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AUTOMORPHISMS OF COMPACT KLEIN SURFACES
WITH BOUNDARY

COY L. MAY

A Hurwitz ramification formula for morphisms of compact
Klein surfaces is obtained and used to show that a compact
Klein surface of genus g ^ 2 with nonempty boundary cannot
have more than 12(g — 1) automorphisms.

0* Introduction* Let X be a compact Klein surface [1], that
is, X is a compact surface with boundary together with an equivalence
class of dianalytic atlases on X. A homeomorphism f:X~+X of
X onto itself that is dianalytic will be called an automorphism of X.

A natural task is to seek an upper bound for the order of the
automorphism group of X when X is of (algebraic) genus g ^ 2.
The corresponding result for Riemann surfaces is well-known; Hurwitz
[2] showed that a compact Riemann surface of genus g ^ 2 cannot
have more than 8i(g — 1) (orientation preserving) automorphisms.
Using this result it is easy to show that the upper bound in the
Klein surface case cannot be larger than 84(# — 1). In fact, Singerman
[6] has exhibited a Klein surface without boundary of genus 7 that
has 504 = 84(7 — 1) automorphisms.

In this paper then we concentrate on Klein surfaces with boundary.
We obtain a Hurwitz ramification formula for morphisms of Klein
surfaces and show that a compact Klein surface with boundary of
genus g ^ 2 cannot have more than 12(g — 1) automorphisms. We
also show that the bound 12(g — 1) is the best possible.

1. Let X be a Klein surface. The boundary of X will be denoted
dX. Let X° = X\dX. X° will be called the interior of X.

Let pe X. Then let np = 1 if p e dX is a boundary point of X,
and let np = 2 if p e X° is an interior point of X.

Now we recall the definition of a morphism of Klein surfaces
[1, page 17]. Let €+ = {ze 0\Jm(z) ^ 0}, and let φ:C->€+ be the
folding map, so that φ(a + βi) = a + \β\i.

DEFINITION. Let X, Y be Klein surfaces and g: X—>Ya continuous
map. Then g is a morphism if g(dX) cdY and if for every point
peX there exist dianalytic charts (Ϊ7, z) and (V9 w) at p and g(p)
respectively and an analytic function G on z( U) such that the follow-
ing diagram commutes:
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Let g: X —*Y be a nonconstant morphism of Klein surfaces. Let
xe X. We can find dianaly tic charts (U, z) and (V, w) at x and g(x)
respectively, such that z(x) = 0 — w(g(x)), g( U) c F, and such that
g\v has the form

__ ίw-1oφo(±z

e) if

~~ \w-1o(±ze) if

where e is an integer, β ;> 1 [1, pages 27-30]. The integer e is called
the ramification index of # at x and will be denoted eg(x). We say
that g is ramified at x if ^(x) > 1; otherwise we say that g is
unramified at x. Also, the relative degree of sc over g(x), denoted
dg(x), is defined by

dg(x) = Jbs- .

Note that dg(x) = 2 if xeX° and φ ) e 3 7; otherwise dβ(a?) = 1.

DEFINITION. A nonconstant morphism g: X-+Ybetween two Klein
surfaces will be called a ramified r-sheeted covering of Y if for
every point y e Y,

Σ eg(x) dg(x) = r .

In fact, every nonconstant morphism between two compact Klein
sufaces is a ramified r-sheeted covering for some r [1, page 102],

Now let X, Y, and T be Klein surfaces, g: X->Y and / : Γ — T
be nonconstant morphisms. Then / o # : X — • Γ i s a nonconstant mor-
phisms [1, page 19]. Also, if g is a ramified r-sheeted covering
of Y and / is a ramified m-sheeted covering of Γ, then it is easily
seen that fog is & ramified mr-sheeted covering of T.

Let X be a Klein surface. We will denote the automorphism
group of X by Aut (X). If X is orientable, we will denote the
subgroup of orientation preserving automorphisms by Aut+ (X).

THEOREM 1. Let X be a compact Klein surface and let GaAnt(X)
be a finite group of automorphisms of X. Then the quotient space
Φ = X/G has a unique dianaly tic structure such that the canonical
map π: X—*Φ is a morphism of Klein surfaces. Moreover, if\G\ = rf
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then π is a ramified rsheeted covering of Φ.

Proof. Ailing and Greenleaf have shown that Φ has a unique
dianalytic structure such that π is a morphism [1, pages 52-56].
Actually, in the case of a finite group action (they consider the action
of a discontinuous group), their proof shows that π is a ramified
r-sheeted covering of Φ.

2* Let Y be a compact Klein surface, and let E be the field of
all meromorphic functions on Y. E is an algebraic function field in
one variable over R, and as such has an algebraic genus g. We
will refer to this nonnegative integer g as the genus of the compact
Klein surface Y. In case Y is a Riemann surface, g is equal to the
topological genus of Y. For more details, see [1].

Henceforth the term Klein surface will be reserved for those
Klein surfaces X that are not Riemann surfaces, that is, for those
X that are nonorientable or have nonempty boundary or both.

Let X be a compact Klein surface. Let (Xc, π, σ) be the complex
double of X, that is, Xc is a compact Riemann surface, π:Xc —>X
is an unramified 2-sheeted covering of X, and σ is the unique anti-
analytic involution of Xe such that π = π o σ. For more details, see
[1, pages 37-40]. It is well-known that the genus of X is equal to
the genus of its complex double Xc. The complex double also has
the following important property [1, page 39]:

PROPOSITION 1. Let M be a compact Riemann surface, X a
compact Klein surface, and f:M—*X a nonconstant morphism.
Then there exists a unique analytic map p: M —+ Xc such that

We use the complex double to obtain a Hurwitz ramification
formula for morphisms of compact Klein surfaces.

THEOREM 2. Let X and Y be compact Klein surfaces (that are
not Riemann surfaces), and let f:X—>Y be a ramified r-sheeted
covering of Y. Let g be the genus of X, 7 the genus of Y. Then

2g-2 = r(2Ύ - 2) + Σ nx(ef(x) - 1) .
xeX

Proof. Let (Xc, π, σ) and (Yc, v, τ) denote the complex doubles
of X and Y respectively. By Proposition 1, there exists a unique
analytic map f:Xc—*YC such that the following diagram commutes:
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•I
/o7r = i ; o / i s a ramified 2r-sheeted covering of Y. But / is a

nonconstant analytic mapping between compact Riemann surfaces.
Thus / is a ramified m-sheeted covering of Yc for some m [3, page
15]. Since v is a 2-sheeted covering, clearly m = r. Then, since a
Klein surface and its complex double have the same genus, the clas-
sical Hurwitz ramification formula [3, page 16] gives

(2(7 _ 2) = r(27 - 2) + Σ (β?(j>) - 1)

Let pe Xc and note that 07(2?) = ef(π(p)), since β/(#0 = ev°j{p) =
eMp) = ef(π(p)).

Therefore

(2fir - 2) = r(27 - 2) + Σ W Φ ) ) - 1)

Finally, we recall how the automorphism group of a compact
Klein surface can be obtained from that of its complex double [1,
page 79]:

PROPOSITION 2. Let X be a compact Klein surface with complex
double (Xc, π, σ). Then

Aut(X)^{0GAut+(Xc)|σo0oσ= g} .

COROLLARY. If X is a compact Klein surface of genus g ;> 2,
then

Thus Aut (X) is finite group.

Proof. The genus of Xe is g, so that the corollary follows
immediately from the Proposition and Hurwitz's bound for | Aut+(XC)|.

3* Applications* Let X be a compact Klein surface of genus
g, and let GcAut(X) be a finite group of automorphisms of X of
order | G\ — r. By Theorem 1, the quotient space Φ — X/G is a compact
Klein surface and the canonical map π: X—+Φ is a ramified r-sheeted
covering of Φ. Let 7 denote the genus of Φ.
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Let peΦ. We will call the set π~ι{p) the fiber above p. If
geAut(X) then g(dX) = dX and g(X°) = Γ . Therefore either
r ! ( i ) ) c 3 X or r ^ c Γ , Equivalently, if x,yeX such that
π(χ) = 7r(i/), then dff(a?) = d^O/).

Let Sβ = {ge G\g(x) = x) be the stabilizer subgroup of G of a
point X G I We can find a dianalytic chart (U9 z) at α? such that
g(U) ^U for all ge Sx. Let Sx = {ge Sx\zogoz~1 is analytic}. Clearly
Sx is independent of the choice of (U, z). Either Sx = S'x or S£ is a
subgroup of index 2. Sk = S'x in case (i) xe X° and τr(a ) e Φ° or (ii)
xedXand eπ(x) — 1; otherwise Sx Φ Sx. The ramification index eπ(x)
is the order of Sx in case xeX° and 7r(x)e<3Φ; otherwise eπ(x) is the
order of Sx. For more details, see [1, page 52-56]. If π(x) = π(y),
then clearly there are isomorphisms Sx = S^ and Sx ~ S'y, so that
eπ(x) — eπ(y) in any case.

If π is ramified a t a point x e l and π(x) = p , then we will say

that 7Γ is ramified above p.
Now the quotient map π: X—> Φ is ramified above a finite number

of points of Φ, say αL, •••, αω. Let At denote the ramification index
eπ(x) of any point x such that π(cc) — at. We will write nt — na..

Fix α,. First suppose that if π(x) = α<, then the relative degree
dπ(χ) — 1, i.e., nx = %βί = w<β Then there are r/A< points in the fiber
π " 1 ^ ) , and

Σ r.

- τ)
Now suppose that if π(x) = α^ then ώπ(x) = 2, so that nx = 2,
1. In this case there are r/2fc< points in the fiber π'^α^), and

" τ) •τ)
Therefore the Hurwitz ramification formula (Theorem 2) can be

rewritten in the following form:

2g-2 = 2 7 _ _ 1 \ ̂

Henceforth we assume that X is of genus g ;> 2. Then, by the
corollary to Proposition 2, Aut(X) is a finite group, so that in our
calculations here we can let G = Aut (X). The calculations will be
divided into several cases.
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First suppose that 7 ^ 2 . Then, immediately from (*), we have
(2g - 2)/r ^ 2. Thus r ^ g - 1.

Now suppose 7 = 1. Then ω Φ 0, and

2<7 ~ 2 ^ ,

r

Hence r ^ 4(# — 1).

B. 7 = 0, three lemmas.
Recall that there are two compact Klein surfaces of genus zero,

the disc D and the real protective plane B. Each has a unique
dianalytic structure [1, pages 59-60].

Note that with 7 = 0, (*) implies that ω ̂  2.
In the following lemmas we will assume that the Klein surface

X has nonempty boundary. Then the quotient space Φ has nonempty
boundary, and since 7 = 0, Φ is the disc D (with its unique dianalytic
structure).

LEMMA 1. Suppose dX Φ 0 . If π is ramified at a boundary
point x € dX, then the ramification index eπ(x) = 2.

Proof. Let e— eπ(x). π(x)edD, of course.
We can find dianalytic charts (£7, z) and (F, w) at x and π{x)

respectively, such that z(x) = 0 = w(π(x))y π{U)a V, and such that

π\u= w~ιoφo(±z

e)

e ^ 2, since π is ramified at x. Suppose e > 2. z(ί7) is an open
subset of €+ about the origin. Thus for a small enough real number
t > 0, both the points ξ1 = t, ξ2 = t exp (2πi/e) belong to z(£7). Then
s-'fo) 6 dX and z"1^) 6 X°, and clearly T Γ ^ " 1 ^ ) ) = Φ " 1 ^ ) ) . But for
each point peD, either π" 1 ^) c 3 1 or π~1(p)dX°. Thus we have
a contradiction. Therefore β = 2.

LEMMA 2. Suppose dX Φ 0 . If π is ramified above a boundary
point of D, that is, ak e 3D for some k, then at least two of the
fibers π~ι{ai)(zdX. Further the number of ramified fibers contained
in dX is even.

Proof. Suppose ak e 3D for some k.
If π~\ak) c ax, then let xedX such that π(x) = ak. eπ(x) = 2 by

Lemma 1, and it is easy to see that there is an interior point qe X°
such that π(q) e 8D (find charts as in the proof of Lemma 1 and look
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at ξ = t exp (πi/2) for small enought t). Thus regardless of whether
π'\ak) c 3X or π~ι(ak) c 1 ° , there is an interior point qeX° such
that π(q) e 3D.

Now π(dX) is a compact and hence closed subset of 3D. Also,
3D\π(3X) Φ 0 . Topologically 3D is just a circle, of course. There-
fore π(3X) is a finite union of closed intervals.

It is easy to see that if p is an end-point of one of these closed
intervals, then π is ramified above p and π~\p) c 3X. The number
of such end-points is clearly even and not less than two.

LEMMA 3. Suppose X is orientable and 3X Φ 0 . // Gc. Aut+(X),
then π is ramified only above interior points of D.

Proof. Let xe X, and consider the stablizer subgroup Sx and
its subgroup Sx. Since G c Aut+(X), Sx = S'x, directly from the de-
finition of Sx. Consequently, if xe X° then π(x)e D° (π may or may
not be ramified at x), and if x e 3X then eκ(x) = l Hence π is ramified
only above interior points of D.

C. 7 = 0, ramification above Φ° only
Suppose au •• ,α w eΦ° are interior points of Φ. Then nt = 2

for each i, and by (*)

or

Again we see that ω ^ 2.
Suppose ω ^ 3. Since fc* ̂  2 for each i, by (1)

Hence r ^ 2(^ - 1).
Suppose ω = 2. kx = k2 = 2 is not a possibility, since that would

imply g = 1. Clearly then

Hence r ^ 6(g - 1).
These calculations have already yielded two interesting results:

THEOREM 3. Let X be a compact Klein surface without boundary
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of genus g ^ 2. If G is a group of automorphisms of X such that
X/G is the real protective plane B, then

| G | £ 6 ( 0 - 1 ) .

Proof. dB = 0 , so the the theorem follows from calculations
of SC.

THEOREM 4. Let X be a compact orientdble Klein surface with
boundary of genus g Ξ> 2. Then

^ 6(βr-l)

and

|Aut(X)| :S

Proof. The first fact follows from the calculations of sections
A and C and Lemma 3.

Either Aut (X) = Aut+ (X) or Aut+ (X) is a subgroup of Aut (X)
of index two. Thus the first fact implies the second.

D. 7 = 0, ramification above dΦ, dX Φ 0 .
Now we assume that X is a Klein surface with boundary. Then

the quotient space Φ is the disc D (with its unique dianalytic struc-
ture).

We also assume that there is ramification above 3D. By Lemma
2, at least two of the fibers π " 1 ^ ) c dX. We may suppose that
this is the case for aλ and α2. Then kx — k2 = 2 by Lemma 1. nx =
n2 = 1, of course, so by (*)

(2) 2 f l L z 2 . = -l + t n
r «=β

Therefore ω ̂  3 in this case.
First suppose ω ̂  5. Then by (2)

Thus r ^ 4(0 - 1).
Next suppose α> = 4. There are three cases to consider, depending

on whether there are 0, 1, or 2 of the points α3 and a4 on the boundary
of D.

If α3, α4e JD°, then

2 ^ ~ 2 > - 1 + 2 — + 2 — - 1 ,
~ 2 22
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and r ^ 2(g - 1).
If one of the two points, say α3, is a boundary point and a4e

D\ then

and r ^ 4(# — 1).
If α3, α4 e 3D, then note that k3 = k4 = 2 is not a possibility.

Clearly then

and r ^ 12(tf ~ 1).
Finally, suppose ω = 3. Then from (2) we see that n3 — 2, i.e.,

a3eD°. Then

2ff - 2 ^ χ _ 2_

r ks '

Hence kz ^ 3 and r ^ 6(βr — 1) in this case.
A review of the calculations of §§A, C, and D gives our main

result:

THEOREM 5. Suppose X is a compact Klein surface with boun-
dary of genus g ^ 2. Then

|Aut(X)| ^ 1 2 ( 0 - 1).

4* Sharpness of the bounds* Here we consider three compact
Klein surfaces of low genus and determine their automorphism groups
directly.

EXAMPLE 1. Let Y be a sphere with 3 holes, with the holes
placed around the equator, centered around the vertices of an inscribed
equilateral triangle. Y is an orientable Klein surface of genus 2.
Y has a group (isomorphic to the dihedral group Dd) of orientation-
preserving automorphisms of order 6. Reflection in the plane of the
equator is an orientation-reversing automorphism. Y therefore has
12 = 12(2 — 1) automorphisms. The automorphism group is just
C2 x Dz, where C2 denotes the cyclic group of order 2.

EXAMPLE 2. Let X be a sphere with 6 holes, with the holes
centered around the vertices of an inscribed regular octahedron. X
is an orientable Klein surface of genus 5. X has a group of auto-
morphisms isomorphic to the complete symmetry group (including
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reflections) of the regular octahedron, which is C2 x S4. Thus X has
48 = 12(5 — 1) automorphisms.

EXAMPLE 3. Let X be the Klein surface of Example 2, and let
τ:X-+X denote the antipodal map. The quotient space W= X/τ is
a real protective plane with 3 holes, a nonorientable Klein surface
of genus 3. By considering the action of C2 x S4 on X, it is easy
to see that there is a group of automorphisms of W isomorphic
to S4.

Thus the bounds obtained in Theorems 4 and 5 are best possible.
The bound 12(g — 1) is attained for both orientable and nonorientable
surfaces. Theorem 3 was obtained incidentally in our proof of Theorem
4. We do not know if the bound of Theorem 3 is the best possible.

In a forthcoming article [5] we study those finite groups that
act as a group of 12(g — 1) automorphisms of a compact Klein surface
of genus g ^ 2 with nonempty boundary. There we exhibit several
infinite families of values of g for which there is a compact Klein
surface with boundary of genus g that has 12(g — 1) automorphisms.

5* Nevertheless it is possible to improve the bound 12(g — 1)
for a large number of topological types of Klein surfaces. Our main
tool is a theorem of Maskit.

Let X be a compact orientable Klein surface with boundary.
By the analytic genus p of X we mean the topological genus of the
compact surface X* obtained by attaching a disc to each boundary
component of X. The relationship between p and the (algebraic)
genus g of X is given by

where k is the number of boundary components of X.

THEOREM 6. Let X be a compact orientable Klein surface of
genus g with k boundary components. If

then

I Aut (X)| ^ 84((? - k - 1)< 12(<7 - 1) .

Proof. Let p be the analytic genus of X. Maskit has shown
that there exists a compact Riemann surface X* of genus p and an
analytic embedding of X into X* such that, under this embedding,
every orientation-preserving automorphism of X is the restriction of
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an orientation-preserving automorphism of X* [4, page 718]. Thus
|Aut+(X)| ^ |Aut+(X*)|.

Now 2p — g — & + l^>4, so that p ^ 2 and we may apply
Hurwitz's bound for | Aut+(X*)|. Hence | Aut (X)| ^ 2 84(p - 1) =
84(0 - k - 1).

Note that 84(0 - k - 1) < 12(0 - 1) if and only if 6(0 - 1)< 7k.
If g < 16, there are no integer values of k such that 6(0 — l)/7 <

& ̂  0 — 3. The improved bound of Theorem 6 does apply to orien-
table Klein surfaces of genus 16 with 13 boundary components.

For large values of g and suitable values of k, Theorem 6 gives
a much better bound than Theorem 5. In fact, if (g — k) is held
fixed (that is, the analytic genus remains constant), Theorem 6 gives
a uniform bound for the size of the automorphism group. On the
other hand, there are orientable Klein surfaces with boundary of
each genus g ^ 2 to which Theorem 6 does not apply.

Finally, we obtain a similar result for nonorientable Klein surfaces
with boundary.

THEOREM 7. Let X be a compact nonorientable Klein surface
of genus g with k boundary components. If

then

I Aut (X)\ ^ 84(0 - k - 1)< 12(0 - 1) .

Proof. Let (Xo, v, τ) denote the orienting double of X, that is,
Xo is a compact orientable Klein surface with 2k boundary components,
v: Xo —• X is an unramified 2-sheeted covering of X, and τ is the
unique antianalytic involution of Xo such that v<>τ = v. Further the
genus gf of Xo is g' = 2g — 1. For more details, see [1, pages 42-43].

Suppose f:X—>X is an automorphism of X. Then there exists
a unique orientation-preserving automorphism / of Xo such that

•I

— — > .A.0

,

commutes [1, page 42]. Hence |Aut(X)| ^ |Aut+(X0)l
Let p' be the analytic genus of Xo.

p> = (gg - 1) - 2fc + 1 = g _ k ^
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Then, using Maskit's theorem as in the proof of Theorem 6, we have
that

IAut(X)\ ^ IAut+ (Xo)\ ^ 84(p' - 1) = 84(g - k - 1) .

As before, 84(# - k - 1) < 12(g - 1) if and only if 6(g - 1) < Ik.
Note that the improved upper bound in Theorem 7 is the same

as in Theorem 6. The bound is applicable to a larger range of values
of g and k in the nonorientable case, however.

The lowest genus to which Theorem 7 applies is the case of
nonorientable Klein surfaces of genus 9 with 7 boundary components.

I am indebted to Robert Speiser not only for the suggestion
that an approach similar to that of Hurwitz [2] might yield results
about Klein surfaces but also for several helpful discussions. I would
also like to thank Newcomb Greenleaf and Richard Preston for their
advice. Finally, thanks are due the referee for bringing [4] to our
attention and for making several helpful suggestions.
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