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FIXED POINTS FOR ORIENTATION PRESERVING
HOMEOMORPHISMS OF THE PLANE WHICH

INTERCHANGE TWO POINTS

EMILIO GAGLIARDO AND CLIFFORD KOTTMAN

Let T be an orientation preserving homeomorphism defined
on a subset of the plane which interchanges two points, P
and Q. Let Γ be a simple curve joining P and Q and let Ω
be a simply connected set contained in the domain and range
of T such that Γ c Ω, T(Γ) c Ω, T^GO c Ω. Then T has a
fixed point in Ω. A corollary concerning fixed points of
homeomorphisms on S2 follows.

The proof would be trivial if T were necessarily an ele-
ment of a flow on the plane, however an example given in
this paper shows that this need not be the case.

If, in particular, T is defined in the whole plane or if its domain
and range are the same half plane, then the existence (but no con-
structive information about the location) of a fixed point could also
be derived from classical results of Brouwer [2] (see for instance
Proposition 0(a=>b) and Proposition 1.1 of S. A. Andrea [1]).

l The theorem* We use & to denote the real numbers and
^ 2 for the coordinate plane. A curve is a continuous function
whose domain is a compact interval of & and whose range is a
subset of «^?2. If [α, b] is an interval within the domain of the
curve Φ, we use Φ[α, b] as a shorthand for {Φ(t): t e [α, b]}; Φ(a, b) and
Φ[a, b) have analogous meanings. The terms close surve, simple
curve, and simple closed curve have the standard meanings.

For the following lemmas we fix two simple closed curves, Φt

and Φ2: [0, 3] —* ^ 2 . The first, Φl9 is the triangle defined by

;(2ί - 1, 2ί) for 0 ^ t <, 1

φx(t) = . (1, 4 - 2ί) for 1 ^ t ^ 2

,(5 — 2t, 0) for 2 ^ t <; 3

Referring to Figure 1, ΦJO, 1] is the segment MH, ΦJ1, 2] is the
segment HK, and Φλ [2, 3] is the segment KM.

The second curve, Φ2, is defined so that the following conditions
are satisfied:
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( I ) Φ2[0, 1] is the segment from L = (λ, 0) (with λ > 0) to
M = ( —1, 0); one has therefore: Φ2(ρ) = 0 = (0, 0) for a suitable p
with 0 < p < 1.

(II) Φ2[0, 3] has winding number — 1 about each of its interior
points (just as Φx has); and therefore Φ2[l, 3] has winding number
— 1/2 about the origin (just as Φ1[0, 2] has).

(III) Φ2(l, 2] is disjoint from ΦJΊ, 3]. In Figure 1, Φ2[l, 2] is
represented by the curve MN, which except for M is disjoint from
HK and KM.

(IV) Φ2[2, 3) is disjoint from ΦJ2, 3]. In Figure 1, Φ2[2, 3] is
represented by the curve NL, which except perhaps for L, is disjoint
from KM.

M KO)

LEMMA 1. With Φ1 and Φ2 as above, the closed curve Ψ(t) =
Φi(t) — Φzit), 0 <: t <ί 3, has winding number — 1 about the origin.

Proof. It is clear that Ψ[0, 3] is a closed curve with Ψ(t) Φ (0, 0)
for all t, so that the winding number of Ψ about the origin is defined.
The idea of the following proof is to deform Ψ without touching
the origin, into a curve which obviously has winding number —1
about the origin.

Let

Ξ(u, v) = - Φ2(v) .

From conditions (I) (II) (III) (IV) it follows rather easily that
Ξ~\0) is a subset of the hatched area in Figure 2. For our purpose
it is enough to prove that the origin is never in the range of Ξ(u, v)
restricted to the dotted region in Figure 2, i.e. the region bounded
by the segment AG and the piece wise linear curve Σ = ABCDEFG
where A = (0, 0), B = (0, p), C = (2, p), D = (2, 1), E = (5/2, 1), F - (5/2,
3), G = (3, 3). In details: for 0 ^ u <: 1, 0 ^ v ^ p, Φ^u) is a point
of the segment MH wnile Φ2(v) is on the segment LO, hence Φx(u) Φ
Φ2(v); for 0 < u ^ 2, p <J v ^ 1, Φi(u) is on one of the segmehts MH,
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FIGURE 2

FIGURE 2

HK but not at M (since u > 0) while Φ2(t;) is on the segment OM,
hence again Φ^u) Φ Φ2(V); for 1 <Ξ u <; 5/2, 1 g ί; ^ 2, $i(w) is on one
of the segments HK, KO while Φ2(v) is a point of the curve MN
which by condition (III) cannot intersect HK, KM except at M, but
M is not on HK, KO, hence again Φ^u) Φ Φ2(v); for 2 ^ % <: 3, 2 ^
v < 3 the same conclusion follows from condition (IV); finally for
5/2 <i u ^ 3, v = 3, Φi(w) is on the segment OM while Φa(i;) = L, hence
Φi(̂ ) ^ Φ2(v) everywhere in the dotted region.

The diagonal A(t) = (ί, ί), 0 <* ί ^ 3, is obviously homotopic to
Σ = ABCDEFG staying within the dotted region in which, as just
proved, Ξ(μ, v) is never the origin. Hence

is homotopic to (ΞoΣ)(t) never hitting the origin, and therefore the
winding numbers about the origin are the same.

It only remains to check that Ξ<>Σ has winding number —1
about the origin, which follows just by adding the winding numbers
of ΞoAB, ΞoBC, ΞoCD, ΞoDE, ΞoEF, ΞoFG which turn out to be
respectively 0, —1/2 (because of condition (II)), 0, 0, —1/2 (because
of condition (II)), 0.

LEMMA 2. Let Φι and Φ2 be defined as above. Let T be a horneo-
morphism defined on Φ1 as well as in its interior and such that
TiΦ^t)) = Φ2(t), 0 <; t <; 3. Then T has a fixed point which is con-
tained in the intersection of the interiors of Φx and Φ2.

Proof. Assume T has no fixed point in the intersection of the
interiors of the simple closed curves Φlf Φ2. Then
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H.(t) = sΦtf) - TisΦtf))

is a homotopy from the constant — T(0) map to Φx{t) — Φ2(t) which
never hits the origin. This contradicts Lemma 1.

THEOREM. Let T be an orientation preserving homeomorphism
defined in a subset of the plane and interchanging two points P, Q.
Let Γ be a simple curve joining P to Q, and Ω a simply connected
set contained in the domain of T as well as in its range and such
that ΓaΩ, T(Γ) c Ω, T~\Γ) c Ω. Then T has a fixed point in Ω.

Proof. We show that the situation of Lemma 2 must occur.
We may assume that the plane is coordinatized so that: P == (1, 0),
Q = (0, 0), and Γ is the segment PQ. We may also assume (replacing
P, Q with another pair of points if necessary) that T interchanges
no pair of points of Γ between P and Q. Let φ be the parametrization
of Γ given by φ{t) = (1 - ί, 0), 0 ^ t ^ 1. Define:

tx = inf {t: φ[0, t] Π Tφ[0, t] Φ 0 or φ[0, t] Π T~^[09 t] Φ 0 }

(the set is nonempty since it contains the number 1). It is clear that
either φitje Tφ[0, t,] or φ(ti)e Γ"V[0, *J- First, we will assume only
one of these events occurs. Later, we will consider the case when
both inclusions are valid.

By replacing T by T~λ if necessary, we may assume the second
of the two inclusions, that is ^(ίje T~V[0, ί j , or equivalently Tφ(tλ)e
φ[0, ί j . Let M - φ(td, H = T-\M), L = T(M), and define ί0 ^ t, to
be the scalar such that φ{t0) — L. We may assume t0 < t19 otherwise
Φ(tλ) is a fixed point. Define ί_x = sup {ί ^ ί0: T'ιφ{t) e Tφ[0, ίj}, and
let N = Γ"V(*-i) Finally, choose ί* so that Tφ(t*) = iNΓand let K =
φ(t*). The situation is summarized in Figure 3. Now the three paths

K=φ(t4) L=φ(t0) P

FIGURE 3

to<ίt ^tλ from L to Λf

Γ"V(*o ~ 0 0 ^ t ^ ί0 - ί_! from M to N

and

ί* ^ ί ^ ί0 from N to L
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form a simple closed curve which turns out to be contained in Ω
(because it is composed by portions of Γ, T(Γ), T'^Γ)) together with
its interior (because Ω is simply connected). Let Φ2: [0, 3] —* ̂ ? 2 be
a parametrization of this curve so that Φ2[0, 1] is the path LM,
Φ2[l, 2] is the path MN, and Φ2[2, 3] is the path NL. Define Φtf) =
T-χΦz{t) for 0 ̂  t <* 3; notice that Φx[0f 1] = T~ιφ[t,, ί j is a path from
M to H, Φj[l9 2] is a path (not necessarily in Ω) from H to K, and
ΦJ2, 3] = φ[t*, ί j is a path from if to ikf. Since T is a homeomorphism,
Φ1 is also a simple closed curve, and by applyidg the Schoenflies
Theorem and introducing a new coordinate system on the plane (which
may have the opposite orientation of the old one) we may assume
that Φx is identical to the triangle defined before Lemma 1 and that
Φ2 satisfies condition (I) for an appropriate choice of λ > 0. It only
remains to show that Φ2 satisfies conditions (II), (III), and (IV). Since
TΦX = Φ2 and T preserves orientation, condition (II) is immediate.
Condition (IV) follows from the choice of tt. It is easily seen that
the set CMN = Φ2(l, 2], which is the path from M to ΛΓ, is disjoint
from ΦJ2, 3], so to verify condition (III) it suffices to show CMN is
disjoint from CHK = Φ^l, 2] = T ^ C ^ , which is the path from H to
K. To do this, observe that the path φ[t_u tt] followed by the path
CMN is a simple curve, hence its image under 27"1, CNMHK is also free
of self-intersections. But the sets CMN and CHK are disjoint portions
of the set CNMHK.

We return now to the case that both φ{t^) e Tφ[0, tt] and φ(t?) e
Γ"V[0, ί j . In this case we refer to Figure 4. Let M = φfa) and
define t0 and t* so that M= Γ"V(*o) = 2V(ί*). We have ί* Ψ t0, since
equality would violate the assumption made in the third sentence of
this proof. Replacing T by T~x if necessary, we may assume £* < to-
Let H = ^(ί*), K = φ(t0) and ΛΓ = T(K). The two paths

=T"'(N)

FIGURE 4

^() from IT to ikf

and

Tφ(t) U^t^t, from M" through N to K

form a simple closed curve; let Φ2: [0, 3] —> ̂ 2 be a parametrization
of this curve so that Φ2[0, 1] is the path KM, Φ2[l, 2] is the path
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MN, and Φ2[2, 3] is the path NK. Define Φ,(t) = T~ιΦt(fi), 0 ^ t ^ 3.
The remainder of the proof in this case is analogous to the proof
of the first case.

2* Remarks and examples* The proof of the theorem would
become trivial if the hypotheses guaranteed the existence of a closed
curve from P through Q to P which is transformed into itself. But
this is not always true, for if 2\: ^ 2 — > ^ 2 is defined by 2\(a?, y) =
(—x, —y + since) then 2\ is an orientation-preserving homeomorphism
on &2 which interchanges the points P = (π, 0) and Q = ( — 7Γ, 0);
however, there exists no bounded connected set containing P and Q
which is transformed into itself. It is interesting to note that this
implies that Tι is not an element of any flow on ^ 2 .

To see that the orientation-preserving hypothesis is necessary,
consider the homeomorphism T2: &

2 —• &2 defined by

U-x,y) if 1*1 ^ f
T*(x, y) = I

| ( — x , y + cos #) if \x\ <—

Γ2 interchanges every pair of points {(x, y), { — x, y)} for which \x\^

π/2, b u t has no fixed point.

We conclude with a simple corollary to the Theorem (with Ω =

^ ? 2 ) . Our notation follows t h a t of [3] .

COROLLARY. Let T: S2 —> S2 be a homeomorphism such that T
is of Brouwer degree 1, and T interchanges two points. Then T
has two fixed points.

Proof. Standard results in algebraic topology (see [3] page 124,
Exercise 3) show that T has at least one fixed point, say U. Now
S2 ~ U is homeomorphic to ^ 2 ; let h: S2 — U—+&2 be a homeomor-
phism. Then hoToh'1 is a homeomorphism of &2 which interchanges
two points, and Theorem 34, page 122 of [3] shows that it also
preserves orientation. Thus h°T°h~ι has a fixed point, say W, and
V= hr\W) is another fixed point of T.
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