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SOME MATRIX TRANSFORMATIONS ON ANALYTIC
SEQUENCE SPACES

ROY T. JACOB, JR.

Let A denote the space of all complex sequences a such
that if z is a complex number and \z\ < 1 then Σ anz

n con-
verges, and B the space of all complex sequences b for which
there is a complex number z such that | z \ > 1 and Σ bnz

n

converges. In this paper we characterize matrix transforma-
tions from A to B and from B to A.

M. G. Haplanov [1] has described the matrix transformations from
A to A, and P. C. Tonne [4] those from A to the bounded sequences,
the convergent sequences and I.

A sequence space is a linear space each point of which is an
infinite complex sequence. If λ is a sequence space, then λ*, the
dual of λ, is the collection of all infinite complex sequences y such
that X I#Λ2/*I converges for every x in λ. For each λ a dual system
with λ* is formed using the bilinear functional

where x is in X and y is in λ*. Under this duality, X is provided
with the standard weak topology.

Theorem A is a classic result of Kothe and Toeplitz [2]:

THEOREM A. Suppose X is a sequence space such that X = λ**.
In order that a linear transformation from X to a sequence space
be weakly continuous, it is necessary and sufficient that it be a
matrix transformation.

In [3] 0. Toeplitz studied the topological properties of the spaces
A and B. The following theorem is a summary of his basic results:

THEOREM B. (1) A* = B and B* = A.

(2) A point set M is bounded in A [B] if and only if there
exists a point y of A [B] such that | xn | < yn whenever x is a point
of M and n is a nonnegative integer.

(3) A point sequence is convergent in A [B] if and only if it
is bounded in A [B] and coordinatewίse convergent.

THEOREM 1. If M is an infinite matrix then the following are
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equivalent:
(1) M throws A into B.
(2) Each row and each column of M is in B, and there exist

numbers t and r such that 0 < r < 1 and
each of j and k is a nonnegative integer.

\ Mjjk | ^ trj+k whenever

Proof. (l)—>(2). Suppose statement (1) is true and statement
(2) is not. In that case there exist increasing sequences j0, jlf j2,
and k09 kl9 k2, of positive integers such that if n is a nonnegative
integer, then

and either (i) jn ^ kn for each nonnegative integer n or (ii) kn ^ jn

for each nonnegative integer n.
Suppose case (i) holds. For each nonnegative integer n, let cn

denote a complex number such that

cn - and > l

Each cΛ has the property that | cn \ < (1 + l/nfkn.
For each nonnegative integer w, let fn denote the point of A such

that for each nonnegative integer m, ξnm = ĉ  whenever there is an
integer i such that 0 ^ i ^ n and m = kif and ίwm = 0 otherwise.

The point sequence ξ is bounded in A, so M(ξ) is bounded in B.
However, for each positive integer n,

\{Mξn)Jn\ = Σ
i=0

t=0

^ 1 .

This is a contradiction.
In case condition (ii) holds, Mf is a matrix that throws A into

B and satisfies condition (i). This is also a contradiction.
(2) —• (1). If g is a point of A and i is a nonnegative integer,

then

Σ-
fc=0

Consequently, limsup^

\{Mx)i\ =

|i/i <; r> a n ( j jjfa; is a point of
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THEOREM 2. If M is an infinite matrix then the following are
equivalent:

(1) M throws B into A.
(2) Each row and each column of M is in A, and if e > 0

there is a positive integer m such that \Mjk\
υtJ+k) < 1 + ε whenever

each of j and k is a nonnegative integer and j + k^ m.

Proof. (1) —> (2). Suppose statement (1) is true and statement
(2) is not. In that case, there exist a positive number ε and infinitely
many nonnegative-integer pairs (j, k) such that | Mjk \v^+h) > 1 + ε.

Case (i). Suppose there exist infinitely many such integer pairs
such that j <Ξ k. Let r denote a number such that (1 + ε)r > 1 + ε/2.

Let (io, kQ) denote a nonnegative integer pair such that

j0 ^ k0 and | Mjo,ko |
1'<*>+*o> > l + e .

Let c0 = r. Then

Co\MJQ,kor° ^ co\MJQ,kQr^ > (1 + ε)r > 1 + ± .

Let (j19 kj denote a nonnegative integer pair such that j\ <; klf

io < ji, k0 < k19 and

^lr* < [(1 + e)rγo - \\ + AT .
L ε J

Let cx denote a complex number such that \cγ\ = r and

Continue this process in the following way: For each positive
integer n, after choosing j n , kn7 and cn, let (jn+ί, kn+ί) denote a non-
negative integer pair such that j n + ί ^ kn+1, j n < j n + ί , kn < kn+lf and

and then let cn+1 denote a complex number such that |cΛ + 1 | = r and

Now, for each nonnegative integer n, let ξn denote the point of
B such that for each nonnegative integer m,

whenever there is an integer i such that 0 ^ i ^ n and m = fci( and
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otherwise.
The point sequence ζ is bounded in B, so M{ξ) is bounded in A.

However, for each positive integer n,

> V

a[i

Consequently, \(Mζn)Jn\
vi» ^ 1 + ε/2. This contradicts the fact that

(ζ) is a bounded subset of A.

Case (ii). Suppose there exist infinitely many such integer pairs
(i, k) such that j ^ k. In that case, M' throws B into A and satisfies
the assumption of case (i). This is also a contradiction.

( 2 ) —> (1). Suppose x is a point of B. Let t and r denote
numbers such that 0 < r < 1 and | xn \ <̂  trn for each nonnegative
integer n. If ε is a positive number so small that (1 + έ)r < 1, and

m i s a positive integer such that \Mjjk\ \1/{j+k)

of j and A; is a nonnegative integer and j
nonnegative integer p,

< 1 + ε whenever each
+ k ^ m, then for each

Σ Mm+P,k\trk

^ (1 +
- (1 + ε)r

Therefore,

It follows that

lim ^ 1 + ε

lim sup^ Σ Λίy**»
fc=0

that is, Mx is a point of A.
The author is indebted to the referee for his suggestions of a

number of improvements in the text.
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