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THE CLOSED RANGE MODULUS OF OPERATORS

F.-H. VASILESCU

In order to describe a certain ‘‘lattice type’’ behavior of
the closed subspaces in Banach spaces, with regard to the
action of linear operators, we introduce the notion of closed
range modulus. Some consequences for the spectral theory
of commuting finite systems of linear operators are then
obtained.

1. Let X and Y be two complex Banach spaces and CG(X, Y)
(B(X, Y)) the family of all closed (bounded) linear operators from
XtoY. For any Te@(X, Y) denote by D(T) the domain of T and
by R(T) the range of T. If Zc X is any closed subspace then
T| Z means the restriction of T on Z, i.e. the operator defined on
NT|Z)=DT)N Z as T. Denote also by R(T) the null-space of
T and by R(X, Y) the family of all closed subspaces Z of X with
the property that R(T| Z) is a closed subspace of Y. Since (T | Z)
is always closed, then for any Ze R, (X, Y) the operator

(1.1) t: ToeR(T| Z)— o + WT| Z)e XINT| Z)

is everywhere defined, hence bounded by the closed graph theorem.
Denote by || 7]l its norm and for any Rc R(X, Y) let us define

(1.2) K(T, R) = sup 7zl -

When R = R(X, Y) we put simply £(T) = (T, R) .

Then number &(T)(£(T, R)) will be called the closed range modulus
of T (on R). It is clear that 0 < k(T, N) < + and £(T, R) =0 if
and only if T|Z =0, for any ZeR.

Let us remark that the case R = {Z} has been considered in
[8, IV. 5.1].

There are simple examples which show that «£(T, R) may be
infinite. However, the class of operators having a finite closed range
modulus is reasonably large, as shown by the following result.

ProPOSITION 1.1. If Te@(X,Y) has a bounded inverse then
(T)=1T".

Proof. Take Ze R, (X, Y). Then the operator 7, given by (1.1),
has the form 7,: Tx — x, for every x€ (T | Z). Therefore we can
write

lzzll = sup |lz]l < sup [lz|l=]T"].
z2eMNT|Z) zeD(T|Z)
11Tz 51 Hell =iz
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When Z = X we have 7, = T, hence «(T) = || T™||.

2. In this section we shall obtain some “lattice type” conse-
quences of the finiteness of the closed range modulus.

LEmMMA 2.1. Suppose that RCRA(X, Y) and &(T, R) < + .
If M > k(T, R) is a fixed constant, then for any ZeR and for any
yeR(T| Z) there is an € NT| Z) such that Tr =y and ||| <
Myl

Proof. The assertion is a simple consequence of the open map
principle.

THEOREM 2.2. Let T be in €X, Y) and R ={Z,}, an increas-
wngly directed family in R(X, Y). Suppose that £(T, R) < = and
KT Z)=clm. {RT| Z,)}., where Z=clm.{Z},. Then Zec
R(X, Y).

Proof. Lety bein R(T| Z) arbitrary. Then there is a sequence
Y. € MT| Z,,) such that y,—y as n— . We shall use an approxi-
mation procedure, inspired by the proof of the closed graph theorem
[8]. With no loss of generality we may suppose that >o ;|| ¥, —
Y,|| < . Fix a constant M > &(T, R). We shall apply succesively
Lemma 2.1. Choose x, € ®(T| Z,) such that T2, =y, and [|a,|| <
M||y,]l. Then, for an arbitrary #» =1, we may find an index B,
such that Z, D Z,, + Z,,,, and an element ,,€ %, Wwith the
properties T%,,; = Y41 — ¥, a0d || 0| £ M || Y0ss — ¥all. According
to our choice of x, we have

Sl = Ml + 31000 = 1)

n=1

hence 2 = >\, x,€X. Moreover, as T is a closed operator and
T . x,) = y, we infer that xe D(T) and Tx = y.

COROLLARY 2.3. Suppose that TeB(X, Y) and let R = {Z,}, be
an increasingly directed family in R(X, Y). If &(T, R) < 4o then
ZeRN(X, Y), where Z = cl.m. {Z,}..

Proof. We have only to notice that the assumption 7'e B(X, Y)
implies R(T | Z) = c.lm. (KT | Z,)}. -

THEOREM 2.4. Suppose that X, Y are the duals of the Banach
spaces X, Y, respectively, and T e €(X, Y) is the adjoint of a densely
defined operator Tyc (Y, X,). If {Z.). is a decreasingly directed
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family of w*-closed subspaces in R (X, Y) and k(T,R) < « then
Z =N Z, belongs to R(X, Y).

Proof. Assume that ye RN(T| Z), hence y = lim, y,, with y,¢€
N(T| Z), for any natural n. We may suppose that > ||¥n. —
Y. |l < + < and proceed as in the proof of Theorem 2.2. Namely,
for any a we can choose a sequence z, , € O(T| Z,) such that Tz, , = ¥,
T2y i10 = Ynsr — Yo = 1), || L1, | = M|y, [l and ” Lot1,a H S M| Yusr —
¥, || (» = 1). Consequently, =, + >, %, .€ 4, Since T is closed, we
infer x, e (T | Z,) and Tx, = y. Moreover,

lz)l < MAlwll + S v = vl

therefore {x,}, is uniformly bounded. Let x be a cluster point of
{x.}. in the w*-topology of X. Since {Z,}, is a decreasingly directed
family of w*-closed subspaces, we get xc Z. Let us show that
2eD(T) and Tx = y. Indeed, if ¢ > 0 and feD(T,) are arbitrary,
there is an index « such that

[ Tof) — 2 TH )] <€

Since Tx, =% and ¢ > 0 is arbitrary, we obtain x(7T.f) = y(f) for
any feD(T,), whence x€ D(T) and Tx = y.

COROLLARY 2.5. Suppose that X, Y are reflexive Banach spaces
and let T be o densely defined operator in C(X,Y). If R={Z),
18 a decreasingly directed family in R,(X, Y) such that £(T, R) < o
then Z = (o Z, belongs to R(X, Y).

Proof. The result follows from the previous theorem, since
T = T** and the w*-topology of X coincides with its w-topology.

3. From now on we restrict ourselves to the case X = Y and
consider only bounded operators. We shall put B(X) instead of
B(X, X).

For the sake of simplicity, an operator T € B(X) with the property
T* = 0 will be called a 2-nilpotent. These operators are related to
the definition of the joint spectrum of a commuting system of linear
operators, as described in the next section.

A 2-nilpotent operator Te B(X) will be called exact (on X) if
R(T) = W(T).

THEOREM 3.1. Let T be a 2-nilpotent operator on X and N ={Z,}.
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an wncreasingly directed family of closed subspaces of X, invariant
under T. If T|Z is exact for any a and K(T,R) < = then T|Z
18 exact, where Z = c.l.m. {Z,}.

Proof. Consider y€ (T | Z). Then there is a sequence y,€ Z,
such that y = lim, y,. With no loss of generality we may suppose
that Ty, =0 for any =. Indeed, if y,—vy, vy, Z,, then Ty,—
Ty = 0, therefore if M > (T, R) is fixed, we may choose v,¢ Z,,
such that ||v,|| < M|| Ty, || and Tv, = Ty,. In particular, », — 0 as
n—o. If we put y,=vy, — v,, we have Ty, =0 and y,—y as
% — oo,

We can proceed now as in the proof of Theorem 2.2. Namely,
assuming >, || ¥, — Y. || < oo we can find a sequence {z,} in Z such
that T, =y, T%,., = Y,.. — ¥, and the series 2= 37, 2, is con-
vergent in Z. Then Tx = y, hence T| Z is exact.

THEOREM 3.2. Assume that X is the dual of the Banach space
X, and T is the adjoint of T, e B(X,). Let R = {Z,). be a decreas-
ingly directed family of w*-closed subspaces of X, invariant under
T. If T|Z is exact for any a and (T, R) < o then T| Z is exact,
where Z = o Zo-

Proof. Let y be in T | Z), therefore for any «, y = T, with
x,€ Z,. Since {x,} can be chosen uniformly bounded, we may find,
as in the proof of Theorem 2.4, a vector x € Z such that y = T=x.

4. First of all we recall the definition of the joint spectrum of
a commuting system 7 = (T, ---, T,) C B(X), in the sense of Taylor’s
[9] (see also [12]).

Denote by 47(n, X) the set of all antisymmetric functions defined
on {1, .-+, n}?, with values in X, for any natural p. Let us denote
by 02: A*(n, X)— A*"(n, X), the operator defined as

p+1 . "
5?5()}1, °t Y ”PH) = 21(—1)J+1 TV]E(’UI, ey, Vit UP-H) ’

where the symbol “A” means that the corresponding index is omitted.
One can easily prove that 02762 = 0. We define also 4'(n, X) = X
and 0%x(v) = T.x, for any xre X and v=1, ---, n.

The system T is called nonsingular (singular) if R(67) = N(G7H)
for every nonnegative integer p (there is a p such that R(07) #

R(92*)).
The spectrum of T on X, denoted by (7, X), is defined as the
set of all points z = (2, +--, 2,)€C" such that z — T'=(2, — T, ---,

2, — T,) is singular on X.
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These things can be considered in a slightly different manner.
Namely, it is clear that we can identify A°(n, X)(1 < p £ n) with
the direct sum

X.

1§y1<~-'<y?§’rb
Let us set then

(4.1) X = @ 4(n, X)

»=0

and
O = é o7 .
p=0

The space X™ is a direct sum of 2" copies of X and d, is
2-nilpotent on X (provided that 6% = 0: 4"(n, X) — A%(n, X)). Since
A*(n, X) is null for p > n, therefore it has no contribution in the
definition of the spectrum it is easy to see that a system T = (T,
.-+, T,) is nonsingular on X if and only if the 2-nilpotent operator
dr is exact on X™, /

The definition of the joint spectrum allows to recapture many
spectral properties of the one-dimensional case, including the func-
tional calculus with analytic functions [9], [10]. However, there are
some simple properties which have not direct variants in several
dimensions. One of them is given by the next result.

ProposITION 4.1. Suppose that TeB(X) is invertible and let
{Z.}. be an increasingly directed family of closed subspaces of X,
mvariant under T, such that T| Z, is invertible for any a. Then
T| Z is invertible, where Z = c.l.m. {Z,},.

Proof. It is sufficient to show that T'| Z is surjective. Indeed,
if ye Z then y = lim, y,, where y,€ Z, , therefore y, = Tx,, with
%,€ Z,,. Moreover,

limz, = lim(T| Z,,) 'y, = lim Ty, ,
consequently x = lim, z,€ Z and Tx = v.

A direct version of Proposition 4.1 is not possible for more than

one dimension.

ExaMPLE. Let Z be a separable Hilbert space and set Z, = Z
for k=1,2, 8, -.-. Suppose that every Z, has an orthonormal basis
of the form ({e!};=... Define X = @i., Z,. Let T, be the bilateral
translation on Z,, namely



604 F.-H. VASILESCU

Tke? = el;'+1 ’ (1eZ2)

and denote by T the direct sum @7, T,. Let now {\,}i., a sequence
of complex numbers, A, # 0 for any k, A,— 0 as k— . We define
on every Z, the operator S, = )\, and let us put S=@:. S,. It is
obvious that 7'S = ST. Since the operator T is unitary on X, thus
invertible, it follows that the system (7, S) is nonsingular on X
([9]; see also the proof of Theorem 4.5).

Consider now the subspaces

ZF = c.lm. {e"};’f;o ’ k= 1; 2, ...

and define X; = @j-, Zi, X* = @1 Z,. It is clear that the spaces
X% and X' are invariant under T and S, for any n. Furthermore,
the system (T'| X;, S| X;) is nonsingular on X, since the operator
S| X} is invertible (because of the choice of the numbers A, 1 <k < n).
On the other hand, (7| X*, S| X") is singular. Indeed, it is sufficient
to show that X" = TX* + SX*. Let & be in X' of the form
= &e. If ¢= TC+ Sy, we would have, for the coefficients
7, of 7 corresponding to ef, the relations

7\41:7]1‘:51” k:1;273;"'

which is not possible for any choice of ¢ of the given form, because
M, — 0as k— . In this way we have shown that the nonsingularity
of (T, S) on X and on any X, does not imply the nonsingularity of
(T, S) on X+ = ec.l.m. {X;}..

There is a result which is “symmmetrical” to Proposition 4.1.

PROPOSITION 4.2. Suppose that TeB(X) is invertible and let
{Z.). be a decreasingly directed family of closed subspaces of X,
invariant under T, such that T| Z, ts invertible for each . Then
T | Z is invertible, where Z = [\, Z,-

Proof. It is easy to see that T'| Z is injective and surjective.

According to expectation, Proposition 4.2 does not have a direct
variant in several dimensions. An example in this sense can be
easily obtained from the above Example. Indeed, with the same
notations, consider the system (7*, S*) and the family of subspaces
{(X})*}2-,.. Since the nonsingularity is preserved by the duality and
the space (X;)* is isomorphic to the dual space (X/X,)*, we obtain
that (7%, S*) is nonsingular on (X;)* because (7, S) is nonsingular
on both X and X; (see [9, Lemma 1.2]). Analogously, (7%, S*)
cannot be nonsingular on M, (X;)* = (X*)* since (7, S) is singular
on X+,

In spite of these rather disappointing examples, there are cases
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when both Propositions 4.1 and 4.2 have extensions in several variables.
These cases are consequences of the finiteness of a certain closed range
modulus.

Consider again a system T = (T, ---, T,) of commuting operators
on the Banach space X. If Zc X is a closed subspace invariant
under T (i.e. invariant under T; for j =1, ..., n), define Z™ by the
formula (4.1) and notice that Z™ is a subspace of X, invariant
under o,. If R={Z,}, is a family of such subspaces, then denote
by R the corresponding family {Z{”},. We define also the closed
range modulus of T on R by the formula

(4.2) &(T, R) = £(0,, R™) .

For any subspace Zc X invariant under T = (T, --., T,), the
notation T'| Z stands for the system (7.|Z, ---, T, | Z).

THEOREM 4.3. Let T= (T, ---, T,) be a commuting system of
operators in B(X) and R ={Z,}, an increasingly directed family of
closed subspaces of X, invariant under T. If T| Z, in nonsingular
for any a and (T, R) < o« then T| Z is nonsingular, where Z =
elm. {Z,}..

Proof. Since Z™ = c.l.m.{Z{},, this theorem is Theorem 3.1
rewritten.
Analogously, we get from Theorem 3.2 the following

THEOREM 4.4. Assume that X is the dual of X, and T =
(T, ---, T,) is the adjoint of the system Ty = (T, «-+, T,.), Tx acting
wm X.. If R={Z,), ts a decreasingly directed family of w*-closed
subspaces of X, invariant under T, such that T | Z, ts nonsingular
for any a and K(T,R) < o, then T|Z is monsingular, where
Z = e Z..

We shall end this section with a result of finiteness for the
closed range modulus of a commuting system of operators, in a
special case.

THEOREM 4.5. Let T = (T, ---, T,) be a commuting system of
operators on X and assume that T.V,+ .- + T,V, =1, where
V, -+-, V. are operators in the commutant of T in B(X). If R is
any family of closed subspaces of X, invariant for the action of T;
and V;(7=1, ---, n), then £(T, R) < .

Proof. We have to show that the maps
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(4.3) R(Or12) — Z™[%(0r12)

defined as in (1.1), are uniformly bounded for ZeR. We shall use
an idea from [9, Lemma 1.1]. Fix ZeR and take & ¢ 4°(n, Z) with
the property 626” = 0. Let us define the element 7”¢ 4°7'(n, Z) by
the formula

(4°4) 77:0(”17 Tty viﬂ—l) = _72=1 VJS(.?; Yy, ooy uP—l) .

Then we can write
(s - ov, ) = 3 (=107 Ty 30 Vil 0y ooy D30, %)
= é V",z:;‘ (=1, &2k, vy, =+ vy Dgy ooy Yp)
= (kﬁ'_,:l Vka>§”(1)1, e ) = E(vy, e, V)

where we have used the relation
Tkép(vl, M) vl’) = i (—l)j-HTijp(ky Vi, »ooy 1/J\:/" ) vl’) ’
j=t

obtained from 62&? = 0. (In particular, we have obtained the non-
singularity of T'| Z.) Consequently the norm of the map &” — 7? +
N(0%,,) has the estimation

77 + REpI =77l = Cllenll

where C > 0 does not depend on Z, as it follows from (4.4). More
general, in order to estimate the norm of (4.8), if & = @}-.57 € R(d7,2)
we can choose a solution 7 = @7_, Z™ of the equation 6,7 = & such
that

17+ R@I = 71l = ClIEN

where C >0 does not depend on Z. According to the definition
(4.2) we have then

K(Ty m) = K(ST; ER(n)) < +oo

and the proof is complete.

5. We shall deal in what follows with some special problems
of spectral theory of commuting systems of operators on a Banach
space X.

We recall that a spectral capacity on C™ [3],[2] is a map
assigning to every closed set FFc— C" a closed subspace X(F)c X,
with the properties:
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(1) X(v)={0} X(C") = X.

(2) XN F) = N X(F,), for any sequence of closed sets
{F.Ji- in C™

(3) 3%, X(G,) = X for any open covering {G,)i_, of C".

If the property (3) is true only for p < m, with a fixed m = 2,
then the map F — X(F') is an m-spectral capacity [2], [7].

A commuting system of operators T = (T, ---, T,) is called
m-decomposable (decomposable) if there exists an m-spectral (a spectral)
capacity F'— X(F') (F closed in C*) with the properties:

(1) each X(F') is invariant under T;

(2) o(T; X(F))c F, for every F.

It is known that each m-decomposable system T has only one m-

spectral capacity [7], [11].
Let T= (T, ---, T,) be an m-decomposable system of operators

on X and F— X(F') its m-spectral capacity.
We shall say that F— X(F') is tempered on a set Ac C" if for
every 2¢ A we have

(5.1) Kz — T, R) < +oo ,

where R, = {X(F'); Fc A, F closed}.
We shall say that F— X(F) is x-tempered on the closed set
KcC" if for every z¢ K there is an open set Hsz, HN K = &, such

that
(5.2) K(z — T* RE.) < +oo,

where R% . = (X/X@G)*;GNn K= @, GD H,G open} (the spaces
(X/X(@))* are identified here with subspaces of X*).
For any set A c C" we define

X(4)= U {X(F); Fc A, F closed} .

Since every spectral capacity is monotone, it is clear that X(A) is
a subspace, not necessarily closed, of X.

When a spectral capacity is tempered (+-tempered) on every
(closed) set, we shall call it simply tempered (*-tempered).

ProprosITION 5.1. Let T= (T, ---, T,) be an m-decomposable
system of operators on X and F— X(F') its m-spectral capacity.

(a) If F— X(F) is tempered on AcC C" then (T; X(A)) C A.

(b) If F— X(F) is =-tempered on the closed set K c C* then

o(T*; (X/X(C\K)*) C K.

Proof. Fix z¢ A and consider the family of closed subspaces
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R, which appears in (5.1). It is clear that R, is increasingly directed.
According to (5.1) and Theorem 4.3, z — T is nonsingular on c.l.m.
{X(F)}pcs = X(A). In this way we have (a).

In order to prove (b), first of all let us show that

(5.3) &T; X/ X(@) cC\G,

for any open set G C*. We shall use an argument from [11]. Let
H be another open set such that GU H = C*. We have then X =
X(G) + X(H), because T is m-decomposable. Notice that X/X(G) is
isomorphic to X(H)/X(G n H), hence

&T; X/X(G)) = &(T; X(H)/X(Gn H)cHUGNnH) = H,

according to a Taylor’s result on spectral inclusions [9, Lemma 1.2].
As H is arbitrary with the property G U H = C*, we obtain (5.3).
Secondly, note that if z¢ K is fixed, we have

(X/X(C\K)* = N{X/X(G)*; GNn K= @, GD H, G open},

where H is chosen such that the relation (5.2) is fulfild. On account
of Theorem 4.4 and the relations (5.2) and (5.3) we obtain that z — T™*
is nonsingular on (X/X(C"\K))*.

Proposition 5.1(b) suggests the definition of a “dual capacity”
by the formula

(5.4) XH(F) = (X]X(C\F))* ,

where FcC* is arbitrary, as a natural extension of the one-
dimensional case [6]. In order to apply Proposition 5.1, we must
assume that the spectral capacity F— X(F') is *-tempered on each
closed set. It is beyond our scope to develop here a theory of duality
for spectral capacities in several dimensions. We have only illustrated
some of the difficulties of such an attempt.

For » = 1 the formulas (5.1) and (5.2) are automatically fulfiled.

PROPOSITION 5.2. Let T be an m-decomposable operator. Then
its m-spectral capacity F— X(F)F cC, F closed) is tempered and
x-tempered.

Proof. Fix an arbitrary set AcC and take z¢ A. According
to Proposition 1.1 we have then

sup [|((z= — T) | X(F)* || = [l((z — T) | X(A)~ I

F closed

hence F'— X(F') is tempered on A.
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Now, it is known that the formula (5.4) defines the 2-spectral
capacity of T [6]. From the formula (5.3) we obtain

(T (X/X(@)*) = ¥(T; X/X(G) c C\G,

hence (X/X(G))* c X*(C\G), the spaces X*(F) being spectra maximal
(see [6] for details). If KUC is a closed set and z¢ K is arbitrary,
if we define

H = (we C: dist (w, K)} > % dist (z, K) ,

we have for any GO H,GN K= &,

Iz = TYX/XGN) I < 11 ((z = T*) | XHC\G) ||
= (=T XC\H)

whence F— X(F') follows =-tempered.

In several dimensions, the existence of a result similar with
Proposition 5.2 is not certain; it becomes yet less certain in virtue
of our examples in the fourth section. However, the answer is
positive for classes of systems satisfying the conditions of Theorem
4.5. Such examples are, for instance, the classes of systems having
functional calculi [4], [1]. For the sake of simplicity we shall consider
only a particular case (see [1] for details).

Let &~(C") be the algebra of all indefinitely differentiable complex
function in C* = R™,

A functional calculus is a continuous homomorphism U of the
unital algebra & ~(C") into the unital algebra B(X). Denote by
T; = U(z;), where z— z; stand for the coordinate functions (5 = 1,
«vo,m). The system T = (T, ---, T,) will be called a generalized
scalar system. Such a system is decomposable and its spectral
capacity is given by

X(F) = N{MU); supp N F =2},

where supp f denotes the support of f in C*, and F'is an arbitrary
closed set in C". It is known that 7| X(F') is again a generalized
scalar system, for any closed F.

ProPOSITION 5.3. Let T= (T, ---, T,) be a generalized scalar
system. Then its spectral capacity is tempered and =-tempered.

Proof. Let A be an arbitrary set in C* and z¢ A a fixed point,
z2=1(2, ++-, 2,). Then the functions

Piw) = @5 — w))] 3|z — wif
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are defined in a neighborhood of A, therefore the operators V, =
(U] X(A))(p;) are correctly defined and we have 3%, (z; — T;)V,; =1
on X(A). Since the spaces X(F) are invariant under T; and V; for
any FFc A, F closed, we may apply Theorem 4.5 and get that the
spectral capacity F — X(F') is tempered on A.

Since the system T* = (T¥, ---, T¥) is generalized scalar on X*,
the proof that F— X(F') is *-tempered is similar and will be omitted.
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