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FIXED POINTS FOR ORIENTATION PRESERVING
HOMEOMORPHISMS OF THE PLANE WHICH
INTERCHANGE TWO POINTS

EMILIO GAGLIARDO AND CLIFFORD KOTTMAN

Let T be an orientation preserving homeomorphism defined
on a subset of the plane which interchanges two points, P
and Q. Let I" be a simple curve joining P and Q and let 2
be a simply connected set contained in the domain and range
of T such that 'c 2, TN <, T*I") 2. Then T has a
fixed point in 2. A corollary concerning fixed points of
homeomorphisms on S? follows.

The proof would be trivial if 7 were necessarily an ele-
ment of a flow on the plane, however an example given in
this paper shows that this need not be the case.

If, in particular, 7 is defined in the whole plane or if its domain
and range are the same halfplane, then the existence (but no con-
structive information about the location) of a fixed point could also
be derived from classical results of Brouwer [2] (see for instance
Proposition 0(a = b) and Proposition 1.1 of S. A. Andrea [1]).

1. The theorem. We use .&Z to denote the real numbers and
#* for the coordinate plane. A curve is a continuous function
whose domain is a compact interval of <2 and whose range is a
subset of <Z% If [a, b] is an interval within the domain of the
curve @, we use @[a, b] as a shorthand for {@(¢):t < [a, b]}; @(a, b) and
@[a, b) have analogous meanings. The terms close surve, simple
curve, and simple closed curve have the standard meanings.

For the following lemmas we fix two simple closed curves, 9,
and 9,: [0, 3] — &% The first, @, is the triangle defined by

@t —-1,2t) for 0=t<1
O,(t)=4(1,4—2t) for 1=t<2
B5—-2t0 for 2=5t=<3

Referring to Figure 1, 9,0, 1] is the segment MH, @1, 2] is the
segment HK, and @, [2, 3] is the segment KM.

The second curve, @,, is defined so that the following conditions
are satisfied:
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(I) o,]0, 1] is the segment from L = (A, 0) (with \ > 0) to
M = (—1,0); one has therefore: @,(0) = 0= (0,0) for a suitable o
with 0 < o < 1.

(II) @,]0, 3] has winding number —1 about each of its interior
points (just as @, has); and therefore @,[1, 3] has winding number
—1/2 about the origin (just as @,[0, 2] has).

(III) .1, 2] is disjoint from @1, 3]. In Figure 1, 9,1, 2] is
represented by the curve MN, which except for M is disjoint from
HK and KM.

(IV) o@,[2, 3) is disjoint from @,[2, 3]. In Figure 1, @,[2, 3] is
represented by the curve NL, which except perhaps for L, is disjoint
from KM.

H=(1,2)

| ”/><

M=(-1.0) O=(0,0) L=(\0) K=(1,0) (Lifa>])
>0)

FiGure 1

LEMMA 1. With @, and @, as above, the closed curve T(t) =
D,(t) — D,(t), 0 < t < 3, has winding number —1 about the origin.

Proof. It is clear that 770, 3] is a closed curve with ¥'(¢) = (0, 0)
for all ¢, so that the winding number of ¥ about the origin is defined.
The idea of the following proof is to deform ¥ without touching
the origin, into a curve which obviously has winding number —1
about the origin.

Let

E(u, v) = @,(u) — Pu(v) .

From conditions (I) (II) (III) (IV) it follows rather easily that
F7%(0) is a subset of the hatched area in Figure 2. For our purpose
it is enough to prove that the origin is never in the range of Z(u, v)
restricted to the dotted region in Figure 2, i.e. the region bounded
by the segment AG and the piecewise linear curve 2 = ABCDEFG
where A= (0, 0), B=(0, 0), C=(2,0), D=(2,1), E=(521), F=(5/2,
3), G=(3,38). In details: for 0=u=<10=<v=p,90(u) is a point
of the segment MH wnile @,(v) is on the segment LO, hence @,(u)
O,(v); for 0<u =2, 0=v=1, 0(u) is on one of the segmehts MH,



FIXED POINTS FOR HOMEOMORPHISMS OF THE PLANE 29
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FIGURE 2

FIGURE 2

HK but not at M (since u > 0) while @,(v) is on the segment OM,
hence again @,(u) # @,(v); for 1 < u <5/2,1 < v <2, &,(u) is on one
of the segments HK, KO while @,(v) is a point of the curve MN
which by condition (III) cannot intersect HK, KM except at M, but
M is not on HK, KO, hence again O,(u) # 9,(v); for 2<u<38,2=
v < 3 the same conclusion follows from condition (IV); finally for
52=u <3, v=3 &(u)is on the segment OM while @,(v) = L, hence
@.(u) # D,(v) everywhere in the dotted region.

The diagonal 4(t) = (¢, t),0 <t < 8, is obviously homotopic to
2 = ABCDEFG staying within the dotted region in which, as just
proved, &Z(u, v) is never the origin. Hence

V() = 0,t) — B(t) = (- 4)(0)

is homotopic to (Z-2X)(f) never hitting the origin, and therefore the
winding numbers about the origin are the same.

It only remains to check that Zo3 has winding number —1
about the origin, which follows just by adding the winding numbers
of 5cAB, E-BC, EoCD, 5o DE, E°EF, 5o FG which turn out to be
respectively 0, —1/2 (because of condition (II)), 0,0, —1/2 (because
of condition (II)), 0.

LEMMA 2. Let @, and @, be defined as above. Let T be a homeo-
morphism defined on D, as well as in its interior and such that
T(@,1) = @u(t), 0 <t =<3. Then T has a fivred point which is con-
tained in the imtersection of the interiors of @, and 9,.

Proof. Assume T has no fixed point in the intersection of the
interiors of the simple closed curves @, @,. Then
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H,(t) = s@.(t) — T(sP,(?))

is a homotopy from the constant — T(0) map to @,(t) — @.,(t) which
never hits the origin. This contradicts Lemma 1.

THEOREM. Let T be an orientation preserving homeomorphism
defined in a subset of the plane and interchanging two points P, Q.
Let I" be a simple curve joining P to Q, and 2 a simply connected
set contained in the domain of T as well as in its range and such
that ' 2, T(I'")c 2, T"(I")c 2. Then T has a fixed point in Q.

Proof. We show that the situation of Lemma 2 must occur.
We may assume that the plane is coordinatized so that: P = (1, 0),
Q@ = (0, 0), and I" is the segment PQ. We may also assume (replacing
P, @ with another pair of points if necessary) that 7T interchanges
no pair of points of I" between P and Q. Let ¢ be the parametrization
of I" given by ¢(t) = (1 —1¢,0),0=<t<1. Define:

t, = inf {¢: ¢[0, ¢] N T¢[0, t] # @ or ¢[0, t]N T7'¢[0, t] # @}

(the set is nonempty since it contains the number 1). It is clear that
either ¢(¢,) € Tg[0, t.] or #(t,)e T7'¢[0, t,]. First, we will assume only
one of these events occurs. Later, we will consider the case when
both inclusions are valid.

By replacing T by T if necessary, we may assume the second
of the two inclusions, that is 4(¢,) € T7'¢[0, t,], or equivalently Tg(¢,) €
#[0, ¢,]. Let M = 4(¢t,), H= T (M), L = T(M), and define ¢, < ¢, to
be the scalar such that ¢(t,) = L. We may assume t, < t,, otherwise
#(t) is a fixed point. Define ¢t_, = sup {t < t,: T '4(¢) € T9[0, ¢,]}, and
let N = T'¢(t_,). Finally, choose ¢, so that T¢(t,) = N andlet K =
#(ty). The situation is summarized in Figure 3. Now the three paths

»
¢ ¢ H=T" o

M=¢tp K=¢t) L=¢ P
=ThLy =T

FIGURE 3

#(t) Lh=t<t from L to M

T, —t) 0=t<t,—t, from M to N

and

Té(t) t. £t =t from N to L
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form a simple closed curve which turns out to be contained in 2
(because it is composed by portions of I, T(I"), T-*(I")) together with
its interior (because 2 is simply connected). Let @,:[0, 3] — . <#* be
a parametrization of this curve so that @,[0, 1] is the path LM,
9,[1, 2] is the path MN, and @,[2, 3] is the path NL. Define 9,(¢) =
T7'@,t) for 0 <t < 3; notice that @,[0, 1] = T'¢[¢,, t,] is a path from
M to H, @)1, 2] is a path (not necessarily in 2) from H to K, and
0,[2, 3] = ¢[t, t,] is a path from K to M. Since T is a homeomorphism,
0, is also a simple closed curve, and by applyidg the Schoenflies
Theorem and introducing a new coordinate system on the plane (which
may have the opposite orientation of the old one) we may assume
that @, is identical to the triangle defined before Lemma 1 and that
0, satisfies condition (I) for an appropriate choice of X > 0. It only
remains to show that @, satisfies conditions (II), (III), and (IV). Since
T¢, = @, and T preserves orientation, condition (II) is immediate.
Condition (IV) follows from the choice of ¢,. It is easily seen that
the set Cyy = @,(1, 2], which is the path from M to N, is disjoint
from 9,[2, 3], so to verify condition (III) it suffices to show Cyy is
disjoint from Cnx = @,(1, 2] = T"'Cyy, which is the path from H to
K. To do this, observe that the path g[t_,, ¢,] followed by the path
Cyy is a simple curve, hence its image under T, Cyyuz is also free
of self-intersections. But the sets C,, and Cyx are disjoint portions
of the set Cyyux.

We return now to the case that both ¢(¢)e T¢[0, ¢t,] and ¢(%,) €
T7¢[0, t,]. In this case we refer to Figure 4. Let M = ¢(¢t) and
define ¢, and ¢, so that M = T '¢(t,) = T¢(tx). We have t, + ¢, since
equality would violate the assumption made in the third sentence of
this proof. Replacing T by T if necessary, we may assume &, < t,.
Let H = ¢(t.), K = ¢(t;) and N = T(K). The two paths

p -—--—-‘b—-—-—- e @ P
. TM=P ) K= () H=¢ o
/
=TT =Ty =TTow
Fi1GUrE 4

@) t,=t<t from K to M
and
To(t) to <t<t from M through N to K

form a simple closed curve; let @,: [0, 3] — <#2* be a parametrization
of this curve so that 9,[0,1] is the path KM, @,[1, 2] is the path
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MN, and 9,[2, 3] is the path NK. Define @,(t) = T7'90,(t), 0 < ¢t < 3.
The remainder of the proof in this case is analogous to the proof
of the first case.

2. Remarks and examples. The proof of the theorem would
become trivial if the hypotheses guaranteed the existence of a closed
curve from P through @ to P which is transformed into itself. But
this is not always true, for if T.: <#®— 2? is defined by T\(z, y) =
(—z, —y + sinx) then T, is an orientation-preserving homeomorphism
on <Z° which interchanges the points P = (x,0) and Q = (—m, 0);
however, there exists no bounded connected set comtaining P and Q
which is transformed into itself. It is interesting to note that this
implies that T, is not an element of any flow on #Z%

To see that the orientation-preserving hypothesis is necessary,
consider the homeomorphism T,: <Z*— <2* defined by

(—z, v) if |z|=

x
2
Tz(xy y) =
(—a,y +cosa) if |z|< %
T, interchanges every pair of points {(z, ¥), (—=, ¥)} for which |x| =
/2, but has no fixed point.
We conclude with a simple corollary to the Theorem (with Q2 =

#?. Our notation follows that of [3].

COROLLARY. Let T:.S*— S? be a homeomorphism such that T
1s of Brouwer degree 1, and T interchanges two points. Then T
has two fixed points.

Proof. Standard results in algebraic topology (see [3] page 124,
Exercise 3) show that T has at least one fixed point, say U. Now
S? ~ U is homeomorphic to 2% let h: S* ~ U — <Z* be a homeomor-
phism. Then koTok™ is a homeomorphism of Z* which interchanges
two points, and Theorem 34, page 122 of [3] shows that it also
preserves orientation. Thus ZoT -k has a fixed point, say W, and
V = (W) is another fixed point of T.
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