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6-CLOSED SUBSETS OF HAUSDORFF SPACES

R. F. DICKMAN, JR. AND JACK R. PORTER

A topological property of subspaces oi a Hausdorff space,
called 6-closed, is introduced and used to prove and interrelate
a number of different results. A compact subspace of a
Hausdorff space is f-closed, and a 6-closed subspace of a
Hausdorff space is closed. A Hausdorff space X with property
that every continuous function from X into a Hausdorff space
is closed is shown to have the property that every 6-continuous
function from X into a Hausdorff space is closed. Those
Hausdorff spaces in which the Fomin H-closed extension
operator commutes with the projective cover (absolute) oper-
ator are characterized. An H-closed space is shown not to
be the countable union of f-closed nowhere dense subspaces.
Also, an eguivalent form of Martin’s Axiom in terms of the
class of H-closed spaces with the countable chain condition
is given.

1. Preliminaries. For a space X and 4 & X, the 6-closure of
A, denoted as cly 4, is {xre X: every closed neighborhood of x meets
A}. The subset A is f-closed if ¢l A = A. Similarly, the f-interior
of A, denoted as int, 4, is {xre X: some closed neighborhood of = is
contained in A}. Clearly, cly A is closed and int, A is open. The concept
of f-closure was introduced by Velicko [15] and used by the authors
in [3]. Also introduced in [15] is the concept of a H-set: a subset A
of a Hausdorff space X is an H-set if every cover of A by sets open
in X has a finite subfamily whose closures in X cover 4; this concept
was independently introduced in [11] and called H-closed relative to
X. An open filter is a filter with a filter base consisting of open
sets. A maximal open filter is called an open wultrafilter. A filter
& on X is said to be free if ady & +# @, otherwise, # 1is said
to be fized. A subset A of X is far from the remainder (f.f.r.)
[1] in X if for every free open ultrafilter % on X, there is open
UeZ such that cl,UN A= @; a subset A of X is rigid in X [3]
if for every filter base .# on X such that AN N{cl, F: Fe ¥} =
@, there is open set U containing 4 and F'e & such thateclUN F =
@. The following facts are used in the sequel:

(1.1) In ACBZ X and A is 6-closed in X, then A is 6-closed
in B.
(1.2) A compact subset of a Hausdorff space is 6-closed.
(1.3) [15] A 6-closed subset of an H-closed space is an H-set.
(1.4) [3] Let A be a subset of a space X. The following are
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equivalent:

(a) A is rigid in X.

(b) For any filter base .# on X, if AN N{c, F: Fe &} = @,
then for some Fe &, Ancl, F= Q.

(¢) For each cover .o~ of A by open subsets of X, there is a
finite subfamily <& < .& such that A C intel (U <2).

(d) For every open filter & on X such that AN N{clU:Ue &} =
&, there is Ue & such that ANeclU= O,

(1.5) [3] Disjoint rigid subsets in a Hausdorff space can be
separated by disjoint open sets.

(1.6) [3] If A is rigid in X, then A4 is f.f.r. in X.

Since any closed subset of a regular Hausdorff space is 0-closed
and since there are regular Hausdorff spaces with noncompact closed
subsets, then the converse of 1.2 is false. In [3], it was shown that
every rigid subset of a Hausdorff space is an H-set. Thus, the
converse of 1.3 is false since the subset X in the space Y described
in Example 1.1 in [3] is rigid in Y but is not #-closed in Y. On the
other hand, by Theorem 4 in [15] a subset of an H-closed, Urysohn
space is f-closed if and only if it is an H-set. Since an H-closed
regular space is compact, then a subset of an H-closed, regular
space is f-closed if and only if it is compact. By 1.2 and 1.3, the
concept of “f-closedness” is similar to the concept of “H-closure” in
the sense that both are bracketed by the concepts of “compactness”
and “H-set”.

Also, needed in the sequel is a few definition about semiregularity,
f-continuity, and extensions. For a space X, X, is used to denote
X plus the topology generated by the regular-open subsets (a subset
is regular-open if it is the interior of the closure of itself). A space
X is semi-regular if X = X,; in particular, (X,), = X..

A function f: X—Y, where X and Y are spaces, is 0-continuous
if for each 2 € X and open subset U of f(x), there is an open subset
V of x such that f(cl V)< clU. The Katétov extension [9] (resp.
Fomin extension [5]) of a Hausdorff space X is denoted as £X (resp.
0X); these H-closed extensions are studied in [12,13]. In [11], it
is shown that if Y is an H-closed extension of X, then there is a
continuous surjection f: kX —Y such that f(x) =z for x € X.

2. 6O-closed subsets of H-closed spaces. For a space X and a
subset A € X, we will let X/A denote the set X with A identified
to a point and endowed with the quotient topology.

(2.1) Let X be a Hausdorff space and A < X. The following
are equivalent:
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(a) A is @-closed in X.

(b) X/A is Hausdorfl.

(¢) A is the point-inverse of a continuous funection from X into
a Hausdorff space.

(d) A is the point-inverse of a #-continuous function from X
into a Hausdorff space.

Proof. The proof of the equivalence of (a) and (b) is straight-
forward to prove. Clearly, (b) implies (¢) and (¢) implies (d). To
show (d) implies (a), let f: X—Y be a f-continuous function into a
Hausdorff space Y, A = f~'(y) for some ye€ Y, and x¢ A. There is
open set U of f(x) in Y such that y¢ clU. Since there is open set
V of x such that f(clV) S clU, then clVNA= O.

(2.2) Let X be a Hausdorff space and A & X. The following
are equivalent:

(a) A is f-closed in kX,

(b) A is rigid in X.

() Ais f.fir. in X and A is f-closed in X.

Proof. (a) implies (b). Let .&7 be a cover of A by open subsets
of X. For pekX\A, let U, be an open subset of £X containing p
such that ecl,,U,N A = @. There is a finite subset <& < .o and
finite subset B < £X\A such that

kX =U{cl U, pe B U U{cl, V: Ve Z}.

Thus, A € X\U {clx (U, N X): pe B} < U {cly V: Ve .}, and by 1.4,
A is rigid in X.

(b) implies (¢). By 1.6, A is f.f.r. in X. Suppose pe X\A.
Then A and p are disjoint rigid subsets and, by 1.5, can be separated
by disjoint open sets. Hence, A is #-closed in X.

(¢) implies (a). Let pe X\A. Since A is f-closed in X, then
there is an open set U in X such that pe U and cl, UNA= Q.
Since X is open in £X, then U is open in £X and cl,;U=¢cl;UUB
where B={qc kK\K:Ueq}. Thus, ANncl,;U= . Suppose perX\X
(thus, p¢ A). Then p is a free open ultrafilter on X and there is
open set Uep such that el,UN A= @. Now, UU{p} is open in
£X and contains p and cl.x (UU{p}) = cly UUB where B is the same
as above. Thus, ANclx(UU{p}) = @.

By 2.2 and 1.1, it follows that a rigid subset of a Hausdorff
space is f-closed in the space.

Let X and Y be Hausdorff spaces and f:X-—Y a continuous
function. We say f is absolutely closed [17] if f cannot be con-
tinuously extended to a proper Hausdorff extension Z of X and is
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regular closed [2] if the image of the closure of an open set is closed.
Dickman [2] proved that f is absolutely closed if and only if f is
regular closed and point-inverses are f.f.r. in X. By 2.1 and 2.2,
this statement converts into the following:

(2.3) Let f: X—Y be a continuous where X and Y are Hausdorff
spaces. The following are equivalent:

() f is absolutely closed.

(b) f is regular closed and point-inverses are f.f.r. in X.

(¢) f is regular closed and point-inverses are rigid in X.

Another consequence of 2.2, in combination with 1.5, is the follow-
ing result.

(2.4) Disjoint f-closed subsets of an H-closed space are contained
in disjoint open subsets.

In [9], Katétov shows that if every closed subset of an Hausdorff
space X is H-closed, then X is compact. Similarly, by 6.1.1 in [3],
if every closed subset of a Hausdorff space X is rigid, then X is
compact. A Hausdorff space X in which every closed subset is an
H-set is called C-compact [16], and there are noncompact, C-compact
spaces [17, Example 2]. The next result will help us prove a property
possessed by C-compact spaces.

(2.5) If f: X—Y is f-continuous where X and Y are Hausdorff
and if A is H-subset of X, then f(A) is an H-subset of Y.

Proof. Let &~ be cover of f(A) by open subsets of Y. For each
@€ A, there is open set U, e & such that f(a)e U,. There is an open
set V, of a such that f(cl V,) Z elU,. There is finite subset BS 4
such that A £ U {clV,: ae B}. It follows that f(4) S U {clU,: a € B}.

A Hausdorff space X is called functionally compact [4] if every
continuous function from X into a Hausdorff space is closed. A C-
compact space is functionally compact [4], and by 2.5, every 6§-
continuous function from a C-compact space into a Hausdorff space
is closed. Clearly, a Hausdorff space X in which every ¢-continuous
function from X into a Hausdorff space is closed, is functionally
compact. Surprisingly, the converse is true. We need the following
definition and theorem to prove the converse.

A Hausdorff space X is called 6-seminormal [6] if for every
f-closed subset A £ X and every open set G containing A, there is
regular open set R such that AS RS G.

(2.6) [6] A Hausdorff space is functionally compact if and only
if it is H-closed and 6#-seminormal.
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(2.7) A Hausdorff space X is functionally compact if and only
if every 6#-continuous function from X into a Hausdorff space is
closed.

Proof. The proof of one direction is obvious. To prove the
converse, suppose X is functionally compact and f: X—Y is a 0-
continuous function where Y is Hausdorff. To prove f is closed,
suppose B C X is a closed subset and pecly f(B). By Corollary 2.1
in [4], X is H-closed. By 2.5, f(X) is H-subset and, hence, closed
inY. So, pe f(X). Assume, by way of contradiction, that p¢ f(B).
So, f'(p) € X\B. By 2.1, f'(p), is 6-closed in X and by 2.6, there
is regular open set R such that f~(p) £ R< X\B. Now, B X\R,
but X\R, the closure of an open set, is H-closed by 1.2 in [9]. By
2.5, f(X/R) is an H-set, and hence, closed. This leads to a contradic-

tion as f(B) S f(X\R) and p¢ f(X\R).

Problem. Characterize those Hausdorff spaces X with this pro-
perty: every weakly 6-continuous function from X into a Hausdorff
space is closed. A function f: X—Y is weakly 6-continuous [5, 3]
if for every xe X and open set V of f(x), there is open set U of
such that f(U)Z clV. Every compact Hausdorff space has this
property; we are unaware of any noncompact Hausdorff space with
this property.

3. O-closure in H-closed extensions. With the use of the next
result, we will derive a new characterization of those subsets of a
Hausdorff space X that are 6-closed in kX.

(8.1) If Y is a Hausdorff extension of X and A is a rigid subset
of X, then A is rigid in Y.

Proof. By 2.2, it suffices to show that A is #-closed in £Y.
By 4.4 in [11], there is a continuous surjection f: kX — £Y such that
that f(2) = « for x€ X. Since £X is H-closed, then f is absolutely
closed. Let zexY\A. Then f7'(2) is rigid in £X by 2.3. Using
that #(#X) = £X, it follows by 2.2 that A is rigid in £X. By 1.5,
there is open set U in £X such that AZ U and cl.;UN f(z) = 0.
Let W= £Y\f(cl,yU). Since f is regular closed by 2.3, W is open;
also, ze W. Now, f™(W) is open in X and f(W)nel U= 2.
So ey fT(W)NA=@. Since A= f1'f(4) by 1.8 in [13],
flelix fA(W)NA=@. Again, by 2.8, f(cl.x f(W)) is closed
implying cl., WN A= @. Thus, A is f-closed in Y.

(3.2) Let X be a Hausdorff space and A £ X. The following
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are equivalent:
(a) A is f-closed in £X.
(b) A is 6-closed in every Hausdorff extension of X.
(¢) A is f-closed in oX.
(d) A is 6-closed in some H-closed extension of X.

Proof. By 8.1 and 2.2, (a) implies (b). Clearly, (b) implies (c)
and (c) implies (d).

(d) implies (a). Suppose A is 6-closed in an H-closed extension
Y of X. By 4.4 in [11], there is a continuous surjection f:xX—Y
such that f(x) = « for x€ X. Let zekX\A. Since f'f(4)= A4 by
1.8 in [13], then f(z)e Y\A. So, {f(?)} and A are contained in disjoint
open sets. By the continuity of f, {#} and A are contained in disjoint
open sets. So, A is f-closed in £X.

It is not possible to replace “H-closed” in 3.4(d) by “Hausdorft”
as a subset A of X can be f#-closed in some Hausdorff extension Y
of X while A is not 6-closed in £X. For example, if X is Hausdorff
but not H-closed, then X is #-closed in the trival Hausdorff extension
X of X, but X is not f-closed in £X.

For each Hausdorff space X, we let 6X denote {g:gq is open
ultrafilter on X}. For each open set U in X, let G(U) denote {ge
0X:Ueq}; {G(U):U open in X} forms a basis for an extremally
disconnected, compact Hausdorff topology on X [8]. By 5.2 in [13]
there is a f-continuous, perfect irreducible function 7: §X — ¢X defined
by 7(q) = q for each free open ultrafilter ¢ on X and 7(q) = « where
2 is the unique convergent point of the fixed open ultrafilter q.

(8.3) Let X be a Hausdorff space and U, V open subsets of X.
(@) GUUNEHV)=GUNV)and GIU)UGV)=GUUYV).
(b) If xe X and 77(x) S G(U), then x€intycl, U.

(3.4) If X is a Hausdorff space and 4 € X, then 77'(4) is compact
if and only if A is #-closed in £X.

Proof. Suppose 7 (A4) is compact. By 3.2, it suffices to show
A is O-closed in 0X. Suppose ycoX\A. By the compactness of
77'(4) and 7 '(y), the Hausdorffness of X, and 3.3(a), there are open
sets U and V in X such that 77(4) < G(U), 77'(y) < G(V), and
GU)NG(V)= . Now, by 3.38.(b), A S intycl, U and yeintycl; V.
Since @ = G(U)N G(V) = G(UN V) and since every nonempty open
set is contained in some open ultrafilter, then UNV = @. By 2.14
in [11], intyel, UNintycly; V= @. Thus, A and y are contained in
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disjoint open sets in X and by 4.1(c¢) in [11], in £X.

Conversely, suppose A4 is f-closed in £X and, hence, by 8.2, 6-
closed in oX. It suffices to show 77'(4) is closed in 6X. Let ye
6X\r7'(A). Then n(y)¢ A, and there is open neighborhood U of 7(y)
in 0X such that cl,y UNA=@. So 77(4)Nzncl,xU)=@. But
yen Y (n(y)) S int, w7 cl,y U). Hence, 77(A) is closed in 6X.

A liability of the concept “f-continuity” is that the restriction
of a f-continuous function is not necessarily 6#-continuous; this fact
is emphasized by 3.4. In particular, if A is a #-closed, but not H-
closed, subspace in an H-closed space Y (e.g., the set of nonisolated
points of the space Y of Example 1.1 in [3]), then by 3.4, 77'(4) is
compact; however, w|77'(A): #7'(A) —Y is not f-continuous.

For a Hausdorff space X, let EX denote {g € 6X: q is fixed}. Now,
7 4(X) = EX and 7| EX: EX— X is a f-continuous, perfect, irreducible
function (see [8, Th. 10]). Porter and Votaw [13] proved that
o(EX) = E(cX) if and only if the set of nonisolated points of EX
is compact. We now characterize when ¢ and E commute in terms
of X.

COROLLARY (3.5). Let X be a Hausdorff space d(EX) = E(cX)
if and only if the set of monisolated points of X is f-closed in £X.

Proof. Let A be the set of nonisolated points of X. By Theorem
5.8 in [13], #7%(A) is the set of nonisolated points of EX. The stated
result now follows immediately by 3.4.

It is known that [10] no H-closed space is the countable union
of compact nowhere dense subspaces and that [10] there exists an
H-closed space that is the countable union of closed nowhere dense
subspaces. An unsolved problem by Mioduszewski [10] is whether
some H-closed space is the countable union of H-closed nowhere dense
subspaces. We now show that no H-closed space is the countable
union of #-closed nowhere dense subspaces.

(3.6) An H-closed space is not the countable union of 6¢-closed
nowhere dense subspaces.

Proof. Assume, by way of contradiction, that X is an H-closed
space and X = |J{A4,: ne N} where each A, is nowhere dense
and f-closed in X. Since X is H-closed, then X = £X = ¢X and
60X = EX. By 3.4, n7'(A4,) is compact for each ne N. If 77'(4,)
contains a nonempty open set, then by the irreducibility and closed-
ness of 7 [8, Lemma 17], n(7z"'(4,)) = A, contains a nonempty open
set. So, each 77'(A4,) is nowhere dense. Hence, the compact Hausdorff
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space X is the countable union of nowhere dense closed subsets, a
contradiction.

A space has the countable chain condition (c.c.c.) if every family
of pairwise disjoint nonempty open sets is countable. One of the
equivalent forms (see [14]) of Martin’s axiom is the following:
Every compact Hausdorff space with ccc is not the union of less
than ¢(=2%0) closed nowhere dense subsets.

(3.7 Martin’s axiom is equivalent to
(*) every H-closed space with c.c.c. is not the union of less than
¢ 0-closed nowhere dense subsets.

Proof. Clearly, (*) implies the “compact Hausdorff” form of
Martin’s axiom. Conversely, suppose Martin’s axiom is true and
X is an H-closed space with c.c.c. Since X is H-closed, then X =
EX. Using the fact inty n(U) # @ for every nonempty open set U
of EX, it follows that EX has c.c.e. If X is the union of «, a car-
dinal number, f-closed nowhere dense subsets, then, as in the proof
of 3.6, the compact Hausdorff space EX with c.c.c. is also the union
of a closed nowhere dense subsets. Thus, (*) is true.
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