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RADON PARTITIONS IN REAL LINEAR SPACES
C. M. PerTY

An intimate connection is established between primitive
Radon partitions and generalized poonems of a set in a real
linear space -&°. It is shown that if K © % is convex then
K is the convex hull of its extreme points if and only if the
intersection of poonems of K is a poonem of K. Among the
applications is a study of k-neighborly sets. This yields a
considerable generalization of the theory of k-neighborly
polytopes.

1. Basic concepts. The notion of a primitive partition introduced
in R* by Hare and Kenelly [3] may be formulated for a real linear
space .. A pair of subsets (4, B) is called a Radon partition pro-
vided ANB = @ and convANconv B+ . A Radon partition (4, B)
is called primitive if (4’, B') with A’c A, B'cB is a Radon partition
only in the case A'= A and B = B.

If Pc & then a subset Sc P is called a poonem of P provided
(a) conv S = conv PN aff S and (b) conv P~ conv S is convex. If (a)
holds for some S P, conv P~ conv S = conv P~ aff S and if P is
a closed convex set in R? and Sc P is convex then this definition
reduces to the definition of poonem given in [2, p. 20]. However,
the admission of nonconvex poonems is essential for the results obtained
here.

Primitive partitions and poonems are basic in that other concepts
may be defined in terms of them.

DEFINITIONS 1.1. (a) A subset Pc &~ is called a simplex provided
there is no primitive partition (A4, B) with AUBcP. (b) If F is
a flat and P F, then P is said to be in general position in F provided
for any subset SC P either S is a simplex or aff S= F. (c) A set
Pc % is said to be k-neighborly, where %k is a cardinal number,
provided every subset Sc P with card S < k is a poonem of P.

If K is a convex d-polytope in B* and 1 <k <d, then K is
k-neighborly in the usual sense [2, Chapter 7] if and only if P =
vert K is k-neighborly as defined here.

2. The principal theorems. We first recall or prove some basic
results.

LEmmaA 2.1. (a) If (A, B) is a Radon partition, then there
exists ¢ primitive partition (A', B)) with A'Cc A and B'cB. If (4, B)
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18 primitive, then both A and B are finite simplices, conv A N conv B
18 a singleton and card (A U B) = dim aff (A U B) + 2.

(b) A nonempty set P is a simplex if and only if P is an
affinely independent set.

(¢) If xcaff P but x¢ P, then there exists a simplex T P
and a primitive partition (A4, B) such that AU B = {x} U T.

Proof. (a) Suppose (4, B)is a Radon partition and p € conv A N
conv B. Then p is a convex combination of a finite number of points
in A and p is also a convex combination of a finite number of points
in B. See [5, p. 15]. The existence of a primitive (4’, B') now follows
easily. For a proof of the remaining statements in (a) see [1] and
[3].

(b) A finite set of (distinct) points x,, --., z, is affinely inde-
pendent if the conditions e, + -+ + @, 2, =0 and a, + -+ + @, =0
are simultaneously satisfied only by @, = .-+ = a, = 0. A nonempty
set P is affinely independent if every nonempty finite subset of P is
affinely independent. In the proof of (a) above, the difference of the
two convex combinations which represent p yields an affine dependency.
It is now easily shown that a nonempty set P is affinely dependent
if and only if there exists a primitive (4, B) with 4 U BcC P.

(¢) If S={=x, +--, xz,}JP, then aff S = {ax, + --- + a2, | a, +
cer +a,=1} and af P= Y {aff S| Sc P is finite}. It follows that
af P=U{aff T| TC P is a finite simplex}. If xzcaff P but z¢ P,
then there exists a minimal simplex T'C P such that zcaff T but
x¢ T. Thus, {x} U T can be partitioned so that A U B = {x} U T and
(4, B) is a Radon partition. But (4, B) must be primitive since,
otherwise, « would lie in the affine hull of a proper subset of T
contrary to the minimal property of T.

THEOREM 2.2. Let Sc PcC ~. Then the following four state-
ments are equivalent:

(a) S is a poonem of P.

(b) If (A, B) is primitive with Ac aff S and BC conv P, then
BcC conv S.

(¢) If (A, B) is primitive with ACS and BC P, then BC
conv S,

(d) conv(P~convS)naff S= g.

Proof. (a)=(b). Let S be a poonem of P and suppose (4, B) is
primitive with Acaff S and Bcconv P. Let pcconv AN convB
and let B= B,UB, where B,cconvS and B,cconv P ~ conv S.
By definition of a poonem, conv B, conv P ~ conv S = conv P~ aff S
and therefore conv B,N aff S= ©. Since peconv A caff S, it follows
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that p¢conv B, and therefore B, + @. Suppose B,* ¢@. If pe
conv B, then (4, B)) would be a Radon partition contradicting (A4, B)
being primitive. Thus, p € conv B = conv (conv B, U conv B;) but p¢
conv B, U conv B,. By a basic result in real linear spaces [5, p. 16],
there exist p, € conv B, such that p = tp, + (1 — t)p, where 0 <¢ < 1.
Since both » and p, belong to aff S, so also does p,. But conv B, N
aff S= @. Hence B, = & which completes the proof.

(b) = (c) is trivial.

(¢)=(d). Let K,=convS, D=P~ K, and K,=conv D. Suppose
there exists a point pe K,nNaff S. If pe K,, then (S, D) is a Radon
partition. By Lemma (2.1a), there exists a primitive (4', B') with
A'c8S and B'cD. But (¢) implies B’ c K, and therefore B CcDn
K, = @. Thus, pcaff S~ K,. By Lemma (2.1c), there exists a
simplex TS and a primitive (4, B) such that A UB= TU {p}.
We may assume that pe B and therefore Ac TcS. Let C= B~
{p}c T. Now (4, CU D) is a Radon partition since AN (CUD)= @
and conv A N conv (C U D) Dconv AN conv B = @. By Lemma (2.1a),
there exists a primitive (A’, B') with A/ 'cAcTcS and BcCU
DcP. Now (c¢) implies B C K,. Since DN K, = @ we have B C
CcT. But T is a simplex and therefore A’ U B & T. Hence, K, N
aff S = @ which completes the proof.

(d) = (a). As above, let K, =conv S, D= P~ K, and K, =conv D.
If K,=¢@, then S= @ is a poonem of P and if K,= ¢, then
conv S = conv P which, by definition, implies S is a poonem of P.
We may, therefore, assume that K, and K, are nonempty. Let
peconv PNaff S. Since peconv (K, U K,), there exist p, € K, such
that » = tp, + (1 — t)p, where 0 <t <1. If ¢t <1, then p,eaff S
which contradicts (d). Hence ¢t =1 and p = p,€ K,. Thus K, =
conv P N aff S which establishes part (a) of the definition of a poonem.
Now, suppose conv P ~ K, is not convex. Then, there exist r», r, €
conv P ~ K, such that for some a, 0 < a < 1, the point p, = ar, +
(1 — a)r,e K,. Since r,cconv P=conv(K,UK,), we have r, =
1 — B,)p; + B:q; where p,e K,, ¢,€ K, and 0 £ B8, < 1. However,
B: > 0 since r,¢ K,. Let A = ga/(B.@ + B(1 — @), 0 <A <1. Then,
AL+ (L — NG, = Topo + 740, + Top,  Where 7, = (8. + B(1 — @),
7,= —al — B)ryand 7, = —(1 — a)1 — B,)T,. Since p,, p,, D, belong
to K, and 7, + 7, + 7, =1, the point Ang, + (1 — A)g.€aff § which
contradicts (d). Hence conv P ~ K, is convex. This completes the
proof of Theorem 2.2.

COROLLARY 2.3. Let QC SCPcC &

(a) If Q is a poonem of S and S is a poonem of P, then Q
s @ poonem of P.

(b) If Q is a poonem of P, themn Q is a poonem of S.
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(c¢) P is a stmplex if and only if every subset of P is a poonem
of P.

Proof. (a) Suppose (A, B) is primitive with AC @ and BC P.
We need only show that BC conv Q. Since S is a poonem of P and
AcC S, we have BCconvS. But @ is a poonem of S. Thus, BC
conv Q. .

Proofs of (b) and (c) are easily obtained.

COROLLARY 2.4. Let KC % be convexr and let P(K) be the set
of all convex poonems of K. If P,(K) s partially ordered by inclusion,
then PJ(K) is a complete lattice where the greatest lower bound of a
family of convexr poomems is their inmtersection.

Proof. The empty set @ and K itself are convex poonems of
K. We need only show that the intersection H = [} K, of a family
{K,} of convex poonems of K is a poonem of K. Suppose (4, B) is
primitive with Ac H and BC K. Since K, is a poonem of K and
ACK,, we have BC K,. Thus BC H and therefore H is a poonem
of K which completes the proof.

Even for convex K, the intersection of poonems need not be a
poonem. In this direction, the following theorem with P = K yields
a new characterization of those convex sets K for which K = conv
(ext K).

THEOREM 2.5. Let PC &%, Then conv P = conv (ext (conv P)) if
and only if the intersection of an arbitrary family of poonems of
P is a poonem of P.

Proof. Suppose conv P=conv (ext (conv P)). Let {S,} be a family
of poonems of P and let S= [ S,. Suppose (A4, B) is primitive with
AcS and BC P. By Theorem 2.2, BC\convS, Let beB. If
b e ext (conv P), then be ext(conv S,) for each a and it follows that
beS. Now suppose b¢ext(conv P). Since b€ PcCconv P = conv
(ext (conv P)), there exists by Lemma 2.1a, a primitive ({}, T') with
T C ext (conv P). For each a, conv (B U S,) = conv S, and therefore,
by definition of a poonem, BU S, is also a poonem of P. Since
{6} c BU S,, Theorem 2.2 implies T C conv (B U S,) = conv S,. Hence,
for each a, TS, and therefore T S. The latter implies be
conv S. Thus, BCconv S and S is a poonem of P by Theorem 2.2.

Now suppose that the intersection of an arbitrary family of
poonems of P is a poonem of P. Let pe P. We will show that p € conv
(ext (conv P)). Let {S,} be the family of all poonems of P which contain
the point p and let S = M S,. By hypothesis, S is the smallest poonem
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of P which contains the point p. Now S ~ {p}Cext(convS). For
suppose g€ S,q # p. If conv(S~ {g}) =conv S, then S~ {q} is a
poonem of P which contains the point p contrary to the definition of
S. Hence q € ext (conv S). By Corollary 2.3a, we have ext (conv S)C
ext (conv P). Thus, if p¢ext(convS) then peconv (S~ {p}) and,
in either case, p € conv (ext (conv P)). Hence, it follows that conv P =
conv (ext (conv P)).

THEOREM 2.6. Let SCPC ¥ If P = ext(conv P), then the
following three statements are equivalent:

(a) S is a poonem of P.

(b) If (4, B) is primitive with AcC S and BC P, then BC S.

(c) conv(P~ S)naff S= @.

Proof. This follows directly from Theorem 2.2 with two ob-
servations. First, if BC PN conv S, then the hypothesis implies BCS.
Second, the hypothesis implies P ~ S = P ~ conv S.

The above theorem is a generalization of a result of M. Breen
[1, Theorem 4], who established the equivalence of (a) and (b) when
P in the vertex set of a convex polytope in R4,

COROLLARY 2.7. Let PC ¥ satisfy P = ext (conv P).

(a) If S, and S, are poonems of P with aff S, = aff S,, then
S, = S..

(b) If P is in general position tn aff P, then every poonem
of P other than P itself is a simplex.

Proof. (a) This follows from the equivalence of (a) and (c¢) in
Theorem 2.6.

(b) Suppose SC P is not a simplex. By Definition 1.1b we have
aff S=aff P. If S is a poonem of P, then S = P by part (a).

3. Applications. Given SC PC &, we first consider the prob-
lem of the existence of a Radon partition (4, B) with 4 U B= P and
Sc A. This problem was solved by Hare and Kenelly [3] for finite
sets P in general position in B¢ The results here form a substantial
generalization.

- THEOREM 3.1. Let SCPC .. Then there exists a Radon
partition (A, B) with AUB =P and SC A if and only if either
P~ S is not a simplex or convSNaff (P~ S)+# O.

Proof. Suppose there exists a Radon partition (4, B) with 4 U
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B =P and SC A. Then there exists a primitive (4’, B') with A’Cc A
and BCBCP~S. If AcP~ S, then P~ S is not a simplex by
Definition 1.1a. Therefore, we may assume that SN A = @.
Suppose conv SNaff (P~ S)= @. Then since conv (P ~ conv (P ~
8)) N aff (P~ S)cconv SN aff (P~ S), by Theorem 2.2, P~ S is a
poonem of P and since BCP~ S we have A'Cconv(P~ S)C
aff (P~ S). Hence, A’ Nconv S = & which contradicts SN A" = @.
Thus, conv Snaff (P~ S) = &.

Now suppose P ~ S is not a simplex. Then there exists a primi-
tive (4’, B') with A UB CcP~S. Let A=A'"US and B=P ~ A.
Then (A4, B) is a Radon partition with A U B= P and SC A. Finally
suppose convSNaff (P~ S)# @. If P~ S is a poonem of P, then
conv (P~ S)=convPnaff (P~ S)DconvSnaff (P~ S)+# @, and
consequently (S, P~ S) is a Radon partition. On the other hand, if
P ~ S is not a poonem of P, then there exists a primitive (4’, B)
with A cP~ S and BcP. Let A=P~ A, B=A'. Then (4, B)
is a Radon partition with A UB = P and Sc A.

COROLLARY 3.2. Let P be in general position in aff P and let
S be a nonempty subset of P. Then there exists a Radon partition
(4, B) with AUB=P and SC A if and only if conv SN aff (P ~
S)+ .

Proof. This follows directly from Theorem 3.1 with the obser-
vation that if P~ S is not a simplex then aff (P~ S)= aff P and
therefore conv Snaff (P~ S) = @.

We now turn to the study of k-neighborly sets. For PC &, we
define the cardinal number i(P) by

3.3. h(P) = sup {card (A U B) | (4, B) is primitive and A U BC P}.
It is understood that A(P) = 0 if P is a simplex. From Lemma 2.1a
we have

3.4. h(P) < dim (aft P) + 2.

THEOREM 3.5. Let PC ¥ and let k be a cardinal number.
Then the following three statement are equivalent:

(a) P is k-neighborly

(b) Each subset Sc P with card S = h(P) is k-neighborly

(c¢) There exists no primitive (A, B) with AU BC P such that
min (card A, card B) < k.

Proof. (a)= (b). By Corollary 2.8b, if P is k-neighborly then
every subset of P is k-neighborly.
(b) = (¢). Suppose there exists a primitive (4, B) with AU BC P
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and card A < k (and therefore k¥ = 1). Since card (A U B) £ h(P) =
card P, there exists Q c P with AU BC Q and card @ = i(P). By
hypothesis, Q is k-neighborly and hence A is a poonem of @. How-
ever, Theorem 2.6 applied to A C @ gives BC A which is a contra-
diction.

(c)=(a). Let Sc P with card S < k. By hypothesis, there is
no primitive (4, B) with Ac S and B P. Hence, S is a poonem of
P by Theorem 2.2. This completes the proof.

THEOREM 3.6. Let PC < and let k be a cardinal number.

(a) If k is finite, k < card P, and every subset SC P with
card S = k is a poonem of P, then P is k-neighborly.

(b) If k 1is transfinite, k < card P, and every subset SC P
with card S = k is a poonem of P, then P is a simplex.

Proof. (a) We may assume k = 2 for otherwise the proof is
trivial. We first show that conv P = conv (ext (conv P)). Let peP
and let Sc P with card S = % contain the point p. Since S is finite,
p € conv (ext (conv S)) and since S is a poonem of P, ext(conv S)C
ext (conv P) by Corollary 2.3a. Thus, conv P = conv (ext (conv P)).
In the above argument, the intersection of all such Sc P is {p} since
k < card P. By Theorem 2.5, {p} is a poonem of P and hence P =
ext (conv P).

Now suppose there exists a primitive (4, B) with A U BC P and
card A< k. Let SCP with Ac S, card S = k and such that P~ S
contains a point of B. By hypothesis and Theorem 2.6 we have
Bc S which is a contradiction. Hence, by Theorem 3.5, P is k-
neighborly.

(b) We first show that P = ext (conv P). Suppose there exists
a primitive ({a}, B) where a ¢ Pand BC P. Let B= {b,, -+, b,} where
n=2 Then =37, Nb,0< N, <1, and >y N, =1. Let B, =
B~ {b}. Since {a} and conv B, are disjoint convex sets, by a
separation theorem for real linear spaces [5, p. 20], there exist
complementary convex sets C and D such that a€C, B,C D and
CUD=%CND=¢g. Eithercard(CNP)=rkorcard(DNP)=k.
Suppose card (CN P) = k. By hypothesis, there exist a poonem S of
P with ae S, SC C and card S = k. By Theorem 2.2, we have BC
conv Sc C which is a contradiction. Now suppose card (DN P) = k.
By hypothesis, there exists a poonem S of P with a€ S, S~ {a}C D
and card S= k. By Theorem 2.2, we have BcCconvS. Hence,
Bc conv ({a} U D). Therefore, for each b,€ B, there exists d;€ D
such that for some ¢, 0 <t, < 1,0, = t,d, + (1 — t,)a. It follows that
a = (7 M) S (Wt)d, € D which is a contradiction. Hence P =
ext (conv P).
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Now suppose there exists a primitive (4, B) with AU BcC P.
By hypothesis, there exists a poonem S of Pwith AcS, BNS=Q
and card S = k. By Theorem 2.6, we have B— S which is a contra-
diction. Hence P is a simplex.

THEOREM 3.7. Let Pc <~ be k-neighborly and let S P.

(a) If 2k + 1 = W(S), then S is a simplex.

(b) If 2k —1=dim(aff S), then S 1s a stmplex.

(¢) If 2k = dim (aff S), then S is 1n general position in aff S.

Proof. (a) If S is not a simplex, then there exists a primitive
(4, B) with AUBCS. Since 2k + 1 = h(S) = card A + card B, either
card A <k or card B < k. But this contradicts Theorem 3.5.

(b) This follows from 3.4 and part (a).

(¢) Suppose there exists @ S which is not a simplex. Then
k must be finite and by part (a) we have h(Q) = 2k + 2. Using 3.4
we have dim (aff S) = dim (aff Q) = 2k = dim (aff S). Thus dim (aff S) =
dim (aff Q) = 2k. Since k is finite and aff SDaff @ we have aff S =
aff @ and, by Definition 1.1b, S is in general position in aff S.

THEOREM 3.8. Let PC .<¥ be an infinite set which 1s in general
position 1m aff P and let k be a cardinal number such that 2k <
dim aff P. Then there exists an infinite subset of P which 1s

k-neighborly.

Proof. If dimaff P =1, then any subset of the line aff P is in
general position in the line but any such subset is also O-neighborly.
If dim aff P is infinite, then P must be a simplex. For if (4, B) is
primitive with AU BC P, then AU B is not a simplex nor is
aff (AU B) = aff P. We may therefore assume that d = dimaff P is
a positive integer greater than 1 and we will show that there exists
an infinite subset of P which is [d/2]-neighborly. Since P is in gener-
al position in aff P, each subset S C P consisting of d + 2 points
determines a unique primitive (4, B) with AU B=S. Thus the set
all such subsets S P may be partitioned into [d/2] + 1 mutually
exclusive classes C; according to the value 4 = min (card A, card B).
By the infinite version of Ramsey’s theorem [4, p. 82], P contains
an infinite subset @ such that every subset of @ consisting of d + 2
points belongs to the same C,. By use of Gale diagrams, M. A.
Perles has shown [2, p. 120] that if d + 3 points of R? are in general
position then some d + 2 of them are the vertices of a [d/2]-neighborly
polytope. Hence, for the particular C, referred to above, we have
1 = [d/2] + 1. Consequently, by Theorem 3.5, Q is [d/2]-neighborly.
This completes the proof.
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We conclude with some example which are pertinent to the
general situation considered here.

ExAMPLES 3.9. (a) There exist nondenumerable sets P in R¢,
d =1, which are [d/2]-neighborly. Let xz(t) = (¢, ¢% ---, t%) e R? and
let P = {x(¢)|¢treal}. Each subset of P with d + 2 points is [d/2]-
neighborly [2, p. 61]. Since 2(P) = d + 2, P itself is [d/2]-neighborly
by Theorem 3.5.

(b) Let < be the real linear space of all real-valued functions
defined on the set of positive integers. Let () = (¢, ¢, ---)e ¥
and let P = {x(t) | treal}. Then P is a simplex. This follows from
Lemma 2.1b by showing that every nonempty finite subset of P is
an affinely independent set. The latter may be established by a proof
similar to that given in [2, p. 62] where the corresponding problem
for the moment curve is considered.

(c) Let & be an infinite dimensional real linear space. For each
finite cardinal number % there exists P, C & with aff P, = & such
that P, is k-neighborly but not (k¥ + 1)-neighborly. For k=0, we
may take P, = <. Now let £k =1 and let HC &~ be a Hamel basis
for &£ Let {p, ---, »,} and {q, ---, ¢} be disjoint subsets of H
and let p,= — 3. 2;, ¢o = — X q;. Define P, = {p, q}UH. If
A = {p,, s, +++, P} and B = {q,, q,, -+, 94}, then (A4, B) is primitive,
the origin being the unique point in conv A N conv B. Since aff P,
contains the origin, we have aff P, = & Moreover, (4, B) is the
only primitive, with A U BC P, which may be verified by studying
the possible affine dependencies in P,. Thus, by Theorem 3.5, P, is
k-neighborly but not (k¥ + 1)-neighborly.
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