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BOUNDED ANALYTIC FUNCTIONS ON A CLASS
OF OPEN RIEMANN SURFACES

CHARLES M. STANTON

In this paper some function theoretic properties of an
open Riemann surface are related to a condition on the ex-
haustion of the surface by finite Riemann surfaces. The
class of Myrberg surfaces is introduced; these are certain
branched covering surfaces of the unit disc. The exhaustion
condition is used to distinguish those Myrberg surfaces on
which the bounded analytic functions separate points. A
complete description is given of the ways in which the space
of bounded analytic functions on a Myrberg surface can de-
generate. The exhaustion condition is stated in terms of the
Green's function; it is already known to be equivalent to a
function theoretic condition on the fundamental group of the
surface. This latter condition is shown to imply that the
surface is an open subset of the spectrum of its Banach
algebra of bounded analytic functions.

Widom [14], [15] introduced the exhaustion condition for open
Riemann surfaces and discussed its relation to the fundamental group.
Plane domains with similar properties had been considered by Voichick
[13]. In §1, the relevant parts of Widom's work are summarized.
In §2, we consider a class of finitely sheeted branched coverings of
the unit disc, following a construction of Myrberg [10], Many
examples of function theoretic difficulties on surfaces of infinite genus
are based on this construction. (Cf. Hejhal [9] and Sario and Nakai
[11].) These examples exploit the failure of the bounded analytic
functions to separate points on the surface. We show that Widom's
condition distinguishes those Myrberg surfaces on which the bounded
analytic functions separate points from those on which all bounded
analytic functions are lifted from another Myrberg surface. In §3
we use the relationship of Widom's condition to the fundamental
group to prove that Widom's condition implies the surface is an open
subset of the spectrum of its Banach algebra of bounded analytic
functions. This proof follows an argument of Stout [9] in making
use of a fact about analytic structure in spectra.

The author would like to thank the members of the Brown
Analysis Seminar, in particular Professors Accola, Cole and Wermer,
for many helpful discussions of this material. The author is grateful
to Professor T. W. Gamelin for enlightening correspondence on the
contents of this paper. The author is also indebted to the referee
for his criticism of previous versions of the paper.
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!• Widom's condition* The material in this section is due to
Widom [14], [15] and a more complete development can be found in
those papers. Let W be an open Riemann surface, H^iW) its Banach
algebra of bounded analytic functions, πx{W) its fundamental group,
and πx{WY the character group of πx{W). That is, π^W)* is the
group of all homomorphisms of πλ(W) into the circle group. Let H^W)
be the first singular homology group of W with integer coefficients,
and let H^W)* be the character group of H^W). Since H^W) is
πλ(W) made abelian, π^W)* is naturally isomorphic to H^W)*.

Each character of πJJV) arises by analytic continuation of a
multiple-valued analytic function with single-valued modulus. For
let F be a multiple-valued analytic function on W such that \F\ is
single-valued. If C is a closed curve on W, analytic continuation of
a function element of F around C results in multiplying the function
element by a constant a of modulus one. Now a depends only on
F and the homotopy class of C. Thus the equation χF(C) = a defines
a mapping of the fundamental group into the circle, and this mapping
is a character. Conversely, each χ in π^W)* is naturally identified
with an element of H^W)*, which we also denote by χ. The Behnke-
Stein theorem guarantees the existence of a real-valued harmonic
function U on W whose conjugate differential satisfies

for every cycle C on W. Let u denote the multiple-valued harmonic
conjugate of u and set F = βxp{u + ίu}. Then F is a multiple-
valued analytic function on W, \F\ is single-valued, and χF = χ.

Widom gives a necessary and sufficient condition that every
character of π^W) come from a multiple-valued analytic function
with bounded single-valued modulus. For χ in πx{W)*> let H{W, χ)
be the class of all multiple-valued analytic functions F on W such
that \F\ is single-valued and χF = χ. For q in W, set

m(W, q, χ) = sup{|F(g)|: FeH(W, χ), \F\ £ 1 on W]

m(W, q) - inf {m(W, q, χy.χe

with the convention that zero is the supremum of an empty set of
nonnegative real numbers.

Assume that W is hyperbolic and let g(p, q) be the Green's function
of W with pole at g. For each a > 0, let Wa = WJg) = {peW: g(p,
q) > a). Now Wa is an open connected subset of W. For assume
that Wa is the union of two disjoint open subregions V1 and V2,
where q is in F lβ Define h on W by setting h(p) = g(p, q) for p in
W~ V2 and h{p) — a for p in V2. Then h is a nonnegative super-
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harmonic function on W with a positive logarithmic singularity at
q. Since h(p) ^ g(p, q), it follows from the minimum property of
the Green's function that h(p) = g(p, q). Hence V2 is empty.

Let β(a) be the first Betti number of Wa. Widom establishes
the formula

m(W, q) = exp ί- [ β{a)da
\ Jo

with the convention that the right hand side is zero when the integral
diverges. Widom also proves that convergence of the integral does
not depend on the choice of the point q, and is a property of the
ideal boundary of W. Widom proves that every character of π^W)
arises from a multiple-valued analytic function with bounded single-
valued modulus if and only if m(W) > 0. Moreover, if m(W) > 0,
q is in W, and χ is in π^W)* then there is an F in H{W, χ) such
that \F\ is bounded and F(q) Φ 0.

Assume that m(W) > 0 and let g(p, q) be the multiple-valued
harmonic conjugate of g{p, q). Form the function

Φ(p, q) = exp - {g(p, q) + ig(p, q)} .

Fixing q and considering Φ(p, q) as a function of p, we find that it
has the following properties: Φ is a multiple-valued analytic function
of p with single-valued modulus; \Φ\ < 1 on W\ Φ vanishes only at
q, where it has a simple zero. Let χ be the character of πx(W)
corresponding to Φ, and let χ~ι be the inverse character. For each
p Φ q in W, there is a bounded function Ψ in H( W, %~ι) such that
Ψ(p) Φ 0. Let / = ΦΨ. Then / is in H°°(W), f(p) Φ 0 and f(q) =
0. Hence H°°(W) separates the points of W. (This argument is due
to Widom [14], [15].)

2* Myrberg surfaces and Widom's condition* We shall call a
Eiemann surface W a Myrberg surface over the unit disc U (or more
simply a Myrberg surface) if there is an analytic function z:W—>Z7
realizing W as an %-sheeted, branched, full covering surface of U.
(That is, each point of U has exactly n pre-images, counting mul-
tiplicities.)

Our first goal is the following theorem.

THEOREM 1. Let W be a Myrberg surface over the unit disc.
A necessary and sufficient condition that ίP°( W) separate the points
of W is that m(W) > 0. This holds precisely when the projections
of the branch points form the zero set of a Blaschke product.
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Proof. We have seen that H°° separates the points of W if
m(W) > 0. The converse follows immediately from the following
two lemmas.

LEMMA 2. Let (W, z) be a Myrberg surface over U. Let (ak}
be the sequence of points of U over which z is branched. For each
k, let nk be the order of branching over ak. If H°°(W) separates
the points of W, then the series Σnk\og\ak\ converges.

LEMMA 3. In the notation of Lemma 2, a necessary and sufficient
condition that m(W) > 0 is that the series Σnk log |ak \ converge.

Proof of Lemma 2. Let a be a point of U such that z~ι[a] con-
sists of n distinct points of W. Since H°°(W) separates the points
of W, there exists an / in iT°(TF) which takes n distinct values at
the points of s""1^]. By a standard argument borrowed from the
theory of compact Riemann surfaces, / satisfies an equation of the
form

fn + α ^ ) / - 1 + • + an{z) = 0

where al9 •• ,an are in H°°(U). Let D be the discriminant of this
equation. Then D is in H°°(U), D does not vanish identically, and
D vanishes at each point ak to order at least nk. Hence the series
Σnk log I ak | converges.

Proof of Lemma 3. To determine the convergence of Widom's
integral for W, we may suppose that there are n distinct points
qk, 1 <: k ^ n, of W with z(qk) = 0. Set

h(p) = n'1 Σ 9(P, Qk) , peW .
Jfc = l

Then h(p) = —log |«(p)|. We shall show that Widom's integral con-
verges if and only if the corresponding integral formed from h
converges.

It is sufficient to discuss Widom's integral for the point qλ. We
use our previously established notation Wa and β(a) with respect to
this point. For each a > 0 we let Va = {p e W: h(p) > a} and Ύ(a)
the first Betti number of Va. Fix R, 0 < R < 1, such that {p e W:
\h(p)\ > R} is connected. There is a constant A such that

L) ^ h(p) ^ Ag(p, qj , \z(p)\ ̂  R .

If 0 < a < — logiZ, then Va is connected and we have that WaAa
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Va c WaA-u It follows from the maximum principle that Va ~ WaA

has no components which are relatively compact in Va. Thus every
bounding cycle in WaA already bounds in Vaί so β(aA)^7(a). Similarly
Ί{a) < β{aA~ι). Thus, for every e > 0,

S -AlogR Γ-logR Γ-A-llogR

β{ά)da S \ 7{a)da ^ A β{a)da
Aε Jε J A~1ε

S oo Λoo

β{a)da converges if and only if I 7{a)da converges.
o Jo

We next relate the convergence of the second integral to the
branching of the mapping z. Now

Va={peW:\z(p)\<e-}.
If 0 < a < —logR and no branch point of z lies over the circle
\z\ = e~a, we can form the double Va of Va. Now z extends to be
a meromorphic function of valence n on Va, and 7(a) is the genus
of Va. By the Riemann-Hurwitz formula

7(α) = b(e~a) + 1 - n

where b(r) is the number of branch points over the disc \z\ < r
This formula still holds even if there are branch points over \z\ =
e~a. Now we have

S
oo p o o

Ί{ά)da = on (a) — \ adl{a)
o o Jo

Changing variables, we see that

I δ adΎ(a) = - I log rdb(r) = Σ ^fc log | αA | ,
JO Jα o<|αjj.|<l

for 6(r) is a saltus function whose jump at r is the total order of
branching over \z\ — r. This series differs from the series in the
lemma by finitely many terms. Thus, letting a tend to zero, we
have the lemma.

For later use, we extract the following somewhat technical corol-
lary from the proof of Theorem 1.

COROLLARY. Let (W, z) be a Myrberg surface over the unit disc
U. If for some point a in U there exists a function f in H°°( W)
such that z is unbranched over a and f separates the points of
z-'la], then m{W) > 0.

Theorem 1 raises the question of how the bounded analytic
functions on a Myrberg surface can degenerate. We prove the
following theorem.
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THEOREM 2. Let W be a Myrberg surface over the unit disc.
Then there exist a Myrberg surface Wγ over the unit disc and an
analytic mapping Φ of W onto W1 having the following properties'.

( i ) H°°(W^) separates the points of WΊm

9

(ii) for each f in H°°{W) there is an fx in H°°(Wi) such that

Proof. Now z maps W onto U. For each ζ in U and each /
in H°°(W), let k(f, ζ) be the number of distinct values of / on z~%].
Let k be the largest of these integers. Fix ζ0 in U and g in H°°(W)
such that k[g, ζ0] = k. Now k[g, ζ\ — k for all ζ in some neighborhood
of ζ0, so we may also assume that z is unbranched over ζ0. There
are k function elements associated with g and lying over ζ0. For
any other point ζ of U there are at most k of these function elements
over ζ. If, in addition, z is unbranched over ζ then there are exactly
k function elements over ζ. For ζ0 may be joined to ζ by a curve
over no point of which is z branched. Each of the k function ele-
ments at ζ0 can then be continued along this curve, producing k
function elements at ζ. Let Wx be the Riemann surface formed from
these function elements. Then Wx is a fc-sheeted covering of U with
projection zγ\ Wx —> Z7. Hence (Wu zλ) is a Myrberg surface over U.

Define a mapping Φ from W to W1 as follows: Each point of
W yields a function element of g; we map that point of W to the
corresponding function element. The mapping Φ so defined is an
analytic mapping of W onto Wίt and z^Φ = z. There is also a
function g1 in H°°{W^ such that g — g^Φ. Since gx separates the
points of PFi which lie over ζ0, it follows from the Corollary to
Theorem 1 that m(W^ > 0. Thus H^W,) separates the points of W,.

Let / be in H°°(W). Again borrowing an argument from the
theory of compact Riemann surfaces, there exist meromorphic func-
tions bl9 , bk in U such that

f(v) = bMpVgipy-1 + K(z{v))g{v)k-2 + • + bk(z(p))

We then define /, in H^W,) by

UP) = b

Then f = fλ.Φ.
In general the existence of nonconstant bounded analytic functions

is not a property of the ideal boundary of an open Riemann surface.
(See, e.g., Sario and Nakai [11, p. 92].) However, Widom's condition
is a property of the ideal boundary. Let W be a Myrberg surface,
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and let W be an open Riemann surface obtained obtained from W
by changing the conformal structure on a compact subregion. If
m(W) > 0, then m{Wf) > 0 and so H^iW) separates the points of
W. On the other hand if m(W) = 0, then m{W) = 0 and W may
carry no nonconstant bounded analytic functions.

We can construct a class of examples of Myrberg surfaces as
follows: Let (xn) be a strictly increasing sequence of positive real
numbers converging to 1. Let WΊ and W2 be two copies of the open
unit disc each slit along the segments [x2n-i, &2«L w = 1, 2, . Let
W be the Riemann surface which results from joining Wx and W2

crosswise along these segments. There is a natural projection z from
W onto the open unit disc U which makes W into a Myrberg surface
over U with a branch point of order two over each of the points
xn,n=l,2, . According to Theorem 1, H°°(W) separates the
points of W if and only if Σ(l — xn) < oo. According to Theorem 2,
if Σ(l — xn) = oo, every bounded analytic function on W is lifted
from a bounded analytic function on U. Of course this example can
be discussed directly without the use of Theorems 1 and 2.

3* The maximal ideal space of H°°(W). Our main result in
this section is that if m( W) > 0 then the natural mapping of W into
the maximal ideal space M of H°°( W) is a homeomorphism of W onto
an open subset of M. To prove this we adapt an argument Stout
[12], p. 159, used on plane domains. In the course of our proof we
must show that H°°{W) separates the points of W and we must use
a fact about analytic structure in maximal ideal spaces. We then
use the result to study representing measures of points in W.

Since H°°(W) separates the points of W, we can embed if as a
subset of M. We assign to the point p of W the maximal ideal
of those functions vanishing there. In this way W acquires two
topologies: its usual topology as a Riemann surface and the Gelfand
topology it inherits from M. The Gelfand topology is the weaker,
i.e., the embedding is continuous.

In order to investigate the relationship between these topologies,
we shall use a fact about analytic structure in maximal ideal spaces.
Let A be a commutative Banach algebra with identity and let ^£
be the maximal ideal space of A. Let φ be in ^*C A derivation
of type (J, φ) is a bounded linear operator T on A such that φ° T
is not trivial and

for all /, g in A. Banachewski [1] (cf. Bishop [2]) has proved that
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if A admits a derivation of type (J, φ) then there is an open neighbor-
hood of φ in ^ which is homeomorphic to an open disc in the
complex plane.

To see that H°°(W) admits a derivation of type (/, q) at each
point q of W, we fix a bounded function Ψ in H{W, χ) such that
Ψ(q) Φ 0. Define T by the formula

Tf=[f- f(q)]ΨΦ~ί

for / in H°°(W). Now ΨΦ"1 is single-valued, has a simple pole at
q, and is bounded outside any neighborhood of q. Hence T is a
bounded linear operator on H°°(W). The derivation identity

T(fg) = f(q)Tg + gTf

for /, g in H°°(W) is easily verified.

It now follows immediately from Banachewski's theorem that
there is an open neighborhood V of q in the Gelfand topology which
is homeomorphic to an open disc in the plane. Now V Π W is open
in the usual topology on W, hence there is an open parameter disc D
around q with Da(Vf) W). By invariance of domain, D is open in
the Gelfand topology on W. Therefore the usual topology and the
Gelf and topology coincide, and W is open in the Gelfand topology.
We state this result as a theorem.

THEOREM 3. Let W be an open Riemann surface with m(W) > 0.
Let M be the maximal ideal space of H°°(W). Then W is (homeo-
morphically embedded as) an open subset of M.

Theorem 3 allows us to extend the methods used to treat linear
extremal problems in plane domains to open Riemann surfaces satisfy-
ing Widom's condition. The development can be carried out as in
Gamelin [6] and yields the same theorems on the uniqueness and
unimodularity of extremal functions. The only change necessary is
that the local maximum modulus principle must be used in the proof
of Theorem 2.2 of [6]. (The author thanks the referee for pointing
out this.) Alternatively, Theorem 2.2 follows from Banachewski's
theorem by a refinement of the argument we used in proving Theorem
3.
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