem 6 gives a much better bound than Theorem 5. In fact, if (g - k) is held fixed (that is, the analytic genus remains constant), Theorem 6 gives a uniform bound for the size of the automorphism group. On the other hand, there are orientable Klein surfaces with boundary of each genus $g \ge 2$ to which Theorem 6 does not apply.

Finally, we obtain a similar result for nonorientable Klein surfaces with boundary.

THEOREM 7. Let X be a compact nonorientable Klein surface of genus g with k boundary components. If

$$rac{6(g-1)}{7} < k \leq g-2$$
 ,

then

$$|\operatorname{Aut}(X)| \leq 84(g-k-1) < 12(g-1)$$
.

Proof. Let (X_0, ν, τ) denote the orienting double of X, that is, X_0 is a compact orientable Klein surface with 2k boundary components, $\nu: X_0 \to X$ is an unramified 2-sheeted covering of X, and τ is the unique antianalytic involution of X_0 such that $\nu \circ \tau = \nu$. Further the genus g' of X_0 is g' = 2g - 1. For more details, see [1, pages 42-43].

Suppose $f: X \to X$ is an automorphism of X. Then there exists a unique orientation-preserving automorphism \tilde{f} of X_0 such that

$$\begin{array}{ccc} X_{0} & \xrightarrow{\widetilde{f}} & X_{0} \\ \downarrow & & \downarrow \\ \downarrow & & \downarrow \\ X & \xrightarrow{f} & X \end{array}$$

commutes [1, page 42]. Hence $|\operatorname{Aut}(X)| \leq |\operatorname{Aut}(X_0)|$. Let p' be the analytic genus of X_0 .

$$p' = rac{(2g-1)-2k+1}{2} = g-k \ge 2$$
.

Then, using Maskit's theorem as in the proof of Theorem 6, we have that

$$|\operatorname{Aut} (X)| \leq |\operatorname{Aut}^+ (X_{\scriptscriptstyle 0})| \leq 84(p'-1) = 84(g-k-1)$$
 .

As before, 84(g - k - 1) < 12(g - 1) if and only if 6(g - 1) < 7k.

Note that the improved upper bound in Theorem 7 is the same as in Theorem 6. The bound is applicable to a larger range of values of g and k in the nonorientable case, however.

The lowest genus to which Theorem 7 applies is the case of nonorientable Klein surfaces of genus 9 with 7 boundary components.

I am indebted to Robert Speiser not only for the suggestion that an approach similar to that of Hurwitz [2] might yield results about Klein surfaces but also for several helpful discussions. I would also like to thank Newcomb Greenleaf and Richard Preston for their advice. Finally, thanks are due the referee for bringing [4] to our attention and for making several helpful suggestions.

References

1. N. Alling and N. Greenleaf, Foundations of the Theory of Klein Surfaces, Berlin: Springer-Verlag, 1971.

2. A. Hurwitz, Über algebraiche Gebilde mit eindentigen Transformationen in sich, Math. Ann., **41** (1879), 428-471.

3. I. Kra, Automorphic Forms and Kleinian Groups, Reading, Mass.: W. A. Benjamin, Inc., 1972.

4. B. Maskit. The conformal Group of a Plane Domain, Amer. J. Math., 90 (1968), 718-722.

5. C. May, Large Automorphism Groups of Compact Klein Surfaces with Boundary, (to appear).

6. D. Singerman, Automorphisms of Compact Non-orientable Riemann Surfaces, Glasgow Math J., **12** (1971), 50-59.

Received October 30, 1974 and in revised form February 6, 1975.

UNIVERSITY OF TEXAS