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AUTOMORPHISMS OF COMPACT KLEIN SURFACES
WITH BOUNDARY

Coy L. MAY

A Hurwitz ramification formula for morphisms of compact
Klein surfaces is obtained and used to show that a compact
Klein surface of genus g = 2 with nonempty boundary cannot
have more than 12(9 — 1) automorphisms.

0. Introduction. Let X be a compact Klein surface [1], that
is, X is a compact surface with boundary together with an equivalence
class of dianalytic atlases on X. A homeomorphism f:X—X of
X onto itself that is dianalytic will be called an automorphism of X.

A natural task is to seek an upper bound for the order of the
automorphism group of X when X is of (algebraic) genus g = 2.
The corresponding result for Riemann surfaces is well-known; Hurwitz
[2] showed that a compact Riemann surface of genus g = 2 cannot
have more than 84(¢g — 1) (orientation preserving) automorphisms.
Using this result it is easy to show that the upper bound in the
Klein surface case cannot be larger than 84(9g —1). In fact, Singerman
[6] has exhibited a Klein surface without boundary of genus 7 that
has 504 = 84(7 — 1) automorphisms.

In this paper then we concentrate on Klein surfaces with boundary.
We obtain a Hurwitz ramification formula for morphisms of Klein
surfaces and show that a compact Klein surface with boundary of
genus g = 2 cannot have more than 12(9 — 1) automorphisms. We
also show that the bound 12(¢ — 1) is the best possible.

1. Let X be a Klein surface. The boundary of X will be denoted
0X. Let X° = X\0X. X° will be called the interior of X.

Let pe X. Then let n, =1 if p€oX is a boundary point of X,
and let n, = 2 if pe X° is an interior point of X.

Now we recall the definition of a morphism of Klein surfaces
[1, page 17]. Let £+ = {ze€|Im(z) = 0}, and let ¢: L — €* be the
folding map, so that ¢(a + Bi) = a + |B].

DEFINITION. Let X, Y be Klein surfaces and g: X —Y a continuous
map. Then ¢ is a morphism if g(0X)c oY and if for every point
pe X there exist dianalytic charts (U, z) and (V, w) at p and g(p)
respectively and an analytic function G on z(U) such that the follow-
ing diagram commutes:

199



200 COY L. MAY
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v—2L v
A—G—»CL aL

Let g: X —Y be a nonconstant morphism of Klein surfaces. Let
xe X. We can find dianalytic charts (U, ) and (V, w) at x and g(x)
respectively, such that z(z) = 0 = w(g(x)), 9(U)c V, and such that
9|y has the form

wlogo(xz?) if g(x)edY
wlo(xz?) if g(x)e Y°

lo =

where ¢ is an integer, ¢ = 1 [1, pages 27-30]. The integer e is called
the ramification index of g at x and will be denoted ¢,(x). We say
that ¢ is ramified at x if e,(x) > 1; otherwise we say that g is
wunramified at x. Also, the relative degree of x over g(x), denoted
d,(x), is defined by

d(x) = L=,
ng(x)

Note that d,(x) = 2 if xe€ X° and g(x)€dY; otherwise d,(x) = 1.

DEFINITION. A nonconstant morphism g: X—Y between two Klein
surfaces will be called a ramified r-sheeted covering of Y if for
every point ye Y,

Z ey(x)'dg(x) =7r.
zeg—l(y)

In fact, every nonconstant morphism between two compact Klein
sufaces is a ramified r-sheeted covering for some r [1, page 102].

Now let X, Y, and T be Klein surfaces, g: X—Y and f:Y— T
be nonconstant morphisms. Then fog: X— T is a nonconstant mor-
phisms [1, page 19]. Also, if ¢g is a ramified 7-sheeted covering
of Y and f is a ramified m-sheeted covering of T, then it is easily
seen that fog is a ramified mr-sheeted covering of T.

Let X Dbe a Klein surface. We will denote the automorphism
group of X by Aut(X). If X is orientable, we will denote the
subgroup of orientation preserving automorphisms by Aut* (X).

THEOREM 1. Let X be a compact Klein surface and let GC Aut(X)
be a finite group of automorphisms of X. Then the quotient space
® = X/G has a unique dianalytic structure such thet the canonical
map 7T: X—@ is a morphism of Klein surfaces. Moreover, if |G|=r,
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then @ is a ramified r-sheeted covering of @.

Proof. Alling and Greenleaf have shown that @ has a unique
dianalytic structure such that 7 is a morphism [1, pages 52-56].
Actually, in the case of a finite group action (they consider the action
of a discontinuous group), their proof shows that = is a ramified
r-sheeted covering of @.

2. Let Y be a compact Klein surface, and let E be the field of
all meromorphic functions on Y. FE is an algebraic function field in
one variable over R, and as such has an algebraic genus g. We
will refer to this nonnegative integer g as the genus of the compact
Klein surface Y. In case Y is a Riemann surface, ¢ is equal to the
topological genus of Y. For more details, see [1].

Henceforth the term Klein surface will be reserved for those
Klein surfaces X that are not Riemann surfaces, that is, for those
X that are nonorientable or have nonempty boundary or both.

Let X be a compact Klein surface. Let (X,, 7, 6) be the complex
double of X, that is, X, is a compact Riemann surface, n: X,— X
is an unramified 2-sheeted covering of X, and ¢ is the unique anti-
analytic involution of X, such that # = woo. For more details, see
[1, pages 37-40]. It is well-known that the genus of X is equal to
the genus of its complex double X,. The complex double also has
the following important property [1, page 39]:

ProposITION 1. Let M be a compact Riemann surface, X a
compact Klein surface, and f: M — X a nonconstant morphism.
Then there exists a wunique analytic map ©0: M — X, such that

Top = f.

We use the complex double to obtain a Hurwitz ramification
formula for morphisms of compact Klein surfaces.

THEOREM 2. Let X and Y be compact Klein surfaces (that are
not Riemann surfaces), and let f: X—Y be a ramified r-sheeted
covering of Y. Let g be the genus of X, the genus of Y. Then

29 — 2= 127 — 2) + > nes(x) — 1).
zeX
Proof. Let (X,, w, 0) and (Y,, v, z) denote the complex doubles

of X and Y respectively. By Proposition 1, there exists a unique
analytic map f: X,—Y, such that the following diagram commutes:
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xLy.
|k

X —Y

fom =vof is a ramified 2r-sheeted covering of Y. But f is a
nonconstant analytic mapping between compact Riemann surfaces.
Thus f is a ramified m-sheeted covering of Y, for some m [3, page
15]. Since v is a 2-sheeted covering, clearly m = r. Then, since a
Klein surface and its complex double have the same genus, the clas-
sical Hurwitz ramification formula [3, page 16] gives

(29 — 2) = r(27 — 2) + 2, (ex(p) — 1) .

Let pe X, and note that e;(p) = e,(n(p)), since e;(p) = e.,-5(p) =
es-(D) = es(m(p)).
Therefore
(29 —2)=r27 -2 +p§ (es(m(p)) — 1)

=r2Y — 2) —}—x%yn,(ef(x) -1).

Finally, we recall how the automorphism group of a compact
Klein surface can be obtained from that of its complex double [1,
page 79]:

PROPOSITION 2. Let X be a compact Klein surface with complex
double (X,, @, 0). Then
Aut (X) = {ge Aut* (X,)|ogogo0o = g}.
COROLLARY. If X is a compact Klein surface of genus g = 2,
then
[Aut (X)| = 84(9 — 1).
Thus Aut (X) is finite group.

Proof. The genus of X, is g, so that the corollary follows
immediately from the Proposition and Hurwitz’s bound for |Aut*(X,)|.

3. Applications. Let X be a compact Klein surface of genus
g, and let G Aut(X) be a finite group of automorphisms of X of
order |G| = r. By Theorem 1, the quotient space @ = X/G is a compact
Klein surface and the canonical map n: X — @ is a ramified r-sheeted
covering of @. Let 7 denote the genus of 9.
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Let pe®@. We will call the set n'(p) the fiber above p. If
ge Aut (X) then ¢(0X)=0X and ¢g(X°)= X°. Therefore either
m i (p)coX or w(p)c X°. Equivalently, if »,ye€X such that
w(x) = w(y), then d.(x) = d.(y).

Let S, = {g€ G|g(x) = 2} be the stabilizer subgroup of G of a
point x€ X. We can find a dianalytic chart (U, z) at z such that
9(U) =U for all ge S,. Let S, = {ge S,|z09027" is analytic}. Clearly
S, is independent of the choice of (U, z). Either S,= S, or S, is a
subgroup of index 2. S, = S, in case (i) x€ X° and =n(x)e @° or (ii)
zeo0X and e.x) = 1; otherwise S, # S,. The ramification index e.(x)
is the order of S; in case xe X° and 7w(x) € 09@; otherwise e.(z) is the
order of S,. For more details, see [1, page 52-56]. If =(x) = n(y),
then clearly there are isomorphisms S, = S, and S, = S,, so that
ex) = e.(y) in any case.

If 7 is ramified at a point x€ X and 7w(x) = p, then we will say
that = is ramified above p.

Now the quotient map 7: X — @ is ramified above a finite number
of points of @, say a,, ---, a,. Let k, denote the ramification index
e.(x) of any point & such that z(x) = a,. We will write n, = n,,.

Fix a;. First suppose that if #(x) = a,, then the relative degree
dAx) = 1, i.e., n, = m,, = n,. Then there are r/k; points in the fiber
77 (a,), and

S n(e(x) — 1) = %-m-(ki —1)

zer—1(as) 5

= 4~n,~(1 - %) .

K3

Now suppose that if n(x) = a,, then d.(x) = 2, so that », = 2,
n; = 1. In this case there are r/2k, points in the fiber 77'(a,), and

S m(ex) — 1) = g,;-z-(ki —1)

zeii(a;)
= rn,.(l - —l]C‘—) .

1

Therefore the Hurwitz ramification formula (Theorem 2) can be
rewritten in the following form:

(*) 39-—‘—-2-=27—2+in,.(1—-1—).
r 1=1 k,

Henceforth we assume that X is of genus g = 2. Then, by the
corollary to Proposition 2, Aut(X) is a finite group, so that in our
calculations here we can let G = Aut(X). The calculations will be
divided into several cases.
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A. v=1.

First suppose that ¥ = 2. Then, immediately from (*), we have
2g—2)r=2. Thus r<g—1.

Now suppose ¥ = 1. Then w # 0, and

(1~ Lza- L

r k,

v

1
=
Hence » < 4(g — 1).

B. 7 =0, three lemmas.

Recall that there are two compact Klein surfaces of genus zero,
the disc D and the real projective plane B. Each has a unique
dianalytic structure [1, pages 59-60].

Note that with v = 0, (*) implies that w = 2.

In the following lemmas we will assume that the Klein surface
X has nonempty boundary. Then the quotient space @ has nonempty
boundary, and since ¥ = 0, @ is the disc D (with its unique dianalytic
structure).

LEMMA 1. Suppose 0X #= @. If w is ramified at a boundary
point x€o0X, then the ramification index e.(x) = 2.

Proof. Let e = ex). m(x)edD, of course.
We can find dianalytic charts (U, z) and (V, w) at « and z(x)
respectively, such that z(x) = 0 = w(n(x)), z(U) < V, and such that

Ty = whogo(£2°)

e = 2, since w is ramified at x. Suppose ¢ > 2. 2(U) is an open
subset of €+ about the origin. Thus for a small enough real number
t > 0, both the points & = ¢, & = t exp (27n¢/e) belong to 2(U). Then
27Y(&)eoX and z7'(&) € X°, and clearly n(z7'(&)) = n(27'(¢,)). But for
each point p€ D, either 77 (p) coX or n ' (p)c X°. Thus we have
a contradiction. Therefore ¢ = 2.

LEMMA 2. Suppose 0X + @. If m is ramified above a boundary
point of D, that is, a,€ 0D for some k, then at least two of the
fibers m™Y(a,)C0X. Further the number of ramified fibers contained
wn 0X is even.

Proof. Suppose a,€ 0D for some k.

If #7%(a,) ©0X, then let x€dX such that 7(x) = a;. e:(x) = 2 by
Lemma 1, and it is easy to see that there is an interior point ¢ € X°
such that n(¢)€ 0D (find charts as in the proof of Lemma 1 and look
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at & = t exp (77/2) for small enought ¢). Thus regardless of whether
7a,) C0X or w7 (a,) C X°, there is an interior point ge X° such
that w(g)edD.

Now #(0X) is a compact and hence closed subset of ¢D. Also,
0D\n(0X) + @. Topologically 0D is just a circle, of course. There-
fore 7(0X) is a finite union of closed intervals.

It is easy to see that if p is an end-point of one of these closed
intervals, then 7 is ramified above p and 7 *(p) ©6X. The number
of such end-points is clearly even and not less than two.

LEMMA 3. Suppose X is orientable and 6X + @. If GCAut?(X),
then @ is ramified only above interior points of D.

Proof. Let xe X, and consider the stablizer subgroup S, and
its subgroup S,. Since G Aut*(X), S, = S;, directly from the de-
finition of S;. Consequently, if x€ X° then 7(x)e D° (x may or may
not be ramified at x), and if x € 0.X then ¢.(x) = 1. Hence r is ramified
only above interior points of D.

C. 7 = 0, ramification above @° only

Suppose ay, +--, a, € ®° are interior points of @. Then %, =2
for each 4, and by (*)

29 -2 _ e “l

HoE 2+2§:<1 k)
or

—1 1 1
1 g = —_ 1] — = — i = —_,
(1) y ¢ % T

Again we see that w = 2.
Suppose @ = 3. Since k, = 2 for each ¢, by (1)

g—1
r

Zw—l—fo—g-l—.
- 2 2

Hence » < 2(g — 1).
Suppose @ = 2. k, = k, = 2 is not a possibility, since that would
imply g = 1. Clearly then

9-1-9 ;1 _1_1
3 6

r 2

Hence r < 6(g — 1).
These calculations have already yielded two interesting results:

THEOREM 3. Let X be a compact Klein surface without boundary
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of genus g = 2. If G is a group of automorphisms of X such that
X/G is the real projective plane B, then

|G| <6(g —1).

Proof. 0B= @, so the the theorem follows from calculations
of §C.

THEOREM 4. Let X be a compact orientable Klein surface with
boundary of genus g = 2. Then

[Aut* (X)| = 6(9 — 1)
and

[Aut (X)| = 12(9 — 1) .

Proof. The first fact follows from the calculations of sections
A and C and Lemma 3.

Either Aut (X) = Aut* (X) or Aut* (X) is a subgroup of Aut (X)
of index two. Thus the first fact implies the second.

D. v =0, ramification above 09, 0X + .

Now we assume that X is a Klein surface with boundary. Then
the quotient space @ is the disc D (with its unique dianalytic struc-
ture).

We also assume that there is ramification above dD. By Lemma
2, at least two of the fibers 77%(a,) C0X. We may suppose that
this is the case for a, and a,. Then k, =k, = 2 by Lemma 1. =, =
n, = 1, of course, so by (*)

(2) _Zﬁ—_2=_1+ini<1_l>,
r i=s k;
Therefore w = 3 in this case.
First suppose @w = 5. Then by (2)
29 —2 1 1 1
= 2> -14(w—-2)===.
r - ( ) 2 2
Thus r < 4(g — 1).
Next suppose @ = 4. There are three cases to consider, depending
on whether there are 0, 1, or 2 of the points a; and a, on the boundary

of D.
If a,;, a,€ D°, then

20-25 149211211,
r 2
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and r < 2(g — 1).
If one of the two points, say a; is a boundary point and a,€
D°, then

=>—-14+=4+2.=—= =,
r - 2 + 2 2
and r < 4(g9g — 1).
If a, a,€0D, then note that k, =k, = 2 is not a possibility.
Clearly then
29 — 2
r

1 2 1
= 14 = - =
- 2+3 6

and r < 12(g — 1).
Finally, suppose @ = 8. Then from (2) we see that u, = 2, i.e.,
ase D°. Then

29—-2_4_2
r ks
Hence %k, = 3 and r < 6(¢g — 1) in this case.
A review of the calculations of §8A, C, and D gives our main
result:

THEOREM 5. Suppose X is a compact Klein surface with boun-
dary of genus g = 2. Then

[Aut (X)| = 12(9 — 1) .

4. Sharpness of the bounds. Here we consider three compact
Klein surfaces of low genus and determine their automorphism groups
directly.

ExAMPLE 1. Let Y be a sphere with 3 holes, with the holes
placed around the equator, centered around the vertices of an inscribed
equilateral triangle. Y is an orientable Klein surface of genus 2.
Y has a group (isomorphic to the dihedral group D,) of orientation-
preserving automorphisms of order 6. Reflection in the plane of the
equator is an orientation-reversing automorphism. Y therefore has
12 = 12(2 — 1) automorphisms. The automorphism group is just
C, x D,, where C, denotes the cyclic group of order 2.

ExAMPLE 2. Let X be a sphere with 6 holes, with the holes
centered around the vertices of an inscribed regular octahedron. X
is an orientable Klein surface of genus 5. X has a group of auto-
morphisms isomorphic to the complete symmetry group (including
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reflections) of the regular octahedron, which is C, x S,. Thus X has
48 = 12(5 — 1) automorphisms.

ExAmMpLE 3. Let X be the Klein surface of Example 2, and let
7: X — X denote the antipodal map. The quotient space W = X/z is
a real projective plane with 3 holes, a nonorientable Klein surface
of genus 3. By considering the action of C, x S, on X, it is easy
to see that there is a group of automorphisms of W isomorphic
to S..

Thus the bounds obtained in Theorems 4 and 5 are best possible.
The bound 12(¢9 — 1) is attained for both orientable and nonorientable
surfaces. Theorem 3 was obtained incidentally in our proof of Theorem
4. We do not know if the bound of Theorem 38 is the best possible.

In a forthcoming article [5] we study those finite groups that
act as a group of 12(g — 1) automorphisms of a compact Klein surface
of genus g = 2 with nonempty boundary. There we exhibit several
infinite families of values of g for which there is a compact Klein
surface with boundary of genus g that has 12(g — 1) automorphisms.

5. Nevertheless it is possible to improve the bound 12(g — 1)
for a large number of topological types of Klein surfaces. Our main
tool is a theorem of Maskit.

Let X be a compact orientable Klein surface with boundary.
By the analytic genus p of X we mean the topological genus of the
compact surface X* obtained by attaching a disc to each boundary
component of X. The relationship between p and the (algebraic)
genus g of X is given by

g=2p+k—1,
where k is the number of boundary components of X.
THEOREM 6. Let X be a compact orientable Klein surface of
genus g with k boundary components. If

G(Q—_l_)_<kSg—3,
7 =

then
[Aut (X)| =84(9 —k— 1) <12(g —1).
Proof. Let p be the analytic genus of X. Maskit has shown
that there exists a compact Riemann surface X* of genus p and an

analytic embedding of X into X* such that, under this embedding,
every orientation-preserving automorphism of X is the restriction of
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an orientation-preserving automorphism of X* [4, page 718]. Thus
[Aut™ (X)| = [Aut* (X*)].

Now 2p=¢g—k+1=4, so that p = 2 and we may apply
Hurwitz’s bound for |Aut*(X*)|. Hence |Aut (X)| < 2-84(p — 1) =
84(g — k — 1).

Note that 84(9 — k — 1) < 12(g — 1) if and only if 6(g — 1) < Tk.

If g < 16, there are no integer values of %k such that 6(g — 1)/7 <
k<9 — 3. The improved bound of Theorem 6 does apply to orien-
table Klein surfaces of genus 16 with 13 boundary components.

For large values of g and suitable values of %, Theorem 6 gives
a much better bound than Theorem 5. In fact, if (¢ — k) is held
fixed (that is, the analytic genus remains constant), Theorem 6 gives
a uniform bound for the size of the automorphism group. On the
other hand, there are orientable Klein surfaces with boundary of
each genus ¢ = 2 to which Theorem 6 does not apply.

Finally, we obtain a similar result for nonorientable Klein surfaces
with boundary.

THEOREM 7. Let X be a compact monorientable Klein surface
of genus g with k boundary components. If
6(

__g_%:_ll<k§g—-2’

then
[Aut (X)| <849 —k—1)<12(9 —1).

Proof. Let (X, v, ) denote the orienting double of X, that is,
X, is a compact orientable Klein surface with 2k boundary components,
v: X,— X is an unramified 2-sheeted covering of X, and 7 is the
unique antianalytic involution of X, such that voz = v. Further the
genus ¢’ of X, is ¢’ = 29 — 1. For more details, see [1, pages 42-43].

Suppose f: X~— X is an automorphism of X. Then there exists
a unique orientation-preserving automorphism f of X, such that

~

x, -1 x,
J ) l

X— X

commutes [1, page 42]. Hence [Aut (X)| < [Aut® (X))|.
Let " be the analytic genus of X,.

—k=2.
D) g =

p
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Then, using Maskit’s theorem as in the proof of Theorem 6, we have
that

[Aut (X)| = [Aut® (X,)| = 84(p' — 1) =849 -k - 1).

As before, 84(9 — k — 1) < 12(g — 1) if and only if 6(g — 1) < k.

Note that the improved upper bound in Theorem 7 is the same
as in Theorem 6. The bound is applicable to a larger range of values
of g and %k in the nonorientable case, however.

The lowest genus to which Theorem 7 applies is the case of
nonorientable Klein surfaces of genus 9 with 7 boundary components.

I am indebted to Robert Speiser not only for the suggestion
that an approach similar to that of Hurwitz [2] might yield results
about Klein surfaces but also for several helpful discussions. I would
also like to thank Newcomb Greenleaf and Richard Preston for their
advice. Finally, thanks are due the referee for bringing [4] to our
attention and for making several helpful suggestions.
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