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SOME MATRIX TRANSFORMATIONS ON ANALYTIC
SEQUENCE SPACES

Roy T. Jacos, Jr.

Let A denote the space of all complex sequences a such
that if z is a complex number and |2| <1 then }; a,z* con-
verges, and B the space of all complex sequences b for which
there is a complex number z such that |z|>1 and };b,2"
converges. In this paper we characterize matrix transforma-
tions from A to B and from B to A.

M. G. Haplanov [1] has described the matrix transformations from
A to A, and P. C. Tonne [4] those from A to the bounded sequences,
the convergent sequences and /.

A sequence space is a linear space each point of which is an
infinite complex sequence. If A\ is a sequence space, then \*, the
dual of A, is the collection of all infinite complex sequences y such
that 3} |z,y.| converges for every « in A. For each \ a dual system
with A* is formed using the bilinear functional

Qz, y) = 2: Lol »

where z is in \ and % is in A*. Under this duality, ) is provided
with the standard weak topology.
Theorem A is a classic result of Kothe and Toeplitz [2]:

THEOREM A. Suppose N is a sequence space such that n = N**.
In order that a linear transformation from \ to a sequence space
be weakly continuous, it 1s mecessary and suficient that it be a
matric transformation.

In [3] O. Toeplitz studied the topological properties of the spaces
A and B. The following theorem is a summary of his basic results:

THEOREM B. (1) A* = B and B* = A.

(2) A point set M is bounded in A [B] if and only if there
exists @ point y of A [B] such that |z,| < ¥, whenever x is a point
of M and m is a nonmnegative integer.

(3) A point sequence is convergent in A [B] if and only if it
18 bounded in A [B] and coordinatewise convergent.

THEOREM 1. If M is an infinite matriz then the following are
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equivalent:

(1) M throws A into B.

(2) Each row and each column of M is in B, and there exist
numbers t and r such that 0 <r <1 and |M;| < tri** whenever
each of j and k is a nonnegative integer.

Proof. (1)— (2). Suppose statement (1) is true and statement
(2) is not. In that case there exist increasing sequences 7, 7., Js, * - *
and k, k,, k,, --- of positive integers such that if % is a nonnegative
integer, then

[Mj%,k“[ > ( - 1).7'n+k’n ,

and either (i) j, < k, for each nonnegative integer » or (ii) %k, < j.
for each nonnegative integer .

Suppose case (i) holds. For each nonnegative integer =, let ¢,
denote a complex number such that

n

2‘ I kz

1

and
1Ml

[ea] = ————

=1,
n knl
Each ¢, has the property that |c,|] < (1 + 1/n)*x.

For each nonnegative integer =, let &, denote the point of 4 such
that for each nonnegative integer m, &,, = ¢, whenever there is an
integer ¢ such that 0 <7 <% and m = k,, and &,, = 0 otherwise.

The point sequence & is bounded in A4, so M(¢) is bounded in B.
However, for each positive integer =,

[(ME,)s,| =

],,L 1Cm.

Jn kt

gl.

This is a contradiction.
In case condition (ii) holds, M’ is a matrix that throws A into
B and satisfies condition (i). This is also a contradiction.
(2)—(1). If z is a point of A and j is a nonnegative integer,
then

|(Mz)s| = |3, Mo,

St Y ko .
k=0

Consequently, lim sup; |(Mx);|"? < r, and Mz is a point of B.
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THEOREM 2. If M is an infinite matrixz then the following are
equivalent:

(1) M throws B into A.

(2) Each row and each column of M is in A, and if € >0
there is a positive integer m such that | M;,|"9*® < 1 + ¢ whenever
each of j and k is a monnegative integer and j + k = m.

Proof. (1)— (2). Suppose statement (1) is true and statement
(2) is not. In that case, there exist a positive number ¢ and infinitely
many nonnegative-integer pairs (7, k) such that | M;,[V¥*® > 1 + e.

Case (i). Suppose there exist infinitely many such integer pairs
such that j < k. Let r denote a number such that (1 + ¢)r > 1 + ¢/2.
Let (Jo, k,) denote a nonnegative integer pair such that

jo = ko and IMjo,koll/(ijO) >14e.
Let ¢, = . Then

el My, 5 |M40 = 001Mf0,kolll(jo+k0) >@A+er>1+ _%_ .

Let (j,, k) denote a nonnegative integer pair such that j, <k,
Jo < 3y ko < k,, and

S Ml <[+ oo —[1+ 2.

Let ¢, denote a complex number such that |¢,| = » and

| Mj, i0t] = | My, 00 + M, 0] -

Continue this process in the following way: For each positive
integer m, after choosing j,, k., and ¢,, let (4, k,,,) denote a non-
negative integer pair such that j,., < koit, Ju < Tnsrs bu < Knsr, and

‘ i | M, |7 <[+ &)r] — [1 + _‘9_:|J” ,
i=kp+1 2
and then let c,,, denote a complex number such that [e¢,.,| =7 and
n+1
](c"+1)kn+l(Mjn+1'kn+1)) = \Z{c?i(Min+lvki)\ .

Now, for each nonnegative integer n, let &, denote the point of
B such that for each nonnegative integer m,

Sum = Cf1

whenever there is an integer ¢ such that 0 < ¢ <n and m = k;, and



490 ROY T. JACOB, JR.

S’ﬂ’lﬂ:O

otherwise.
The point sequence & is bounded in B, so M(¢) is bounded in A.
However, for each positive integer =,

(M) = | S etM,.) + 5, et0,.0)

= | S eb(Mya)| = 3 1eH(,L)]
> 1 i:lj".
2143

Consequently, |(Mz,);,|"» =1+ ¢/2. This contradicts the fact that
M(¢) is a bounded subset of A.

Case (ii). Suppose there exist infinitely many such integer pairs
(4, k) such that 5 = k. In that case, M’ throws B into A and satisfies
the assumption of case (i). This is also a contradiction.

(2)—(1). Suppose = is a point of B. Let ¢t and = denote
numbers such that 0 < <1 and |z,| < ¢ for each nonnegative
integer n. If ¢ is a positive number so small that (1 + ¢)r < 1, and
m is a positive integer such that |M;,|VY"*® < 1+ ¢ whenever each
of 7 and % is a nonnegative integer and j + k = m, then for each
nonnegative integer p,

%Mmﬂ:,kxk §k§=% Mm+p,k|t7”k
t
el ) L . S
= ) 1—-@0+ 9o
Therefore,
) 1/ (m+P)
lim sup, | X} Mo, 1% =l+e.
k=0
It follows that
0 15
limsup; | >, Mz, =1,
k=0

that is, Mz is a point of A.
The author is indebted to the referee for his suggestions of a
number of improvements in the text.
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