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LUSIN AREA FUNCTIONS ON LOCAL FIELDS

JIA-ARNG CHAO

We show that over a local field, Lusin area functions and
nontangential maximal functions of a regular function are
equivalent in the Lp "norm" for 0 < p < oo. As a conse-
quence, we have that "nice" singular integral transforms
preserve ϋZ^-spaces for 0 < p < oo.

1* By a local field, we mean a locally compact, nondiscrete,
totally disconnected, (complete) field. Various aspects of harmonic
analysis on local fields have been studied. A list of references can
be found in [4]. We also refer to [4] for notation and prelimi-
naries.

Let if be a fixed local field with the ring of integers £?. &\& =
GF(q) where & is the maximal ideal in & and q is a prime power.
For keZ, let ^~k = {xe if: \x\ £ qk), {έ? = ^ ° ) . ^ * r * = V + ^~h

are spheres. The Haar measure on K has been normalized so that

|<^| = \ dx = 1 and | ^ V | = qk for all k. The theory of regular
functions which are the local field analogue of harmonic functions
is studied in [10] and [4]. In particular, distributions on K have
been identified with regular functions on if x Z and the regularization
kernel Rk(x) = q~kΦ-k{x)y where Φ_fe is the characteristic function of
^~k, serves as the Poisson kernel.

Write (&*y\ k) = {{x, k)eK x Z:xe ^~1}. For a nonnegative
integer ί and ^e K, let Γι{z) = {(x, k)e K x Z: \x - z\ ^ qk+ι} =
U/fc (^~(*+l), A;). For a distribution / on if or a regular function
/(a?, k) on if x Z, denote dkf(x) — f(x, k) — f(x, k + 1). The Lusin
area function of / with respect to Γt is given by

where the sum runs over distinct (&*x~~k

9 k) c Γt(z). Write Sf(z) =
S{O)f(z) = (Σfc |djfe/(«) |2)1/2. The nontangential maximal function of
/ with respect to Γt is given by

m t l ) / ( s ) = sup \f{x,k)\.
(x,k) eΓι(z)

Write f*(z) - m(0)/(^) = sup, \(z, k)\.
Let us suppose that f(χ, k) —> 0 as fc -• oo for each x e if. Let

\\f\\p = sup^ | | / (- , fe)||p for 0 < p < oo. It is shown in [10] that for
1 < p < oo,

(1) 4,11/11,^ \\Sf\\p^Bp\\f\\p with constants Ap,Bp>0.
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It is easy to see that f or 1 < p < oo

( 2 ) l l / l | p ^ l | / * l | p ^ C p | | / | | p with constant Cp>0.

In other words,

( 3 ) I | S / | | , ^ | / | | , ~ | | / * | | , for i < p < o o .

From [4], we have that, for all nonnegative I and h,

{x e K: Sil)f(x) < oo} ̂  \x e K: lim f{x, k) exists I
ί 4 \ I fc->-oo j

^{xeK:ma)f(x)< oo}

i.e., the above sets are equal except possibly for a set of measure
0. Our main objective is to show that

\\S^f\\p^\\m^f\\p for 0 < p < oo .

As a consequence, we show that "nice" singular integral transforms
preserve IP-space (0 < p < oo) which is the space of distributions
whose maximal function are in Lp. The last result is the main
contribution of [5].

The euclidean version of the main theorem can be found in [2]
(see also [7]); its martingale version about Sf and /* is proved in
[1]. Our work has been motivated by these results. In Appendix
we shall discuss briefly how our argument can be applied to certain
martingales.

REMARK 1. The equivalence in Lp "norm" is interpreted in the
obvious way, i.e., if one side is finite, so is the other and is bounded
by a constant multiple of the former one. The restriction that
f{x, k) —• 0 as k —> oo is needed only for the first inequality of (1)
and \\m^f\\p<ίAp\\S^f\\p.

REMARK 2. A trivial modification gives us the same result for
Kn, the ̂ -dimensional vector space over K. The "Φ-inequalities" of
Burkholder-Gundy [1][2] for S{1) and m{h) could also be proved.

2. We first show that | | /* | | p ^ | |m ( Z )/| |p for 0 < p < oo.

LEMMA 1. For λ > 0,

\{xeK:f*(x) > λ}| ^ \{zeK:m^f(z) > λ}| ^ qι\{xeK:f*(x) > λ}| .

Proof. \{f* > λ}| ̂  \{m{l)f > λ}| is obvious since /* ̂  ma)f.
Suppose ma)f(z) > λ. Then there exists (x, k) e Γ^z) such that

I/(a?, k)\ > λ. Hence ^~h c {/* > λ} and z e ̂ -(k+l). Therefore
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| { m " > / > λ } | ^ ϊ Ί ί / * > M | .

THEOREM 1. \\f*\\, £ | |m(I>/||, £ ?"'|l/*ll» for 0 < p < ~ .

Proof. This follows from Lemma 1 and the following identity:

(5) | |flr| |;=p(V-1 |{ίir>λ}|dλ, 0 < p< ~ .
Jo

Now let us break up the proof of | | S ( I ) / I I P ^ \\m{h)f\\p(0 < V < °°)
into several lemmas:

L E M M A 2. \\S^f\\l = Qι\\Sf\\l = qι\\f\\l

Proof. Easy and known. (See Lemma 2.8(c) of [4].)

LEMMA 3. | | / * | | p ^ Ap\\Sf\\p for 0 < p < 2.

Proof. By (5), it suffices to show the following estimate:

( 6 ) |{/* > λ } | ̂  AX-2Vt\{Sf >t}\dt for λ > 0 .
Jo

For a fixed λ > 0, let

σ(x) = sup {n: Snf(z) > λ for some z e ^~ίn+1)}

where SJ{z) = ( Σ « I dkf(z) |2)1 / 2 (Convention: sup 0 = -«>.)
For αί e K with o (x) = w, let

^ ' Λ ) if Λ ̂  n + 1 ,

( « , Λ + 1 ) if k^n.

Hence 5»flr(aj) ^ λ and Sg(x) ̂  S/(x) for all x. Moreover, for α? e
{σ= - oo} c {Sf ^ λ}, we have flf*(a?) = /*(α?) and Sfflr(α?) = Sf(x). On
the other hand, suppose σ(x) = n > — oo. Then there exists 2 6
^ - c + i ) s u c h that SJ{z) > λ. Thus ^rn c {2: S/(α) > λ} with a? e
^*Γ ίΛ+1> Therefore we have

Now

>t}\dt
Jo

and, by Lemma 2 and (5),
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|{/* >X,σ= - c o } | ^ \{g* > λ } | ^ 2λ- 2

= 2λ-2||5ίflί||2
2 = 4λ- 2 [~t\{Sg > t}\dt

JO

= 4χ-2[λt\{Sg>t}\dt
Jo

^4:X-2[Xt\{Sf >t}\dt.
Jo

Thus

|{/* > λ}| :g |{/* > λ, σ > - oo}| + |{/* > λ , σ = -oo}|

This establishes (6) and Lemma 3.

LEMMA 4. For Z > 0 and 0 < j> < 2,

l l^>/ll,^J?p| |m^/llp.

Proof. Again, it suffices to show that for I > 0 and λ > 0,

K W > λ } | ^ BX~2 [Xt\{ma)f >t}\dt.
Jo

L e t μ(z) = s u p { ^ : |/(a?, w)| > λ for some xe ^" ( * + ί ϊ } For 2 e Z

w i t h μ(z) = w, w e h a v e μ(x) = w for all a e ^ Z ~ ( % + Z ) ; and let

/ M _ K ^ ' Λ ) if kZ n + 1,
Q{Zf }~ \f(x,n+l) if fc^^.

Hence {μ = — oo} = {mα>/ ̂  λ} and for μ(s) = — oo, we have

g{x, k) = /(x, fc) if α G ̂ r ( f c + Z ) or (x, h) e Γt(z). Thus on {z: μ(z) =

- S(Z)/(^) and m(l)flr(») = m{l)f(z) ^ λ. Now

and by Lemma 2 and (5),

£ qιχ-2.2[°t\{ma)g>t}\dt
Jo

^2^λ- 2Γί|{m ( Z )/ > t}\dt
Jo

Hence
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|{S"'/ > λ}| ^ 2(g< + l)λ~2 Γί|{m(ί)/ > t}\dt .
Jo

Therefore Lemma 4 is proved.

LEMMA 5. For I ^ 0 and 2 < p < ©o,

\\s«>f\\,£C,\\f\\9.

Proof. Suppose p > 4 and let r be the conjugate index of p/2.
Thus 1 < r < 2. Consider a fixed k e Z. For x e K, let {a?<}?ii be the
distinct coset representatives such that ^~{k~ι+1) d ^~{k+1). For ge
Lr with | | # | | r = 1, we have

ΣIdkf(x t) |21g(x)\dx=Σi\ I<**/(**)121θ(x, k + 1)\dx( Σ

Hence it follows from this, Holder's inequality, (1) and (2) that

syfix)]* I g(χ) I dx = Σ ( Σ I <**/(*«) I21 fl(») I *»

^ Qι \ [SJ(x)fg*(x)dx

where Bp depends only on p and q. Thus

\\Sϋ)f\\tp=\\[Sa)fY\\,Λ= sup \\ [Sl»f{x)Yg(x)dx

Therefore | |S ( ί ) / | | P ^ C,\\f\\, for 4 < p < oo.
Apply the Marcinkiewicz interpolation theorem to this and Lemma

2, we have

^ for 2 < ί ) < o o .

THEOREM 2. For ?, h ^ 0 α«d 0 < p < oo,

Proof. The case of p = 2 is obvious.
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If 0 < p < 2, then, from Lemma 3, Lemma 4 and Theorem 1,
we have for I > 0,

\\f*\\P^Ap\\Sf\\P<LAp\\S^f\\P

If 2 < p < oo, then, by Theorem 1, (3) and Lemma 5,

\\m*y\\,~\\f*\\9~\\f\\p~\\Sf\\,

Therefore \\Sa)f\\p ** \\m{h)f\\P for 0 < p < oo and the proof of
the theorem is completed.

REMARK 3. The above argument simplifies the extension argument
as used in §2 of [4] and is essentially similar to the decomposition
argument of [5]. It is also a sort of stopping time argument for
martingales relative to a regular stochastic basis. (See Appendix.)
The main result (with respect to "truncated cones") could be used
to show (4)—the Fatou-Calderόn-Stein theorem, in a similar manner
as in [2].

3* Let π be a (multiplicative) unitary character on iΓ* such
that it is homogeneous of degree 0 and is ramified of degree h ̂  1.
Denote Q(x) = cπ(x)\x\~1 where c = 1/Γ(π). (See [9] for details about
Γ-ίunction.) Let Qn = Rn*Q and Qζ = QnΦ-N for N^n + h. For a
distribution / on K or a regular function f(x} k) on K x Z, we note
that Q»*f(x, k) = QS*f(x, k) = QN*f(x, k) f or n ^ k £ N - h. Define

(Tπf)(x, k) = lim QN*f(x, k) for (x,k)eKx Z.
i\r->oo

If / e Lp(K)y 1 <: p < oo, then this is just a sort of singular integral
transform as been studied in [8], [11] and [4]

For 0 < p < oo, let HP(K) be the space of all distributions / on
K whose maximal function f*eLp(K) with the IP "norm" \\f*\\p.
From [5], we know that for feHp, (Tπf)(x, k) is a well-defined
regular function. The regularization of the corresponding distribution
is just (Tπf)(x, k). Moreover, the following is also shown:

THEOREM 3. Tκ preserves Hpspaces for 0 < p < oo. That is,
MT.f)*\\p~\\f*\\pfor 0<p<oo.

We show here how this result can be obtained as a consequence
of Theorem 2.

LEMMA 6. S{h)f(z) = Sih)Tπf(z) for all zeK.
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Proof. For a fixed ke Z and xe K,

dhTJ(x) = TJXz, A;) - Tπf(x, k + ΐ)= TJJ(x).

For each meZ, let ε*M, i— 1, 2, •••,(? — l)g*~S be coset represen-
tatives of ,̂ »-< -*+« in {ί: | ί | = <r+1}. Then

l\t\><ik \t\

= c Σ «-(ro+1) ί /(« - t)π(t)dt

= cq'h X {<1 Σ ?(e«)/(a - si, m - Λ + 1) .
m=fc ΐ = l

Thus

ί = l

Now let ff(a?) be the restriction of dkf(x) on z + ^~<k+1) for any
fixed z. Hence from (7) we see that Tπg(x) is also supported on z +
έ^-(k+Dβ By pianchereΓs theorem, since \π\ — 1, we have

112̂ 11,= \\(Txgn= 11̂ -̂ 11,=

That is,

where xifi = l,2f •• ,^fe, are coset representatives of & {k h+1)

^*-<*+Dβ Thus summing this up with respect to k, we have
in

Proof of Theorem 3. It follows immediately from Theorem 2
and Lemma 6 that for 0 < p < 00,

Appendix* Let (β, Ssζ P) be a probability space and {JK}n=i a
nondecreasing sequence of sub-σ-fields of Sf. Let / = {/J^i be a
real-valued) martingale relative to {JKL^i a n ( i {̂ AJ*;>I be the difference
sequence of /. For a nonnegative integer i, write

and S(I)/ = VZu>ιE(dl\ ̂ k-ι)Γ- /* = m<0)/ = s u p J / J is the max-
imal function of / and S/ = Smf = [Σfc>o ̂ &]1/2 is the square function
of / . Burkholder and Gundy [1] proved that for a large class of
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martingales,

(8) \\Sf\\,~\\f*\\, f o r 0 < p < o o

However examples (in [1]) show that

( 9 ) IIS ( I ) /l lp^l |m ί A ) /l |p for 0 < p <

fails to hold. Nevertheless by a slight modification of the previous
argument, we can show that this is true for martingales relative
to a regular stochastic basis (after Chow [6]).

Indeed, the crucial part of the proof is to consider the following
stopping time:

μ(x) = m£{n:E(\fn+ι\\j*n)<\} (λ > 0) .

Together with the regularity of the stochastic basis and (8), we get
(9) by a similar argument as before.

We remark that our argument gives a simplified proof of (8)
for martingales relative to a regular stochastic basis. Also the
argument used in Lemma 5 similar to the one in [3] provides a new
proof of that

| |«/II,2*CP | |/H, for p>2

where sf = S{1)f = [Σ*>i E(d\\S^k^\12 is the conditioned square func-
tion of the martingale / (relative to any stochastic basis).
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