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ON HOMOGENEOUS ALGEBRAS

LOWELL SWEET

If A is an algebra over a field K let Aut (A) denote the
group of algebra automorphisms of A. Then A is said to be
extremely homogeneous if Aut (A) act transitively on A\{0}.
Also A is said to be homogeneous if Aut (A) acts transitively
on the one-dimensional subspaces of A. The purpose of this
paper is to investigate some of the basic properties of homo-
geneous algebras. In particular, the alternative homogeneous
algebras and the homogeneous algebras of dimension 2 are
classified.

All algebras are assumed to be finite dimensional and not
necessarily associative.

We now include a brief historical account of this topic. The
concept of an extremely homogeneous algebra arose from a particular
problem in the structure of certain finite p-groups as studied by
Boen, Rothaus and Thompson [1]. Extremely homogeneous algebras
have been investigated by Kostrikin [4]. Homogeneous algebras
over finite fields other than GF(2) have been investigated by Shult
[6], [7], and his results completed the work on the related p-groups.
The case of homogeneous algebras over GF(2) was considered by Gross
[3]. Swierczkowski classified all real homogeneous Lie algebras [9]
and finally Dyokovic classified all real homogeneous algebras [2]. A
homogeneous algebra A is said to be nontrivial if A2Φ0 and dim A>1.
The author has shown that there are no nontrivial homogeneous
algebras over an algebraically closed field [8].

The paper is divided into five sections: arbitrary homogeneous
algebras, alternative homogeneous algebras, power-associative homo-
geneous algebras, homogeneous quasi-division algebras and finally
homogeneous algebras of dimension 2.

L Arbitrary homogeneous algebras* Let A be an arbitrary
algebra over a field K. Then left multiplication by a fixed element
ae A induces a linear map on A which is denoted by La. Similarly
right multiplication by a induces a linear map on A denoted by Ra.
We do not distinguish between the map La and its matrix represen-
tation relative to some fixed basis. By End (A) we indicate the vector
space of all linear maps on A. By L we indicate the subspace of
End (A) consisting of all Lx as x runs through A and similarly for
R. An algebra A is said to be nonzero if A2 Φ 0.

THEOREM 1. Let A be a nonzero homogeneous algebra over a
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field K. Then
( i ) dim L = dim R = dim A
(ii) If a, be A\{0} then La and La are protectively similar and

similarly for Ra and Rb,
(iii) Aut (A) acts as a transitive group of collineations on the

points of the protective geometry P(A).

Proof. (1) Let αeA\{0}. Then if a A = 0 the homogeneity
condition implies that A2 = 0 which is a contradiction. This fact
implies that the map φ: x —+ L9 is a linear isomorphism and so dim L =
dim A. Similarly it can be shown that dim R = dim A.

(2) The proof is a simple generalization of a related result
found in the introduction of the paper by Boen, Rothaus, and
Thompson [1].

(3) This is obvious since the points of P(A) are exactly the
one-dimensional subspaces of A.

THEOREM 2. Let A be a nontrivial homogeneous algebra over
a field K. Then

trLx = trRx = 0 VxeA

Proof. Let dim A = n. It is well known that tr: End (A) —> K
is a linear functional and that dim ker (tr) = n2 — 1. But then since
dim L — dim A — n > 1 it follows that L Γ) ker (tr) Φ 0 and so there
must exist at least one nonzero map Lae L such that tr La = 0. But
now the second result of the previous theorem implies that tr Lx = 0
for all x e A. Similarly tr Rx = 0 for all x e A.

THEOREM 3. Leέ A be a homogeneous algebra over a field K
and let aeA\{0}. If (a) denotes the subalgebra of A generated by
a then (a) is also a homogeneous algebra enjoying the property
that it is generated by each of its nonzero elements. Also A = (J At

where each At — <α*> for some at 6 A\{0} and At Π A3 — {0} for i Φ j .

Proof. Let δe<α>. Clearly <δ> g <α>. But there must exist
a 6 Aut (A) such that a(a) = Xb for some nonzero λ e K and this
implies that (a) S (b) and so <α> = <&>. That is <α> is generated by
each of its nonzero elements. Now let c and d be any nonzero
elements in (a). Again there must exist β e Aut (A) such that
β(c) = xd for some nonzero λ e K. But the fact that both c and d
generate (a) implies that <α> is invariant under β and so the
restriction of β to <α> is in Aut « α » . That is, <α> is also a homo-
geneous algebra. The final statement again follows directly from
the fact that <α> is generated by each of its nonzero elements.
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The above theorem implies that in some situations it is sufficient
to consider the case where a homogeneous algebra A is generated
by each of its nonzero elements.

DEFINITION. Let V be a vector space over a field K and suppose
H is a subgroup of GL( V) where GL( V) is the general linear group.
Then C(H) is defined as

C(H) = {u e End (A) \uv = vu for all Ve H} .

DEFINITION. Let A be an algebra over a field K and suppose
S, Te C(Aut(A)). Then A(S, T) indicates a new algebra which coin-
cides with A when considered as a vector space over K but possesses
a new multiplication defined by

aob = S(a)b + T(b)a for all α , 6 e i

Note that the fact that S and T are linear maps on A ensure
that °:Ax A—>A is a bilinear map. Also the algebras -4.(1,1),
-4(1, -1) and A(0, 1) are well known and are usually denoted as A+,
A~ and Aopp respectively.

THEOREM 4. Let A be a homogeneous algebra over a field K and
suppose S, TeC(Ant(A)). Then A(S, T) is also a homogeneous
algebra.

Proof. Let σeAut(A). Then

σ(aob) = σ(S(a)b+ T(b)a)

= σ(S(a)b) + σ(T(b)a)

= (σS(a))σ(b) + (σT(b))σ(a)

= (Sσ(a))σ(b) + (Tσ(b))σ(a)

= σ(a)oσ(b)

an so the result is true since Aut (A) c Aut (A(S, T))

DEFINITION. Let A be an algebra over a field K. Then A is
left (right) simple if A possesses no nonzero proper left (right) ideals.
Also A is simple if A possesses no nonzero, proper, two-sided ideals
and A2 Φ 0.

THEOREM 5. If A is a nonzero homogeneous algebra then A is
left simple and right simple.

Proof. Assume that A has proper nonzero left ideals. When
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B runs through minimal left ideals then the sets B\{0} form a par-
tition of A\{0}. Suppose a e A\{0} and let I(ά) denote the minimal
left ideal which contains a. Now Ba map A—*/(α) and since I(a) Φ A
it follows that Ra has a nonzero kernel. That is, there exists b e A\{0}
such that ba = 0. Let c be any point in A\I{a). Then I(c) Π /(α) = {0}
which implies that I(c) Π I(c + α) = {0}. But 6(c + α) = be and so
δc e I(c) Π /(<J + α) which implies that be = 0. Now fix some nonzero
c6 A\I(α) and let d be any point in I(α)\{0}. Then c + de A\I(α) and
so b(c + c£) = bd — 0. Hence 6A = 0 which is impossible since A is a
nonzero homogeneous algebra. Hence A has no proper nonzero left
ideals and similarly A has no proper nonzero right ideals.

II* Alternative homogeneous algebras* The following definition
is well known.

DEFINITION. An algebra A over a field K is said to be alternative
if

a2b — a(ab)

ab2 - (ab)b

for all a, be A.

THEOREM 6. There are no nontrivial alternative homogeneous
algebras.

Proof. Let A be a nontrivial alternative homogeneous algebra.
Then the previous theorem implies that A is simple. But it is known
that a simple alternative algebra has an identity element 1 (see
Corollary 3.11 of Schafer's book [5]). But then A is certainly not
homogeneous since a(l) — 1 for all a e Aut (A).

Note that the above theorem of course implies that there are
no nontrivial associative homogeneous algebras.

Ill* Power-associative homogeneous algebras*

THEOREM 7. Let Abe a power-associative nontrivial homogeneous
algebra over a field K. Then either a2 = 0 for all ae A or a2 = a
for all a in A and in the latter case A is a Jordan algebra and
K= GF(2).

Proof. Let a be some fixed element in A\{0}. Then Theorem 3
implies that <α> is an associative homogeneous algebra and so the
previous theorem implies that <α> is a trivial homogeneous algebra.
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It follows that either α2 = 0 or a2 = λα for some nonzero λ e K. In
the former case the homogeneity condition implies that x2 = 0 for
all x e A and so we may assume the latter case. The homogeneity
condition implies that x2 — X(x)x where X(x) is a nonzero scalar in K
possibly depending on x. Since dim A > 1 we may choose two inde-
pendent vectors in A, say eι and e2. Since α2 = λα implies that
(α/λ)2 = α\λ we may assume without loss of generality that both e1

and e2 are idempotents. It is now necessary to perform several
simple calculations. First

(βi + e
2
f = βί + e

2
 + βiβ

2
 + e

2
e
x
 = λ(e

x
 + β^fo + β

2
)

(«i ~ e
2
)

2
 = βi + e

2
 — e

γ
e

2
 — e

2
e

γ
 = λ(βi — β

2
)(β! — e

2
)

Now adding and comparing coefficients gives

2 = λ(β! + β2) + λ(βx — e2)

2 = λ(βi + e2) — λ(βi — e2)

or

2λ(e1 - β2) = 0

which implies that char K = 2.

For convenience let jtί = λ(βt + e2). Then from above

0^2 + β2ex = (μ + l)(e! + β2) .

Now consider

from which it follows that μ2 + μ + 1 = 1 which implies with char
K — 2 that μ — 1 and so

βiβa + e2β! = 0 .

Now let δ be any nonzero scalar in K. Then

(β l + δe2)
2 = βx + <52e2 + δ(βxe2 + β^) = e, + d2e2

which implies that d2 = δ and so <5 = 1 and indeed K — GF(2). Hence

x2 ~ x for all xe A. But then

(x + y)2 = x + y + xy + yx = x + y

and so xy = yx for all x,yeA and thus A is a commutative algebra.
The second identity for a Jordan algebra is trivally satisfied and so
A is a Jordan algebra over GF(2).
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It is interesting to note that Dyokovic has shown that all non-
trivial real homogeneous algebras are of the first type [2] and
Gross has shown that some, but not all, of the known homogeneous
algebras over GF(2) are of the second type [3].

IV* Homogeneous quasirdivision algebras*

DEFINITION. An algebra A over a field K is said to be a quasi-
division algebra if the nonzero elements of A form a quasi-group
under multiplication.

One of the reasons for devoting a separate section to homogeneous
quasi-division algebras is that Shult [6] and Gross [3] have shown
that all nontrivial finite homogeneous algebras are in fact quasi-
division algebras.

THEOREM 8. Let A be a nontrivial homogeneous quasi-division
algebra with the property that A is generated by each of its nonzero
elements. Then

( i ) Aut (A) is sharply transitive on the one-dimensional
subspaces of A

(ii) If a is any element in A\{0} then La has precisely one
eigenvalue denoted by Xa e K and the corresponding eίgenspace is
one-dimensional

(iii) Finally Xa = Xb if and only if there exists some a e Aut (A)
such that a{a) = 6.

Proof. (1) It is sufficient to show that no automorphism of
A, except the identity Id, can have an eigenvalue in K. Let
a G Aut (A) and suppose that a has eigenvalue X e K. Then there
exists a e A\{0} such that

a(a) = Xa .

Since A is not associative by Theorem 6 we define inductively

an = LΓXa) w = 2, 3, 4, •

But now

a(an) = Xnan n = 1, 2, 3, . . .

and so there must exists positive integers m, n with m> n such
that λm = Xn since a can only have a finite number of eigenvalues.
Letting k = m — n we have

a(ak) = Xkak = ak Φ 0
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and so a = Id since from the hypothesis we are assuming that ak

generates A.
(2) Let a and b be any two nonzero elements of A. Since A

is a quasi-division algebra the equation

xb = δ

must have a solution, say c and the homogeneity condition implies
that there exists a e Aut (A) such that

a(c) = λα for some λ e JSΓ\{0} .

But then

aa(b) = 1/Xa(b)

and so La has at least one eigenvalue.

Now suppose there exist nonzero elements b, ce A such that

ab = λδ

αc = μc

where λ, μe K. If {6, c} is an independent set then there must exist
a e Aut (A) such that

a(c) = <?& for some δ e K .

But then

and thus

(Xa(a) — μα)6 = 0

which implies that a — Id by the previous part of this theorem.
Thus La has precisely one eigenvector (up to a scalar multiple) which
completes the proof of the second statement.

(3) Finally if a e Aut (A) then ax — Xax for some λ e A\{0}
implies that

a(a)a(x) = Xaa(x)

and so

also if λα = λδ then there exists x, ye A\{o} such that

ax = Xax

by = λ6y = Xay .
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Now choose β e Aut (A) such that β(x) = μy for some μ e K\{0}
and applying β we obtain

β(a)y = λβy = δ#

and so it follows that β(a) = b as required.

IV* On homogeneous algebras of dimension 2* We now in-
vestigate arbitrary homogeneous algebras of dimension 2.

THEOREM 9. Let A be a nonzero, 2-dimensional, homogeneous
algebra over a field K. Then K — GF(2) and A has a basis {α, b}
so that A is isomorphic to one of the following algebras.

a

b

a

a

a + b

b

a +
b

b a

b

a

b

a a

b

a

+ b

Proof. Let a e A\{0}. Then there are exactly three possibilities
which will be considered separately

( i ) a2 = 0
(ii) a2 — Xa for some nonzero λ e K
(iii) {α, α2} is a basis of A
(1) If a2 = 0 then the homogeneity condition implies that x2 = 0

for all xe A and the linearized form of this identity implies that A
is anticommutative. Extend a to a basis of A, say {α, b). Using
the fact that tr La 0 and La Φ 0 it follows that ab = Xa for some
nonzero Xe K. But now ab = Xa and b2 = 0 imply that tr L6 = — λ Φ 0
which is impossible. Hence this case does not occur.

( 2) If a2 — Xa where X Φ 0 then the homogeneity condition
implies that A is power-associative and so Theorem 7 implies that
K = GF(2). Again extend a to a basis of A, say {α, δ}. Using the
fact that tr La = tr L6 = 0 and Lα ^ 1 and L6 Φ 1 it follows that A
must be of the form

a

b a

a

a

+ b

a

b

+
b

b

By direct computations it can be shown that Aut (A) — GL(2, 2) and
so Aut (A) is in fact triply transitive on A\{0}.

(3) Suppose that {a, a2} is a basis of A. First pass from A to
A~. By Theorem 4, A~ is also a homogeneous algebra and clearly
A~ is of type (1) as defined above and so A~ must be a zero algebra
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which implies that A is commutative. If aa2 = 0 then trLα2 — 0 and
La2 Φ 0 implies that La is nilpotent but La+a2 is invertible and so A is
a quasi-division algebra generated by each of its nonzero elements and
so we may apply Theorem 8. Assume aa2 = μa.

Let 6 be any fixed nonzero element of A. The equation xb — b
must have a solution and without loss of generality we may assume
that x = a. Hence the only eigenvalue of La is 1 and it follows that
μ = 1 and char K = 2. Also αV = vα + α2 for some nonzero ve K. Now
since La and Lα2 both have eigenvalue 1 it follows from Theorem 8
that there must exist a e Aut (A) such that α(α) = a2. But then

a(a2) = α(α)α(α) = αV = i?α + a2

a(a2a2) = α(ι;α + α2) = i>α2 + va + α2

= (va + α2)(vα + a2) = v2a2 -\- va + a2 .

It follows that v = 1 and so the multiplication table of A is of the
form

a

a

aΔ a

a a + a

If K — GF(2) it is easily shown that A is in fact a homogeneous
algebra. If K = GJ (̂4) it can be shown that det (Lβ + λLα2) =
1 + λ + λ2 = 0 for some λ e GF(4) and so A is not homogeneous
since it is not a quasi-division algebra. Now assume that K Φ GF(2)
and K Φ GF(i). Then there must exist λ0 e K such that λ0 is not a
root of the polynomial x2 + x + 1 or of the polynomial x4 + xz + x2 + 1.
Since A is homogeneous there must exist α: e Aut (A) such that

a(a) = λ(α + λ0α
2) for some nonzero λ e K .

But then

α(αα2) = λ3(l + λ0 + λ2)α + λ3λ0(l + λ0 + Xξ)a2

=z a(a) = λα + λλ0α
2

and so

(1) λ
1 + λ0 + λ2,

Also

a(a2a2) = λ4(l + λ4

0)α + λ4α2

= a(ά) + a(a2)

= (λ + λ2λ2)α + [λλ0 + λ2(l
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which implies using (1) that

( 2 ) λ2 == ! + λo + λo

1 + λ4

0 + λj

and together (1) and (2) imply that

λ4

0 + Xl + λ0

2 + 1 == 0
which contradicts our choice of λ0. Hence A is a homogeneous algebra
if and only if K = GF{2).
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