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INVERSION OF CONDITIONAL WIENER INTEGRALS

Dedicated to Professor Robert H. Cameron

J. YEH

Given two Wiener measurable functionals X and Y on the
Wiener space C[0,t], of which the latter is Wiener integrable,
the conditional Wiener integral of Y given X is defined as
the conditional expectation E*(Y | X) given as a function on
the value space of X. Several Fourier inversion formulae
for retrieving the conditional Wiener integral E»(Y | X) in
which X[z] = z(t) for xeC[0,t] are derived. Examples of
evaluation of E*(Y|X) are given. It is shown that the
Kac-Feynman formula can be derived by applying an in-
version formula to E*(Y | X) where

Y[z] = exp {— S:V[w(s)]ds} .

1. Introduction. We have recently derived an inversion formula
for conditional expectations. (See [4].) In the present paper we
report on some inversion formulae for conditional Wiener integrals.
Here the probability space is the Wiener measure space on the Wiener
space C[0, t] of the real valued continuous functions z on [0, {] with
2(0) = 0 for fixed te (0, ). By a conditional Wiener integral we
mean the conditional expectation E*(Y|X) of a real or complex valued
Wiener integrable functional Y conditioned by a Wiener measurable
functional X on CJ0, ] which is given as a function on the value space
of X. We shall be concerned exclusively with X given by X[z] =
2(¢) for xe C[0, t]. Thus E“(Y|X) will be a real or complex valued
function on R'. A precise definition of conditional Wiener integral
as well as a brief discussion of the Wiener measure space are given
in §2. Three inversion formulae for conditional Wiener integrals are
proved in §3: a (C.1) summability type inversion formula (Theorem
1), a Lévy type inversion formula (Theorem 2) and an inversion for-
mula under the assumption of the Lebseque integrability of E*[¢/**Y],
u€ R' (Theorem 3). Examples of evaluation of conditional Wiener
integrals are given in §4. Below we relate conditional Wiener integrals
to the Kac-Feynman formula.

Consider the Wiener integrable functional
exp {——StV[x(s)]ds} for x¢€ C[0, t]
0

where V is a nonnegative continuous function on R!. Under the
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additional condition that V is bounded, M. Kac [2], showed that a
real valued function U on R! X (0, ) defined by

UG ) = S (-0 ) for (G )eR x (0, )
where the sequence {U,, k=0, 1, 2, ---} is defined inductively by

Uss, 8 = 1/; T p{ 5;}

Uiie, ) = = [ {|” A= exn {1 LE=Dhvip .7, s)inas

for k=0,1,2, ---

satisfies the integral equation

x{gl th_s exp{ ; (Et _’7) }V(r;)U(n, s)dr;}ds

(1.1)

for (&, t)e R* x (0, ) and the boundary condition

b
(1.2) g UG, t)de = Ew[exp {—S’V[x(s)]ds}; a < a(t) < b]
for any (@, b))cR'. The boundedness condition on V was then removed
by the method of truncation. The integral equation (1.1) implies
that U satisfies the differential equation

oUu _ 1 U
1. t o
(1.3) 5T o — V(&)U for (& t)eR x (0, )

and the boundary condition (1.2) implies that U satisfies the initial
condition

(1.4) lim S UG, t)ds =1 for every &>0.

This result is summarized by the Kac-Feynman formula
t

(1.5) UG, t) = E“’I:exp {— SOV[x(s)ds}E(x(t) - 5)]

for the solution U of the differential system (1.3) and (1.4). Now
let X, and Y, be two real valued functionals on C[0, ] defined by

X,[x] = o(t) and YJx]:exp{—j:V[x(s)]ds} for zeCl0,t] .
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The fact that the function U satisfies (1.2) indicates that it is related
to the conditional Wiener integral E“(Y,|X,). Let us define a real
valued function U on R! x (0, ) by

(1.6) U, t) = E*(Y,| X)(E)——= 1/2 T eX P{ ;t}

for (&, t)e R' x (0, =) .

In §5 we show that by applying Theorem 1 to an appropriately
chosen version of E*(Y,|X,) we obtain the integral equation (1.1) for
the function U defined by (1.6). The fact our function U satisfies
(1.2) is obvious. This gives an alternate way of deriving the Kac-
Feynman formula.*

2. Conditional Wiener integral. For a fixed ¢ € (0, ) consider
the Wiener measure space (CJ0, t], *, m,) where ¥ is the algebra
of subsets W of C[0, t] of the type

2.1) W = {xe C[0, ¢]; [#(s), - -, #(s.)] € B}

where n is an arbitrary positive integer, 0 = s, < s, < --- <8, = &,
and B is an arbitrary member of the o-algebra B" of the Borel sets
in the m-dimensional Euclidean space R"; m, is a probability measure
on the algebra ¥ defined for W as in (2.1) by

n —1/2
mu(W) = {@0)* 11 (55 — 5,0}
2.2) -
ool =i
=t 8; 8j-1

where &= (&, +-+, &) R", & = 0 and m, is the Lebesque measure on
(R", B"); W* is the o-algebra of Carathéodory measurable subsets of
C[0, t] with respect to the outer measure derived from the probability
measure m, on the algebra T which in particular contains the o-
algebra o(W) generated by 2W.

A real valued functional F on CJ[0, £] is said to be Wiener meas-
urable if it is W*-measurable, i.e. if it is a measurable transformation
of (C[0, t], T&*) into (R, B'). For a Wiener measurable functional F'
we write

E*[F] for Lm Flalm.(do)

1 The idea of deriving the Kac-Feynman formula by inversion goes back to M. D.
Donsker. I wish to thank Professor Donsker for the conversations we had on this
approach.
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whenever the integral, i.e. the Wiener integral, exists. We say that
F is Wiener integrable or m,-integrable when the Wiener integral
of F exists and is finite. The Wiener measurability and Wiener
integrability of a complex valued functional on CJ[0, ¢] are defined in
terms of its real and imaginary parts. An immediate consequence
of the definition of the Wiener measure is that if F is a real or
complex valued functional on C[0, t] of the type

(2.3) Fla] = fla(sy), -+, 2(s.)] for xe CJ0, t}
where 7 is a real of complex valued Baire function on R and 0 <
8, < +++ <8, <t then F is Wiener measurable and

@4 B =@ TG — s}

SRnf(E) exp {_—:}z— )y M}mL(dE)

=1 8; — 8;-1

in the sense that the existence of one side implies that of the other
as well as the equality of the two.

In connection with the Wiener measure space let us remark that
a real valued function X on [0, ] x CJ[0, t] defined by

X(s, #) = z(s) for (s, z)e]0,t] x Clo,t]

is a Brownian motion process on the probability space (C[0, ], T*,
m,) and the domain [0, ¢] in which the space of sample functions
X(-, z), x € C[0, t], coincides with the sample space C[0,¢] and thus
every sample function is continuous. This last property implies in
particular that the process is a measurable process. We shall refer
to this realization of the Brownian motion process as the Wiener
process on the domain [0, £].

DEFINITION. Let X and Z be real valued Wiener measurable
functionals on the Wiener measure space (CJ0, ], T*, m,) and let Z
be Wiener integrable on C[0, t]. Let Py be the probability distribution
of X, i.e. the probability measure on (R', B') determined by X by
the definition

P(B) = m,(X ' (B)) for Be®B.

The conditional Wiener integral of Z given X, written E*(Z|X), is
by definition the equivalence class of B'-measurable and Py-integrable
functions 4 on R' modulo null functions on (R!, B!, Py) such that
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S — [z]mu(d2) = SB“P(S)Px(dS) for Be®B'.

By the Radon-Nikodym theorem such a function + exists and
is determined up to a null function on (R', 8", Py). We shall also
use E*(Z|X) to mean a particular version, i.e. a particular represen-
tative of the equivalence class. Thus

(2.5) gx_”B)Z[x]mw(dx) - SBE”(ZIX)(E)PX(dE) for Be®'.

3. Inversion formulae of conditional Wiener integrals.

LEMMA 1. Let X and Z be measurable transformations of (C[0,
t], W*) into (R, B") with E*[|Z]] < . Let g be a measurable trans-
formation of (R', BY) into itself. Then

E*l(g°X)Z] = | g@E*(Z X)@Px(d?)

in the sense that the existence of ome side implies that of the other
as well as the equality of the two.

Proof. This lemma is a particular case of Proposition 3 in [4].

COROLLARY. Let X and Z be as in Lemma 1. Assume that
Py L& my, on (B, B). For Zc R and a > 0 let Y. be a function on
R defined by

1 o —_ P
o) = 12a T MelE—actal
0 for pelé—a¢+al.

Then there exists a wversion of E*(Z|X)dPy/dm.) such that

B2 X)L @) = lim B*[(1:0° X)Z] for (R

Pyoof. Using Y., in the place of g in Lemma 1, we have

lim B*[(£:.0° X) Z]

= tim | 7.0 B2 00 2L (ym(an) .

It is well known that if fe Ll (R' B!, m;) then

im | 7..)fymdn) = F@) for myae. seR.
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From this follows our corollary.

LEMMA 2. Let X and Y be measurable transformations of (C|0,
t], B*) into (R, B") with E*[|Y|] < . Then

E*[¢XY] = XRle‘“eE“’(YlX)(é)Px(dé) for ueR:.

Proof. This lemma is the equality (3.19) in [4] adapted to our
probability space (C[0, t], *m,,).

THEOREM 1. Let X and Y be measurable transformations of
(C[0, t], B*) into (R, B") with E*[|Y]|] < . Assume that Py £ my
on (R',B"). Then there exists a version of E*(Y|XWdPy/dm.) such
that

EW(Y!X)(&)%(&)

— lim-L S (1 _ M)e-waW[eM Yimy(du) for teR'.
a—00 271,' (—a,a) a

Proof. By Lemma 2

G.1) E[FY] = SRle‘“fE’”(YlX)(é)dzf(@mL(dE) for uweR'.

d

Thus our E“[¢**Y], w € R', is the Fourier transform of the m,-
integrable function E*(Y |X)(§)(dPg/dm.(¢), £€ R'. According to a
well known (C, 1) summability type inversion formula for Fourier
transforms, if f is a m-integrable function on R' and 7 is its Fourier
transform then

f() = lim 1 S (1 — I1‘-'—)@""5f(u)mL(olu) for m,a.e. fc R
a—0oo 272' (~a,a) Qa

(see for instance [1]). From this follows our theorem.

THEOREM 2. Let X and Y be as in Theorem 1. For a,be R!
such that a < b let ¥,, be a function on R defined by

(1 for 7e(a,bd)
7., = i 0 for nela, bl
\—;— for n=a and for N=0.

Then
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[ Zes@E(¥ | D) L2 m,(de)

—tbu __ ,—tau .
= lim L S € — & X Yimy(du) ©
koo 27T J(=k,h) — U

Proof. As an immediate consequence of the Lévy inversion
formula, if @ is a finite signed measure on (R', B') and if @ is the
characteristic function 9, i.e.

P(u) = Sme"“‘@(dé) for ueR,

then we have

- o 1 e—-s’bu — e—ia.u
[ Fes@0@9) = lim L £ puymy(du)
Bl koo 2T J(—h,h) U

From this and from (3.1) follows our theorem.

THEOREM 3. Let X and Y be as in Theorem 1. Assume further
that E*[¢***Y] is a m,-integrable function of w on R'. Then a
version of E*(Y|X)(dPy/dm.) is given by

E*(Y| X))

gPX(f) = LS e E ¢ Y]m(du) for EeR'.
my, 2 Jrt

Proof. This theorem is a particular case of Theorem 2 in [4].
4. Examples of evaluation of conditional Wiener integrals.

ExampLE 1. For each z e C[0, t] consider the average value of
t

2 over the time interval [0, £], i.e. 1/t S x(s)ds. Let us find the con-
0

ditional expectation of this average value given the condition that
the final value of =, x2(t), is equal to £e R'. Thus we are to find
E*(Z| X)), e B, for

Z[x]=%S:w(s)ds and X[z] = 2(t) for weC[o,].

According to Corollary to Lemma 1, a version of E*(Z|X)(dPy/dm.)
is given by

@.1) E“(ZIXxs)g—f;—(s) = lim B*[(:.0X)Z] for ¢eR'.

2 According to Professor E. O. Thorp, this problem arises in the probabilistic study
of the fluctuation of the price of a commodity as a Brownian motion process. The
problem was to find the expectation of the time average of the price when the price
at some fixed time point in the future is known for some reason.
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With our Z and X we have
(4.2) B[00 X)Z] = Ew[xe,a[x(t)]% S[o’”w(s)m,,(ds)] :

An interchange of the order of the two integrations on the right
side of (4.2), one with respect to the Lebesque measure and the other
with respect to the Wiener measure, can be justified as follows.
Recall first that the Wiener process is a measurable process, i.e. x(s)
for (s, ) € [0, t] x C[0, t] is Lebesque x Wiener measurable. To apply
the Fubini theorem observe that

|26, [2()]a(s) | gé%ms); for (s, )€ [0, t] x CIO, ¢]

and by (2.4)

S[o,s]Ew[-,—‘)_.lEl x(s)I]mL(ds) = —2% g[o' tl{v_;'—;—s— Lll W[e—”zmma(dﬂ)}mL(ds)

-1 ES e =1 2
oV Fma(ds) = o=yt < oo

20 ' T

Thus an interchange of the two integrals on the right side of (4.2)
is justified and consequently

Be((toe> )21 = | | E[xe o (®)]a()lm.(ds)

#3) == 1eose-9f
% [SRlx[é-—u,E+a]7? exp {_%-%2 - % (-Ct'}gsz‘}mf,(d(% C))]mL(dS)

by (2.4). Since

FTLoC€=n __t (p_s5N,.E
44 s+ t—s s(t——s)\y] tc>+t

and thus
»_1 -9 }

s t—s
{49 tefem -G gty - 34

the integral with respect to m.(d(y, {)) over R' x [¢ —a, &+ a] in
(4.3) can be reduced by integrating with respect to my(dn) over R!
and using

oo |-4 -1
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1
(4.5) 1V 2rw
respectively, with v > 0

S yre " my(dy) = 1,0, v for p =0, 1,2
R

to
\/233(t — 8) S
ta
Using this in (4.3) we have
EW[XE,:: °© X)Z]

@9 = pmr Ueam @, fo {= 5 Smia0

= 2l Ve (g Fhma].

From (4.1) and (4.6) we have

Cexp { —% —C;—}mL(dC) .

[¢—a,6+a]

w dPy ) _ L _1é
E(Z1 X052 = g exp |~ £
and thus

E"(Z| X)) = -;-s .

ExAMPLE 2. Let us find E*(Z|X)(¢), £€ R*, when
Z[a] = S‘[x(s)rds and X[o] = 2(¢) for we CO,¢].
To apply Corollary of Lemma 1 we proceed as in Example 1 to obtain
r t
(15,02 X) 2] = B 2:.[0)] | [o@)Fds
= | Bl da)lo(s) Imu(ds)

4.7 -
1 R 2
_2_(17 S[M]{(ZTE) S(t B S) }

]

S (-1 2 - 2E =D aey, ) matas)

8 t—s
By means of (4.4) we have

pexp-L7 -1 €=

2 s 2 t—s

== 59+ 25 - 9+ (39}
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. exp{_%s(tt—s)@_‘:“:)z_%%i}'

Reducing the integral with respect to m.(d(n, {)) over R' X [¢ — a,
¢ + a] by integrating with respect to m.(d7) over R' using (4.5) we
obtain

‘/%(tt——@{ s(t - ) o (%Qz}g—cz’“mL(dC) .

S[E—a,$+a]
Using this in (4.7) we have

E*[(Xe,a° X)Z]

— 1 — fi iz 2 ] —g2/2t
 V2nt 2a S[e—a,e+u][S[o,t]<S t + tZC>mL(ds) ¢ m(d0)

— 1 S t_z i 2 1 g—cz/zc
[E—a,€+a]< + C >'l/27'L't mL(dC) )

T 20 6 3
Thus
w dPX — 15 w
E (ZIX)(E)E———(&) = lim E*[(%c,.0 X)Z]
(4.8) e
(24 o) Lo
6 3 2t
and

ENZ|X)Q) = + Lo,
6 3
It is of interest to note that from (2.5) and (4.8)

Bzl =  Zlelm.(@o) = | B2 0OP:)

—1(

— A (B4 te)ererma = £
Vi Vg Tt )0 maldd) = 3
as can be obtained by a direct computation of E*[Z].

As an example of application of an inversion formula in evaluat-
ing a condition Wiener integral, consider the Wiener measure space
(C[o, t], ®*, m,) with fixed £ € (0, ). Let{®, ---, »,} be an orthogonal
system in the real Hilbert space L*([0, ¢]) with

o5l = /| (@ @mids) >0 for j=12,--n

such that ®; has a representative function which is of bounded variation
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on [0,¢] for j =1,2,.--,n. Let F be a functional on C[0, ¢t] defined by
(4.9) F[xlf[g}zn(s)dx(s), S:%(S)dw(S)] for we C[0, t]

where f is a complex valued function on B" whose real and imaginary
parts are Baire functions. By a slight extension of a well known
theorem by R.E.A.C. Paley, N. Wiener, and A. Zygmund [3] F' is
Wiener measurable and

@10 EF) = (@ iel} | foe{-%>T

i)

H%H2

with » = (g, ---, 7,) € R", in the sense that the existence of one side
implies that of the other and the equality of the two.

THEOREM 4. Let X and Y be two functionals on C[0, t] for fized
te (0, ) defined by
X[z] = «(t)

and

1) Yol = ¢ [ 26)da@), -+, [2ue)dn) | for aecio,

where {@,, -+, P,, 1} is an orthogonal system in the real Hilbert

space L*([0, t]), || ®;1] > 0, »; has a representative fumction which ts

of bounded wvariation on [0,t] for 7=1,2,---,m and g is a Baire

Sunction on R™ such that

@12) a={eorlie) | oo exp{-33-—L Jmidn) < =
= &2 T, TP

with P = (9, +++, .)€ R". Then Y is Wiener integrable on C[0, t]
and

(4.13) E"[Y] =

Also there exists a version of E“(Y|X) such that
(4.14) E (Y| X)(&) =A for Ee R'.

Proof. By applying (4.10) to (4.11) we have (4.13). To prove
(4.14) note that

E[6Y] = E‘”[exp {m S:dx(s)}gU:gvl(s)dx(s), S:%,(s)dx(s):ﬂ .

Applying (4.10) to the function
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f(771, sty Wy S) = eiueg(”n *t 77%) for (7]1, TR/ E) e R

we have

Ew[eiuX Y] = A__l______ eiuee—ez/ztmL(dt) — Ae_uzt,z
Vort I
since
(4.15) SRle"‘““bf)mL(dg) =N %ema for ¢ > 0 and real or

imaginary b .

We have just shown that E“[¢**Y] is a m,-integrable function of %
on R'. Thus by Theorem 3 there exists a version of E°(Y|X)dPy/dm,
such that

E (Y] X))

dPyisy _ _1_4_8 —iug ,—udt/2 — A e
dmL(E) = o | e m(dw) ———znte

and

EYY|X)&) =A for ZeR'.
5. The conditional Wiener integral of eXP{—S: V[m(s)]ds}
given 2(t).
THEOREM 5. For t€(0, =) let
(G.1)  X[z] = o(t) and Y,[z] = exp {— S’V[x(s)]ds} for we C[0, t]

where V is a nonnegative continuous function on R' satisfying the
condition

(5.2) Sm V(©)e2m (d&) < oo for every te(0, ).

There exists a version of E*(Y,|X,) such that the function U on
R' x (0, ) defined by

-2y
652t

(5.3) UG, t) = E*(Y,| X))

1
V/2mt

satisfies the integral equation

1 e
U, t) = ——e £2/2¢
V2nt
(5.4)
____.__.1 _p—l2(E=) U t—s)
N S[o,t]{SRl V(77)1/ 27T(t s S) € U(77’ S)mL(dU)}mL(_ds)
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for (§,t)e R* x (0, ).

REMARK. From the continuity of V on R' and the continuity of %
t

on [0, t], g Viz(s)]ds can be given as the limit of a sequence of Riemann
0

sums corresponding to a sequence of partitions on [0, ¢] which does
not depend on x. From this follows the Wiener measurability of Y,
on C[0,t]. Its Wiener integrability is obvious since it is bounded
by 1.

The condition (5.2) on V is satisfied if for instance V satisfies the
order of growth condition

V(§) = 0(¢") as &— & oo
for some 6 ¢ (0, 2). Note also that under (5.2), if we define

G5 o) = =] VEeTEm@)  for te, )

then @ is a nonnegative continuous function on (0, ) and furthermore
lim,, #(t) = V(0). Let us define

P(0) = lim (1)
so that @ is continuous on [0, <o).

Proof of Theorem 5. According to Theorem 1, there exists a
version of E*(Y,|X,) such that our U defined by (5.3) can be given as

(5.6) UG, 1) = lim T‘;’{ S(_W(l - l—Z'—)e““E”’[e*‘”z Y, Ima(du)
for (& t)e R x (0, o).

Since

%— exp {— S Vie(s)ldr } — — exp {—S Viw(r)ldr} Vies)]

we have by integrating with respect to s on [0, t]

(G.7) exp {~S’ V[x(s)]ds} 1= — g’ Viw(s)] exp {~ g V[x(r)]dr}ds.

Applying (5.7) to Y,[x] as defined by (5.1) we have

(.8) Yiz] =1 — S:V[m(s)] exp { - S VIe()ldr)ds .

Substituting (5.8) in (5.6) we have
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(5.9) UE, t) = I, t) — L, t)
where
— 1 1 . M. —iu. wf ,tus(t

(5.10) LG 6 =lm = S(_M)(l : )e ¢ [t m(du)
and

— _L . w_l_ —iu
(5.11) I(, ) = lim = S(_M)(l : >e J(E)m(du)
with

(.12) J) = E"’\:e"“”‘” SM Vie(s)] exp {— S V[x(r)]dr}mL(ds)] )

To evaluate I, note that by (2.4) and (4.15) we have

Ew[eiuz(t)] — 1/1 S leiune—nzxztmL(dv) — e—uit/z
R

ont
and thus
I, t) = lim *{i S e“‘“ee‘“z"sz(du) - _1’
aso (2 Ji—a,@) 2r
S( )I u/l g—iuee-u%/sz (du)}
(5.13) . @ .
— % SRle—iuee—u%/sz (du) _ _2;(11}}2 +u1_i,l_2 >([_?éf_|e—iuee—u2uz)
— _]_-__6-52/2t
V'2nt

To interchange the order of the Wiener integral and the integral
with respect to m.(ds) on [0, t] in (5.12), note that

e Viae)] exp { - | Viz()lar}| < Viae)]
for (s, 2)€]0, t] x CJO0, ¢]

and that by (2.4), (4.15), (5.5) and the continuity of ® on [0, )

[, BV @) = | L Ve m@)}muas)

- S[o,t]Q(S)mL(ds) < e

so that the Fubini theorem is applicable and thus
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G.14)  J@) = S[M]E“’[e‘"”“’ Via(s)] exp {—- So V[x(r)]drﬂmL(ds) .

Let us write

eiux(t) — eiu(x(t)—z(x)}eiuxts) .

By the fact that {x(t) — x(s), 2()} is an independent system of random
variables on (C[0, t], T*, m,) for every »e€ (0, s] and by

Ew[eiu[x(t)—z(a)]] — 6—(u2/2)(t—8)
which follows from (2.4) and (4.15), we have from (5.14)
(5.15) J(t) = S e‘“z’z"“’)E"’I:e‘““” Viz()] exp |~ § V[w('r)]dr}]mL(ds) .
[0,¢] 0

Applying Lemma 1 to the Wiener integral in (5.15) and recalling
(5.1) and (5.3) we have

(516) Jt) = | el | o V)BT, X)) Pr (@) [ (ds)
= el vy U, symuan) mads) .
[o,t1 Rl
Let us use (5.16) in (5.11). To interchange the order of the three
integrals with respect to m.(d7n) over R, m(ds) over [0, t] and m(du)

over (—a, a) in the resulting expression for I,, observe that

|(2 = D)oot vy Uy, s)emee-0| < Ve U, sheme=

for (,s,u)e R x [0,t] X (—a,a).
Recalling (5.3) and Lemma 1 we have by (2.4) and (5.5)
[, YO U@, syman) = B Via@] exp { | Viat)lar} ]
< BVl = 2= | V@Qe = md) = o(s) .
Now
[, e mem (ds) = Agee
where
4= S[o,t]q’(s)euzusz(ds) < o0

by the continuity of @ on [0, ) and thus
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S Ao fdu) < oo
R
This verifies the applicability of the Fubini theorem in interchanging

the order of the three integrals. Thus we have

(6.17) L ¢) = lim 51; S[M]{SRI v U, s)URlx<_a,a>(u)(1 = '—:‘;—[)

X g g (du) | (dn) | m(ds)

For all @ > 0 the integrand in (5.17) is bounded by
V() U(x, s)e~ i for (u,s, u)e R' x [0, ] x R

which is integrable with respect to (m; X m; X m)(d(7, s, w)) on R* X
[0,¢] x R' as we saw above. Thus by the Dominated Convergence
Theorem

16 0=\ Al voue s
(5.18) x URle“““"?)e“"z’z’““’mL(du)]mL(dﬂ)}mL (ds)

= ol VU@, 3);/2,:——(115—_4—9““‘W“w—*”mL(drz)}mL(ds) .

Using (5.13) and (5.18) in (5.9) we have (5.4).
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