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REDUCING SERIES OF ORDINALS

J. L. HICKMAN

If s is a sequence of ordinals, we denote by ‘‘S(s)’’ the
set of sums (of the corresponding series) obtainable by per-
muting the terms of s in such a way that the length o(s) is
unchanged. If o(s) = », the first tran sfinite ordinal, then
a fairly well-known result of Sierpinski’s states that S(s) is
finite, which immediately raises the question of whether
there is a finite sequence r such that S(r) = S(s).

It turns out in fact that such a sequence r always exists:
and we are concerned in this note with proving certain gen-
eralizations of this latter result. The general problem, that
of determining criteria that must be satisfied by an infinite
sequence s in order that a sequence 7 exist with o(r) < o(s)
and S(r) = S(s), is to the best of our knowledge still open
and would appear to be no easy one.

Throughout this paper ordinals are generally denoted by lower
case Greek letters, with “w” always being reserved for the first trans-
finite ordinal. Each ordinal is assumed to be the set of all smaller ordi-
nals. Cardinality (of a set) is denoted by “| |7, and an initial ordinal
(i.0.) is an ordinal £ = @ such that |a| < |x| whenever a <x. We
usually reserve the letters “c”, “\”, “»” for i.o.’s, and for any a =
w, we denote by “i(a)” the i.o. £ defined by the equation |k| =]«].
If £ is an i.0., then £* is the next larger i.o. Finally, for any a >
0, we denote by “cf(«)” the cofinality of a.

The Axiom of Choice is assumed throughout, and we assume
familiarity with the elementary theory of cardinals and ordinals.

We define, for each «, an a-sequence s to be an ordinal-valued
function having « as its domain: the length (or order-type) o(s) of
s is of course defined to be &, and we usually write an a-sequence
s as “(s:)e<e’, or simply “(s.)” if the value of o(s) is clear. Sequences
are denoted by “»”, “s”, ..., “2”. If » is a subsequence of a sequence
s, then we assume the terms of » to have been resubscripted in such
a way as to make the denotation “(r.):.,” legitimate.

If s is a sequence and « an ordinal, then we denote by “s/a”
that subsequence of s consisting precisely of those s, = a. If 7 is
a subsequence of a sequence s, then s — » is the subsequence of s
consisting of those s, that are not terms of ». Finally, if » s are
sequences, then we denote by “703” the sequence ¢ such that
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o() =o(r) + o(s), t, =r. for & <o(r), and ty, .. =s. for & < o(s).
Clearly this last definition can be generalized to any number of
sequences.

A sequence t is called an “arrangement” of a sequence s if there
is a bijection b: o(s) — o(¢f) such that t,, =s. for all £ <o(s). An
arrangement ¢ of a sequence s is called a “permutation” of s if o(s) =
o(t). We put P%(s) = {¢;¢ is an arrangement of s}, and P(s) = {¢; ¢t
is a permutation of s}.

For any sequence s, we denote by “2(s)” the sum of the associated
series:—

J()= 28 =8 + 8+ + 8+ 586<0(s) .

§<o(s)

We put Se(s) = {3(t); te P¥(s)}, S(s) = {3(2); t € P(s)}.

As stated in our abstract, Sierpinski showed that |S(s)| < W,
for every w-sequence s: the proof is given in [5]. His result was
generalized by Ginsburg in [1], and in [4] we succeeded in obtaining
best upper bounds for |S(s)| for every infinite value of o(s).

The results obtained here follow on from those obtained in [4],
and for convenience we now list the results (or parts of results)
obtained there that we shall require for our present work. Firstly,
however, we need to define a certain parameter.

Let s be a k-sequence, with £ an i.o. We define C(s) by

C(s) = min {7; |{&€ < k; s, = 7}| < |k}

R1. Let s be a sequence, r a subsequence of s, and take any
a such that 2(r) + «a =a. Then 3(s) + a=23(s—17) + a.

R2. Let £ be an i.o., and let s be a k-sequence of positive
ordinals. Then [S%(s)| = |&*].

R3. (1) For every sequence s with o(s) = w, we have | S(s)| <
lo(s) .

(2) For every a = w, there exists an a-sequence s with | S(s)| =
|| if and only if « is not a regular limit i.o.

R4. Let £ be a singular i.o., and let s be a k-sequence. Put
© = C(s). Then |S(s)| = |£]| if and only if p = £° for some B8 > 0.

R5. Let £ be a successor i.o., £ = A%, let s be a k-sequence of
positive ordinals, and put o = C(s). Then |S(s)| = |«]| if and only if
o(s/p) = N and if either ¢f(0) < £ or £ < p < k™ for some B then
o(s/oK) = .

The problem that we wish to consider in this paper is the follow-
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ing:—

Let £ be an i.o., and let s be a £-sequence of positive ordinals,
with |S(s)| < |£|. Under what conditions is there a sequence » of
positive ordinals such that

(@) S(s) = S(r);

(b) o(r) < £ and either o(r) is finite or o(r) is an i.o.?

T1. Let k be an i.0., and let s be a k-sequence of positive
ordinals with |S(s)| < Yo Then there exists a finite sequence r of
positive ordinals with S(s) = S(r).

Proof. Put p = C(s), and let ¢ be the subsequence s — s/o of s.
We wish to show that either S(¢) = {o} or S(¢t) = {o«}.

We consider the following cases. Suppose firstly that £ is singular.
Then, since s is a sequence of positive ordinals, we know that p > 1,
and thus from R4 we conclude that £* < p < £*** for some 8. Thus
o(t/k?) = k, and hence X(u) = £’k = k*** for any ue€ P(t). Clearly,
however, we must have Y(u) < pox = £?** for each such w. Therefore
in this case we have S(t) = {o«}.

Now suppose that £ is regular. If £ <p < k™ for some g,
then the argument above again shows that S(¢) = {o&}.

Hence we may suppose that p = £* for some a > 0, whence we
have o = sup {¢; &€ < o(t) = £}, and so ¢f(0) < k.

Assume that c¢f(0) = £, take u e P(t), and let %' be any proper
initial segment of w. Then o(u') < o(w) = £, and of course u < o
for every & < o(w'); hence sup {u:; & < o(w)} =0 < p. But this gives
Y < do(w') < ék < p, since p = k£~ for some @, and thus J(u) < p.
However, we obviously have X(u) = p. This gives S(f) = {o}.

Finally, assume that c¢f(0) < £. Now for each u e P(t), we must
have X(u) = p7 for some 7. For if not, there must be some u € P()
having a final segment v + 0 such that Y(v) < p. Putting ¢ = sup {v;;
& < o(v) =k}, we see therefore that 0 < o, and so o(¢/0) = k. But
from the definition of 0 we see that there is some we P(t/0) such
that w is a subsequence of # — v. Since o(u — v) < £, this is a
contradiction, and our claim is established. Thus take u e P(t), and
let 7 be such that 3(u) = o7.

Suppose 7 < k. Since ¢f(0) < k, we thus have c¢f(07) < £. How-
ever, u is a k-sequence of positive ordinals, from which it is easy
to show that we must have c¢f(Z(u)) = cf(x) = k. Hence we must
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have v = k. However, it is clear that Y(u) < px. Therefore S(¢) =
{0k} in this case. This establishes our claim concerning S(¢).

Consider the case S(t) = {0}; we see from the above that we
must have & regular, ¢f(0) =&, and p = £* for some a > 0. Put
u = s/o. Now o(u) < k, and « is regular. Thus if we take any ve
P(s) and let we P*(w) be such that w is a subsequence of v, then w
must be a subsequence of some proper initial segment v’ of v. But
then v — v’ is a nonempty final segment of some t°<c P(t), and so
Jv—v)=p0,=2¢°) and t° =0 —w LOJ v—2'. Now p=«% and is thus
a prime component, and so X(v' — w) + 0 = p. Hence by Rl we have
2(w) = Z(w) + p. That is, S(s) = {0 + p; 6€ S*(w)}. Now for each
& <o(w) we have w = 0Y, + 7, for some v.>=1 and some 7. <p.
Since p is a prime component, it follows from the above characteriza-
tion of S(s) that we have S(s) = S(s*), where s* is the k-sequence
defined as follows. If s, < o, then s = s,; otherwise s{ = p7,, where
Y + 1 = min {4; s; < pv}. Thus there is no loss of generality—but
considerable typographical convenience—in assuming s = s¥, and so
we make this assumption. But this means that for any », we P*(u),
if Y(v) # ¥ (w), then F(v) + p # 3(w) + p. Hence from our character-
ization of S(s) and from R2, we see that if o(u) = w, then |S(s)| = R..
Thus # must be a finite sequence.

We can now define the required finite sequence 7.

If w. < pw for every & < o(u), we put r = u 0 (0). On the other
hand, if u.= pow for some & < o(u), then we define » as follows.
o(r) = o(u); if u. < pw, then r, = u, if u, = pw, then r, = u, + p.

It is not difficult to see that in each case we have
S(r) = {o + p; o€ S(u)}, = S(s) .

This proves our theorem for the case S(f) = {0}.

Consider now the case when S(t) = {0} and £ is regular. Put
t* = s — s/pk: we claim that S(t*) = {ok}. For if we put uw* = t*/p,
then from the regularity of £ we obtain just as before S(t*) = {o +
ok; o€ S*(u*)}, and as ok is a prime component, our claim will be
established if we show that ¢ < ok for every oe S*u*).

Thus take v ¢ P*(u*). Then v, < pr for every &<o(v) < k.
Hence, as c¢f(ox) = k, we have sup {v;; £ < o(v)} = 0 < pt£. This gives
3(v) < do(v) < 0k < pk, since px = £ for some B. Hence S(t*) = {ok}.
But now we are in an analogous situation to that above, with o
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being replaced by px. Hence the corresponding argument brings us
the desired conclusion.

It remains to prove the theorem in the case in which £ is singular.
We show firstly that sup {s. < px; & < ¥} < pk. For suppose not, and
put N = cf (oK), = cf (k). It is easily seen that there is some permu-
tation w of some subsequence of s such that w is an increasing -
sequence with limit pox. Thus, since ¢f(ok) =\ and px = £*" for
some S, we have X(u) = pk. By the same reasoning, if v is any
cofinal subsequence of w, then ¥(v) = pt. Thus, from the cardinal
equality |\N[* = |x], we can deduce that S°(u) 2 {pra;1 < a < \'L
Since N < &, it now follows that S(s) 2 {v + pr(a + 1); 1 £ a < A},
for some . Since this contradicts | S(s)| < ¥, we must have 0 < ox,
where ¢ = sup {s. < pk; & < k}.

Putting v = s — s/pk, we now claim that S(u) = {ox}. For take
v < P(u), and let v' be a proper initial segment of v. Then we know
that sup {v; & < 0o(v")} < 9, and thus we have Y(v') < do(v) < 0k = pk.
Hence Y(v) < pr. But of course v has as a subsequence some per-
mutation of ¢, and so 3(v) = pk. This shows that S(u) = {ox}.

Since o(s/ok) < &, it is clear that S(s) 2 {o + px; g€ S“(s/oK)}.
Define the sequence w by o(w) = o(s/pok), w; = ok, where a,+ 1 =
min {7; (s/ok): < o£7}. Then S(s) 2 {0 + pk; 0 S*(w)}. As usual, we
can now deduce that if o(w) = o, then |S(s)| = |o(w)|", and thus w,
and hence s/pk, is a finite sequence.

But then S(s) = {0 + px; o€ S(s/ok)}, and we are back in our
familiar situation, and can proceed as before.

This proves our theorem.

LEMMA. Let o = ® be a limit ordinal, and let s be an a-sequence
of posttive ordinals. Then cf(2(s)) = ¢f («).

Proof. Almost immediate; in fact we used a particular case of
this in the proof of T1. Put 7 = XY(s), and define the a-sequence
(7)) by 7. = S s, Since s is a sequence of positive ordinals, (7,)
is an increasing sequence, and as « is limit, we have 7 = lim.., 7..
Thus ¢f (7) £ ef(®). If on the other hand, for each ¢ < v we put
a, =min {£ < &; 7. = o}, then we have « =sup{a,; o <7}, and so

ef(@) < ef(v). Thus cf(7) = cf().

T2. Let £ be a regular i.0., and let s be a k-sequence of positive
ordinals. Then for mo i.0. M < £ s there ¢ \-sequence r of positive
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ordinals such that S(s) = S(r).

Proof. This follows at once from the preceding lemma. For
suppose that for some i.0. A < £ there is a \-sequence r of positive
ordinals with S(s) = S(»). Now from the lemma we have cf(0) =
cf (k) for every o€ S(s), and c¢f(c) = cf(\) for every reS(r). But
then we would have cf(k) = c¢f(\) = N < £, contradicting the fact
that & is regular. This proves our theorem.

We have now exhausted the cases in which s is a k-sequence of
positive ordinals and k£ is a regular i.o., and so we turn to the cases
in which « is a singular i.o. These provide just slightly more variety.

T3. Let k£ be a singular i.o., and let s be a k-sequence of positive
ordinals. Then for no singular i.0. 7 < £ is there an 7-sequence r
of positive ordinals such that S(s) = S(r).

Proof. Suppose that for some singular i.o. 7 < £ there is an 7-
sequence r of positive ordinals such that S(s) = S(»). Then from
our lemma we know that c¢f(y) = ¢f(x); call this n. Put o = C(s).

From R3 we know that |S(s)| < |7] < ||, and so from R4 we
know that &% < p < £?** for some B, and thus, as in the proof of
T1, we obtain S(s — s/p) = {ox}. We claim that C(r) = pk.

Put u = s/fo. Then o(u) < k£, and as S(s — u) = {ox}, it follows
that for some o we have o + px € S(s) = S(r).

Now if sup {r;; & < 1} =0 < ok, then for each te S(r) we would
have 7 £ 07 < 0k < pk, a contradiction. Thus sup {r; & < 7} = pk.
Suppose that o(r/ok) = 7. We wish to show that this implies that
for each ve P(r), we have Y(v) = pka for some limit ordinal «. Now
firstly, since o(r/ok) = 7 = o(v) and 7 is initial, » must have a cofinal
subsequence w with we P(r/ok), which shows that we cannot have
Y(v) = pra + 7 for some a and some 7 < pk.

Suppose that Y(v) = pg(e + 1) for some «; thus X (v') = ok for
some final segment v" of v. But as o(»/ox) = 7, it follows that some
final segment w’ of some we P(r/okx) must be a subsequence of o/,
and thus Y(v") = Y(w") = pk7, a contradiction. Hence we must have
2(v) = pra for some limit ordinal a.

However, we have seen that ¥ + ore S(s) = S(r) for some 7,
and so we must have o(r/oc) < 7. Thus C(r) < pk. Assume C(r) =
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5 < pr. Then o(r/d) < 7, and so 7/6 Ur — (r/5)e P(r), which shows
that some 7 e S(r) has positive remainder 3 (r — (r/d)) £ o1 < pk.
Using the fact that o(s — u) = £ and S(s — ) = {or}, however, we
see easily that no o€ S(s) has a remainder + with 0 < + < p£. This
shows that we cannot have C(r) < pr, and hence proves our claim
that C(r) = px.

But pox = k* = 7* for some a. Since 7 is singular, we can apply
R4 and deduce that |S(s)| = |S(r)| = |7].

Suppose that we have o(u) < 7. Since % is a singular i.o., we
have o(u) < ¢ for some i.0o. ¢ < 7. We claim that |S(s)| < |¢|. Take
s° € P(s), and let u° € P*(u) be such that u° is a subsequence of s°.
Now if u° is not cofinal with s°, we can show, by using Rl in an
argument exactly similar to that used in the proof of T1, that 3(s°) =
J(u°)+ pr. Now assume that «° is cofinal with s°. If Y(u°) = pra +r
for some o and some 7Y with 0 <7 < pk, then if we let u' be the
shortest initial segment of w° with Y(u') = pra, we must have u’
contained as a subsequence in some proper initial segment s’ of s°.
However, it is easily seen that Y(s° — w') = ok, whence we can use
R1 again to obtain X¥(s°) = Y(u') + ok = pr(a + 1). But clearly u° U
s° —u°e P(s) and 3(u° 0s® — u°) = pk(a + 1).

Finally, suppose that 3(u°) = pra for some «.

We claim that in this case X(s°) = Y(u°) = pra. For let v be a
proper initial segment of s°, and let w be the longest initial segment
of u° such that w is a subsequence of ». Then v — w is a proper
initial segment of s° — u°, and so (v — w) < p£. But as u° is cofinal
with s° and Y(u°) = pra, we certainly have ¥(u° — w) = ok. There-
fore X(v — w) + Y(u° — w) = Z(w°® — w), and so by R1, J(v) + J(u° —
w) = Y(w) + Y(u° — w) = J(u°), whence Y(v) < Y(u°). This shows
that 3(s°) < 2 (u°), and of course we must have Y(s°) = 3(u°). Putting
these three pieces together, we obtain

S(s) = {o + pr; o€ S*(w)} U {ora € S*(w); cf (0£x) = \} .
But then [S(s)| =< |S“(w)|2 < |p¢] < |7, as claimed.

Since we have already seen that |S(s)| = |7], this shows that we
must have o(u) = 7.

Put w* = u — u/ox; we wish to show that sup {u}; & < o(u*)} =
ok. For suppose that sup {uf; & < o(w*)} = d < pk; then in the usual
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way we can show that ¢ < pg for every oe S*(u*), whence it follows
without much trouble that S(s — s/ok) = {ox}. If now we have
o(s/ok) <7, we can repeat the above argument to conclude that
[S(s)| < |7], and thus we must have o(s/ok) = 7. But as S(s) 2
{o + oK; o€ S°(s/ok)}, it is not too difficult to see that this gives
[S(s)| = |»*], again a contradiction. Therefore we must have sup {u¥
& < o(u*)} = pk, and we already know that o(u) = 7. We now show
that we must have o(u*) = 7.

Suppose that we have o(s/oc) = n». Taking any oec S*(u*), we
have S(s) 2 {0 + ¥ + ok; 7€ S*(s/pk)}, and it is not difficult to see
that this gives |S(s)| = | S%(s/ox)| = |7*|. As we have thus contradicted
|S(s)| = |n], it must be the case that o(s/ox) < . We know, however,
that o(u)(=o(s/0)) = 7. Hence, since 7 is an i.0., we must have
o(u*)(=o(s — s/oK)) = 7.

Suppose now that for some ¢ < pr, we have o(u*/0) < 7). Then
for any oe S*(u* — u*/0) we have o < ou™ < 0k < ok, where ¢ =
i(o(w*)), from which it follows that S(s — s/0) = {ox}. But the assump-
tion o(u*/0) < v gives o(s/d) < 7, since we have seen that we must
have o(s/p£) < 1. We can now deduce in the normal way that |S(s)| =
| S(s/6) |2 < |i(o(s/6))*| < 7|, once more contradicting the proven equ-
ality [S(s)| = [7/].

We have thus demonstrated that the equality |S(s)| = | 7| implies
that we must have o(u*/0) = 7 for every ¢ < pk.

Now ¢f(0k) =, and as N <7, we have the cardinal equation
IV ] = |7n]. It follows from this and the fact that o(u*/0) = 7 for
every 0 < ok (the formal proof is perfectly straightforward but
rather tedious), that for each o < " there exists an increasing sub-
sequence v* of some v e P*(u*) such that

(i) o(w) =N,

(ii) lim,., v¢ = ok, and

(iii) v* and v" have no common term for a <7 < y*.
But it now follows from this that for each « with 7 < a < %7, there
is 0e8(s) such that ¢ has pr(a + 1) as a remainder. Since this
implies that [S(s)| = |»"|, we have obtained a final contradiction,
which thus proves our theorem.

T4. Let k£ be a singular i.o., and let s be a k-sequence of positive
ordinals with |S(s)| < |k]. Put :» = c¢f(k), o = C(s).

(1) If 9 <k is an i.0. with ) #* \, then there is no 7-sequence
r of positive ordinals such that S(s) = S(»).
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(2) There is a N-sequence r of positive ordinals such that S(s) =
S(r) if and only if sup {s; < pk; &£ < £} < pE and o(s/pK) < \.

Proof. (1) Let » be an i.o. with 7 <k and = x. If 7 is
singular, then the result follows from T3. Thus assume 7 regular,
and suppose that » is an 7-sequence of positive ordinals such that
S(s) = S(r). It now follows from our lemma that we must have
c¢f () = cf (k). Since 7 is regular, this gives the contradiction 7 = A.

(2) Suppose that the conditions hold, and put u = s/p, t = s/pk.
Since |S(s)| < |k|, R4 tells us that &% < p < k" for some B, and
thus we have S(s — u) = {ox}. Now from the condition sup {(s — ?).;
E<o(s—t)} =0 < pr, we obtain ¢ < d¢ < ok < pk, where ¢ = i(o(u —
t))*, for every oe S*(u — t), whence we deduce that S(s — t) = {0«}.
However, since o(t) < N = ¢f(k), no t°e P*(t) can be a cofinal sub-
sequence of any s°e P(s). Thus from R1 we can conclude in the
usual manner that S(s) = {o + ok; o€ S¥(t)}.

Now since N = ¢f(0k), there is an increasing A-sequence v Wwith
lim, ., v. = pk. As or=x’", it follows that X(v)=px. But ) is regular,
and so we may apply Ginsburg’s result from [1] to obtain |S(v)| =
1, and hence conclude that S(v) = {ox}. Consider the \-sequence r =
th. As o(t) < » and A is regular, we have from R1 that S(r) =
{6 + o3 o€ S} = S(s)-

Now assume that there is a A-sequence r of positive ordinals
such that S(s) = S(r).

Suppose firstly that sup{s. < pk; & < £} = pk. Define u, t as
above, and put ¢ = i(o(w — t)). Then we must have A < ¢ < &, and
there exists an increasing \-subsequence v, X(v) = pk, of some we
P*(u — t) with o(w) = . But then we have tUw— v LOJ v° Lojs —uUE
P(s) for every v°e P%w), from which it follows that S(s) 2 {7 +
pr(a +1); 1 < a0 < \*}, where ¥ = 3(¢t U w — v). But this gives | S(s)| =
[AT], whereas by R3 we have |S(s)| = |S(»)| = |n].

Hence we must have sup {s. < px; & < £} < pk, whence we can
show in the usual way that S(s — ¢) = {o«}.

But now we must have S(s) 2 {¢ + pk; 0 € S*¢)}, and from the
definition of ¢ we obtain from this |S(s)| = | S*(¢)| = |4(o(¢))*|. There-
fore, since |S(s)| = |S(r)| < |N], this gives o(t) < A\, as required.

This proves our theorem.



470 J. L. HICKMAN

Thus far we have looked at the problem of “reducing” a given
series of positive ordinals to a shorter series of positive ordinals,
the reduction leaving the set of permutation-sums invariant, and we
have obtained a complete solution to this problem whenver the length
of the original series is an i.o. and the length of the new series is
either finite or an i.o.

We now wish to consider the analogous problem obtained by
removing the restriction that the terms of the second series be positive.
This situation is, naturally, a little more complicated than the previous
one, and in one case we have as yet been unable to determine satis-
factory ecriteria.

T5. Let k£ be a regular i.o., and let s be a k-sequence of positive
ordinals such that |S(s)| = W,- Then there is mo 1.0. N such that
for some M-sequence r with o(r/l) < » we have S(s) = S(r).

Proof. Let k,s be as described, and suppose that for some i.o.
A and some \-sequence 7, we have o(r/l) <\ and S(s) = S(r). Put
7 = i(o(r/1)); then »* <\, and it is obvious that S(r) = S*(t), where
for convenience we are taking ¢t e P*(r/1) with o(t) = 7. Put o = C(s),
# = s/p. Then from the proof of T1 we know that either S(s — u) =
{0} or S(s — u) = {0k}, depending upon the exact value of p. In the
first case we have S(s) = {0 + p; 0 € S*(u)}, and in the second case we
have S(s) = {¢ + pr; 0e S*(u)}. We assume the former; the argument
used in the latter case is exactly similar.

Thus each o€ S(s) has o as a remainder; in fact, by examining
the proof of T1, we can see that p is the smallest positive remainder
of each o€ S(s). Take any £ < 7, and let t*e P{) be such that
o(t*) =7+ 1, and ¢t} =¢.. Then X(t*) =7 + t. for some 7, whence
it follows from S°(¢t) = S(s) that t. has smallest positive remainder p.

Now consider X(¢)e S*(t) = S(s): from our characterization of
S(s), we see that X (t) must have smallest positive remainder p, whence
it follows from the fact 7 is a limit ordinal that ¢ has some final
segment ¢’ with 3(¢') = p. However, o(t') = », and so t. < p for every
& <7, contradicting the proven fact that ¢. has remainder o for
every & < 7. This proves our theorem.

T6. Let £ be a singular i.0. and let s be a k-sequence of positive
ordinals, with W, < |S(s)| < |&].

(1) We can never have |S(s)| = .-
(2) If either |S(s)| = W, or cf(k) = w,, then for mo i.o. 7 <k
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1s there an 7-sequence r such that o(r/l) < n and S(s) = S(r).

Proof. (1) Put o = C(s), u = s/po. Then from [S(s)| < || we
have £? < p < k?** for some B, and S(s — u) = {ox}. Furthermore,
we know from the proof of T3 that

S(s) = {0 + pk; o€ S*(w)} U {0k € S*(u); cf (0ka) = cf(K)} .

From |S(s)| = W, we therefore obtain o(u) = @, whence we have
1S(s)| = [ilo(w)™| > N

(2) Suppose that for some i.o. 7 < £ there is an 7-sequence ¢
of positive ordinals such that S(s) = S°(¢).

We assume firstly that [S(s)| = ¥W.. Then from R2 it follows
that 7 = ®,. But then of course there exists a limit ordinal g with

n=pB<7" and ¢f(B) # cf (k).

Take t° e P*(t) with o(t°) = B; then from our lemma we have
ef(2(t°)) = ¢f(B). But by hypothesis, X(t°) € S(s), whence by our
lemma again, ¢f(2(t°)) = ¢f(£): contradiction.

Now suppose that c¢f(k) = w,; thus by the lemma, c¢f(0) = o,
for every o€ S(s). But if 7 = w, then the lemma would tell us that
for some 7€ S*(t) we have ¢f () = w.

Thus we must have 7 = w, in this case also, and we can thus
repeat the above argument to obtain a contradiction.

This proves our theorem.

That the conditions imposed upon £ and s cannot be eliminated
completely is demonstrated by the following example.

Let ¢ be the w,2-sequence defined by ¢, = w2 for n < w, and
t. = & for ¢ with w £ £ < w,2. Now take se P*(t) with o(s) = w,.

We have of course C(s) = .2, and from our general characteriza-
tion of S(s) when o(s) is a singular i.o., we see that S(s) = {(w2)a; w <
a < w}.

But of course if we let ¢° be the initial segment of ¢ with o(¢t°) =
®, then we obviously have S*(t°) = S(s).

On the other hand, if £ is a singular i.o. with ¢f(k) = w, and s
is a k-sequence of positive ordinals with |S(s)| = ¥,, then it is not
necessarily true that there is an w-sequence r of positive ordinals
with S(s) = S*(r).
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To see this, let us define the w,2-sequence ¢ by ¢, = w.,w, for
n<w,t.=¢ for &£ with w £ £ < 0,2, and take se P*(t) with o(s) = w,.
Once again we have C(s) = ®,2, and it is not difficult to see that
S(s) = {(@)a; 1 < @ < w,).

Suppose that there is an w-sequence r of positive ordinals with
S(s) = S*(r). By taking ue P*(r) with o(u) = w + 1 and w, = r,, we
see that we must have r, = ®w? for each n < w. Since this implies
that ¢ = (w2)w for every o€ S°(r), however, we have a contradiction.

T7. Let k£ be a singular i.o. with ¢f (k) = w, and let s be a k-
sequence of positive ordinals with |S(s)] = W.. Put o = C(s), u =
s — 8/p. Then there is a sequence t of positive ordinals with o(t) <
®,, such that S(t U u) = S(s).

Proof. Since for some ¥ we have S(s) 2 {7 + o + ok; 0 € S*(s/ok)},
it is clear that the condition |S(s)| = W, forces o(s/pr) < w,. Put
v = s/o — s/pk, and suppose that o(v/d) = w, for every 0 < pk. Then
by familiar arguments, we can show that for each @ with 1< a <
@,, there exist o€ S(s) having remainder pk(a + 1). Since this of
course implies that [S(s)| = W., we must have o(v/d) < w, for some
0 < pk, and hence o(s/d) < w,.

However, by the usual process we can show that S(s — s/0) =
{ox}, whence it follows easily that S(s/o U u) = S(s).

We conclude this paper by remarking that if we allow s to have
zero terms, then nothing else of interest emerges.

For suppose that s is a k-sequence for some i.o. £, and that
s/l #+ s. Obviously, if o(s/1) = £, then S(s/1) = S(s): hence we may
assume o(s/l) < £, when we have S(s) = S*(s/1). If i(o(s/D))* =&,
then |S(s)| = ||, and any “reduction” is either trivial or impossible.
Thus assume 4(o(s/1))T = ) < £. Obviously there is a A-sequence 7
with S(r) = S°(s/1), and the question of whether for some i.0. 7 =\
there is an 7-sequence 7 of positive ordinals with S(r) = S*(s/1) reduces
to the questions already investigated. Clearly (R3) for no i.o. 7 <X
is there an 7-sequence r of positive ordinals with S(r) = R*(s/1).
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