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ALMOST PERIODIC HOMEOMORPHISMS OF E2

ARE PERIODIC

BEVERLY L. BRECHNER

In this paper we show that every almost periodic homeo-
morphism of the plane onto itself must be periodic. This
improves well-known results.

1* Introduction* In [3] Foland showed that every almost periodic
homeomorphism of a disk onto itself is topologically either a reflection
in a diameter or a rotation. Hemmingsen [7] studies homeomorphisms
on compact subsets of E2, with equicontinuous families of iterates,
and shows that if such a compact set has an interior point of infinite
order, then the compact set is a disk or annulus. If it is a disk,
then the homeomorphism is a rotation or reflection. Kerekjartό [8,
pp. 224-226] showed that every periodic homeomorphism of a disk
onto itself is a conjugate of either a rotation or a reflection. It was
brought to my attention by S. Kinoshita that Kerekjartό in [9]
obtains a characterization of those homeomorphisms of S2 onto itself
which are regular; that is, homeomorphisms h such that {hn}nei forms
an equicontinuous family. It is known [4] that almost periodic homeo-
morphisms on compact metric spaces satisfy this property, so that
our theorem for E2 would follow from the theorem for S2.

However, our proof of the main theorem uses Bing's ε-growth
technique [6] to obtain an invariant disk, and thus re-does a portion
of [2], [7], and [9] in a particularly nice way.

Montgomery began a study of almost periodic transformation
groups in [13], with the main results for E*. One very nice theorem
states that if G is a one-parameter almost periodic transformation
group (a.p.t.g.) of Ez whose minimal closed invariant sets are one-
dimensional, and whose orbits are uniformly bounded, then G is the
identity. Our theorem may be regarded as something of an analogue
to this theorem for E2. That is, our theorem shows that if G =
{hn}nei is an a.p.t.g. of E2, h Φ e, then the orbits are not uniformly
bounded.

2. Preliminaries* The definitions used here of the following
are as in [4] and [6]: Relatively dense subsets of the integers;
homeomorphisms almost periodic at a point, pointwίse almost periodic
(p.a.p.), and almost periodic (a.p.) on the space; invariant set; and
minimal set are defined in [4]. Property S, ε-growth, and ε-sequential
growth are defined in [6]. The orbit of x in the space X is the set
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{hn(x)\nel}, and is denoted by 0(x).

We will use the following known results.

PROPOSITION 2.1. [6, pg. 212]. Let K be a subset of a metric
space X. If K has property S, then K is locally connected.

PROPOSITION 2.2. [6, pg. 215]. If K is a subset of a metric
space X and K has property S, then K has property S. Thus, if
K has property S, then K is locally connected.

PROPOSITION 2.3. [6, pg. 216]. Let X be a metric space with
property S, H and K subsets of X, and ε > 0. If K is an ε-sequential
growth of H, then K has property S and is open in X.

NOTE. The double arrow in f:A-^B denotes an onto function.

3* Obtaining invariant disks* In this section we use the concept
of an ε-sequential growth to enable us to obtain E2 as the union of
an increasing tower of invariant disks for any a.p. homeomorphism
of the plane onto itself.

LEMMA 3.1. Let X be a compact metric space and let {fn} be
an equicontinuous collection of functions on X. Then for each ε >
0, there is a δ > 0 such that diam (/Λ(δ-set)) < e, for all ne I.

Proof. Let ε > 0. For each xeX, there exists 7 > 0 such that
diam (/Λ(7-nbd of x)) < ε for all nel, since {/J is equicontinuous.
Choose such a neighborhood for each xe X. This forms a cover of
X and therefore some finite subcollection covers X. Let δ be a
Lebesgue number for this subcover. Then diam (/»(δ-set)) < ε for
all nel.

LEMMA 3.2. Let h be a homeomorphism of S2 onto itself such
that h(p) = p where p is the north pole of £2, and let X be a locally
connected continuum in S2, containing p, such that h(X) = X. Let
ε — diam S2, and by uniform continuity of h, let § > 0 such that
diam (fe(δ-set)) < ε/2. Then if diam X < δ and U is the component
of S2 — X containing the south pole, we have h{U) = U.

Proof. We first show that each component of S2 — X must go
onto some component of S2 — X. Let V be a component of S2 — X,
and suppose there exist points x and y e V such that h(x) e Wu h(y) e
W2, where W1 Φ W2 are components of S2 — X. Let A be an arc
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from x to y in V. Since A misses X, and h(X) = X, h(A) misses X.
But h(A) is connected and contains points of different components of
S2 — X, and therefore must contain a point of X. This is a contra-
diction. Therefore h( V) is a subset of a component of S2 — X. The
same argument applied to h~\ shows h~ι (componet) S some component
of S2 — X, so that h( V) is a component of S2 — X. We next show
that h(U) = U. Suppose h(U) Φ U. Then there is a component W(Φ U)
of S2 - X, such that h{W) = U. Now diam TF< δ, and therefore
diam h(W) < ε/2. Therefore fe(T7) ̂  E7. This is a contradiction. Thus
h(U) = U.

LEMMA 3.3. Let h be an almost periodic homeomorphism of E2

onto E2 and let <p: E2 —> S2 be the inverse of the stereographic pro-
jection. Let p be the north pole of S2. Let g: S2 -» S2 be defined by
g(x) = ί ^ " 1 ^ ) ' f°τ s e S * - iP} Then g is an a.p. homeomorphism

(P , jor x — p
of S2 onto S2.

Proof Let ε > 0. We must show that there exists a relatively
dense subset A of I such that d(x, gn(x)) < s for all x £ S2 and all
n 6 A. Now we know there exists a relatively dense subset A of I
such that d{x, hn(x)) < ε for all x e E2 and all ne A. Also, it follows
from pg. 20 of [1] that φ has the property that d(y, yr) ^ d(φ(y), φ{y'))
for all y, y' e E2. Now since d(y, hn{y)) < ε for all yeE2 and all n e
A, d{φ-\x), hnφ-\x)) < ε for all x Φ p e S2, all neA. Thus d{φφ~ι(x)9

φhnφ-1{x))<e and d(x, φhnφ~ι{x)) < ε for all xeS2, all neA. It
follows that d(x, g{x)) < ε for all x e S2, all neA, and g is a.p.

THEOREM 3.1. Let h be an a.p. homeomorphism on S2 such that
h keeps the north pole p fixed. Then for each fj > 0, there exists
an rj-disk E which is invariant under h (in fact h(E) — E), and
contains p in its interior.

Proof. Let Ύ be the diameter of S2. Then there exists 3 > 0
such that diam (fc(δ-set)) < 7/2, by uniform continuity of h. Let 0 <
ε < min {η, 8, 7}, and let {εj be a decreasing sequence of positive
numbers such that Σ ei < ε ^ V- We will obtain E as an ε-sequential
growth of the set {p}.

Let Di = {p}. The set {hn}neI is equicontinuous [4, pg. 341], and
βi > 0. Thus by Lemma 3.1, there exists δ1 > 0 such that diam (/̂ (<5Γ

set)) < ε1 for all %eJ. Let ^ = {Z7n) be a cover of A by an open
connected set of S2 such that μ(^Ί) < min {δu εj . Let D2 — \JneI hn(Un)
and note that D2 is invariant. We show that D2 is an εΓgrowth of
A We must show parts (i) and (ii) of the definition of ε-growth.
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Proof of (i). If xe D2 — Dlf then there exists an integer n such
that xe hn(Un). But hn(Un) is connected and diam (hn(Un)) < εlβ Also,
h%(Un) contains p and so meets A

Proof of (ii). Un is an open set containing the compact set A
S2 — J7U is compact, and disjoint from A which is compact. Thus
d(D19 S2 - Un) = 2αx for some a, > 0, and it follows that the arήbά. of
A is a subset of A Thus (i) and (ii) hold and A is an εΓgrowth of A

We now wish to obtain an ε2-growth of A We note that since
A is invariant, so is A Now for ε2 > 0, there exists δ2> 0 such
that diam (hn(d2-set)) < ε2 for all n. Again this is possible by Lemma
3.1. Let ^ 2 : U2fU U2,2f •••, U2)k2 be a finite cover of A by open con-
nected subsets of S2 of diameter < min {δ2, ε2} and let

Then A is invariant.
We show that A is an ε2-growth of A We prove parts (i) and

(ii) of the definitions of ε-growth.

Proof of (i). Let xeD3~D2. Then xehn(U2>i) for some pair
n, i. But hn(U2>i) is connected, meets D2, and has diameter < ε2.

Proof of (ii). A and S2 - \JneJ h
n(UΪiiU2fί) are disjoint compact

subsets of S2 and thus are a positive distance apart, say 2a2. Then
the αv nbd. of D2, and therefore the ^2-nbd. of A> is a subset of A

Thus (i) and (ii) hold, and A is an ε2-growth of A
It is clear that we may continue the process inductively, obtaining

at the ith stage, a connected open set A which is an ε^-growth of
A-i Let E' = |JΓ=i A Then by Proposition 2.3, Ef is open and
has property S. Thus E' is a locally connected continuum, by Pro-
position 2.2. Further Er is invariant. We show that Ef has no cut
points. Note that Ef has no cut points since it is open (and connected).
Thus any cut point of Ef would be in E' — E', so that there would
exist a component of E' containing points of E' — Ef only. But
these are all limit points of E'. This is a contradiction, and it follows
that Ef has no cut points.

Thus Ef is a locally connected continuum with no cut points, and
from Theorem 9 of [11] it follows that the boundary of each of its
complementary domains is a simple closed curve. Now one of its
complementary domains, say F, contains the open southern hemisphere,
and therefore has diameter ^ T, while each of the other comple-
mentary domains has diameter less than ε, since diam Ef < ε. Thus
by Lemma 3.2, F is invariant, and h(F) = F. Let E = S2 - F.
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Then diam E < e, h{E) = E, and E is a disk, by the Jordan-Schoenflies
theorem [6, pg. 257], since it's a continuum not separating S2 and
has a simple closed curve as its boundary. Clearly E contains p in
its interior. Then E is the desired 2-cell.

COROLLARY 3.1.1. Let h be an a.p. homeomorphism of E2 onto
itself. Then E2 is the union of an increasing sequence of disks

Zi such that
(1) Bx £ B°2 £ B2 £ Bl £ Bz £ £ Bl £ B% £ . . . and
(2) Λ(BJ = Bn for all n.

Proof. Let {ej be a decreasing sequence of positive numbers.
By Theorem 3.1, there exist disks K\ on S2 such that (1) diam K\ <
εi9 (2) Λ(JK"5) - K[ and (3) JSΓ5 contains p, the north pole of S\ Let
JEi = ίΓί, K2 = first JΓί such that ϋΓ; £ (ϋΓO0, ̂ 3 = first K[ such that
K' S (ί^)0 etc. Let φ: S2 —> £72 be the stereographic projection. Then

is the desired sequence.

4* The main theorem* In this section we prove the main
theorem of this paper.

LEMMA 4.1. Let B1 and B2 be 2-cells in E2 such that Bx Q B°2.
Let h be a homeomorphism of B2 onto itself such that

(1) h(Bd=Bl9

(2) h = φ~ιrφ for some rotation r on the disk D2 with center
at the origin and radius 2, where φ: B2 -» D2 is a homeomorphism,
and

(3) ^(Bd-Bi) is a circle centered at the origin. Then there
exists a homeomorphism g: B2 -» D2 such that

(1) g(Bά B±) is the unit circle, and
(2) h = g~1rg.

Proof. We first make a definition. We call a homeomorphism
f:D2-»D2 radial iff / takes each radius onto itself, and is such
that circles centered at the origin go onto circles centered at the
origin.

Now let Ψ: D2-*> D2 be a radial homeomorphism of D2 onto itself
such that Ψ(φ(βά BJ) is the unit circle. Then Ψψ is a homeomorphism
of B2 onto D2 such that Ψφ(βάB^ is the unit circle. Further, for
any rotation r, since Ψ~WΨ = r, φ~xrφ = φ~1(W~1rΨ)φ = φ-ψ'WΨφ =

Thus we let g = Ψφ and g is the desired homeomorphism.

LEMMA 4.2. Let Bt and B2 be 2-cells in E2 such that Bx £ B°2.
Let h\B2^»B2 be a homeomorphism such that
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(1)
(2) there exists a homeomorphism φt: Bλ -» unit disk such that

h I Bx — φτιτγφx, for some rotation rx: E
2 -» E2, and

(3) there exists a homeomorphism φ2: B2 -» A> where D2 is the
disk of radius 2 about the origin, such that

(a) h = ΨTιr2φ2, for some rotation r2 of E2 onto itself, and
(b) <p2(Bd JSO = unit circle.
Then there exists a homeomorphism g: B2-^> D2 such that
( 1 ) g\Bx = ψly

( 2) <7(Bd Bj) — unit circle, and
( 3 ) h = g~ιr,g.

Proof. Let the annulus between Bd A and Bd D2 be decomposed
into the continuous collection Szf of arcs which are the intersections
of the radii of D2 with the annulus. Note that φxφ^\ A - » A is a
homeomorphism that takes φ2{x) to φ^x) for each x e B^ We extend
φ^φς1 to a homeomorphism Ψ: D2-» D2 by taking each element A e
J ^ with endpoint φ2(x) e Bd A to the element A' e J ^ with endpoint
^(ce) in Bd A> in such a way that distance along the segments A and
A' are preserved. Thus W is a homeomorphism of A onto itself
such that Ψ\DX = φ&ΐ1.

Now let g = Ψφ2. We show that g is the required homeomorphism.
Since Ψ = g^ί"1 on A, ^ 2 = {ΦiΦ^Φz = £\ on A* SO ̂  is an extension
of φλ. Also ^(Bd A) = unit circle. It remains to show that h =
flΓVifjr on J52 — Bx.

It is sufficient to show that r2 = rx on Bd A Now φ^r^ =
Ψϊ^iΦz on Bd A, so r2 = (^i^Γ1)"1^!^!^^1) is a conjugate of a rotation.
But it follows from [12] that the rotations are characterized by
numbers in 1 — 1 correspondence with 0 ̂  x < 1, and any conjugate
f~Wf of a rotation is characterized (even though not necessarily a
rotation) by the same number as the number for the rotation r.
Thus the characterizing number for a conjugate of rι is the same
as for rx. It follows that rx = r2, and h = ί Γ 1 ^ on i?2

THEOREM 4.1. Let h be an almost periodic homeomorphism of
E2 onto itself. Then h is periodic.

Proof. Let {2?J be an increasing tower of 2-cells of E2 such that
B1QB°2QB2QBlQBi^... QB°nQBnQ- , \JB, = E2, and h(B%) =
Bi This sequence exists by Corollary 3.1.1.

Case (i). h is orientation preserving. Since Bt is invariant,
h\Bi is a.p. on 1?, and orientation preserving, and therefore is a
conjugate of a rotation on the 2-cell A centered at the origin and
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of radius i. (This follows from [3].) That is, there exists a rotation
rt: Di -» Di and a homeomorphism φt: Bt -» Dt such that fe | Bt = φTr&t.

We will show that each r< must be rational. Suppose by way
of contradiction that rt is an irrational rotation, for some i (the first
such i). Then since rt — Ψi{h\B^)φτι and !?<_,. is invariant, φ^B^
is invariant under r« and in fact Bd (φ^B^) is invariant under rt.
Let sc be any point in Bd (φjlβ^). Since r, is an invariant rotation
0(#) under r< will contain the circle Cx of radius \x\. Thus Cβ £
9έ(Bd (J?i_i)). But <p*(Bd (B^)) is a simple closed curve, and it follows
that Cx = φt(βά (J?Ϊ_I)). By Lemma 4.1, we may assume that φ^B^ =
radius (i — 1) disk, and by Lemma 4.2, we may assume that φ^Bt-i —
Ψ%-u (that is φt is an extension of φt_d and further that rt — n -j.
Thus since r4 is the first irrational rotation, i = 1.

Clearly this process may be continued inductively, obtaining r* =
r<_i, for all i. But then h would be the conjugate of an irrational
rotation on E2. However, such a rotation is not a.p. since d(x,
hn(x)) —̂  oo as x —> oo (for fixed ri). This is a contradiction. It follows
that each r t is a rational rotation.

Now since each r< is a rational rotation, it is of finite order, say
nt. But since h\Bt is a conjugate of a periodic homeomorphism of
order nt on the disk A, each point of Bt (except the "center") has
the same order, namely nt. Thus each point of 2?,^ has order nt

under h\Bi and therefore under Λi-Bi-i We may backtrack induc-
tively until i = 2, so that each of {fe | βx, fe | B2J , h \ BJ makes each
point of Bi (except the "center") a point of order nt; that is, the
orbit consists of nt points. It follows that for any j > i, the points
of Bj must all have order % and therefore n5 = nt. Thus h must be
periodic on U -B< = E2. But a periodic orientation preserving homeo-
morphism on E2 is a conjugate of a rotation on E2 [8, 2, 14]. Thus
h is a conjugate of a rotation.

(ii). A is orientation reversing. Since i?* is invariant,
h\Bt is a.p. on Bt and orientation reversing, and hence a conjugate
of a reflection [3]. Thus the fixed point set of h\Bt is a "diameter"
of Bi9 and every other point of Bt has order 2 (its orbit consists of
2 points). Thus h\Bt is of order 2, also. By induction {h\Blfh\Bi9

h\B3, ---fh\Bi} are each of order 2. For any j > i, the order of
h\B3 — order of h\Bi9 by the same argument. Thus h is of period
2 on UB< = ^2> and also is orientation reversing. It follows that
h is a conjugate of a reflection [8, 2].

REMARK. It is clear that we have also proved that if h is an
almost periodic homeomorphism of S2 onto itself which is orientation
preserving, and therefore keeps at least one point fixed [1, pg. 237],
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then h is a conjugate of a rotation. How are arbitrary almost
periodic homeomorphisms of S2 onto itself characterized? There are
many nonconjugate fixed point free, almost periodic homeomorphisms
of S2 onto itself. For example, let / be a reflection of S2 thru the
equator, and let r be any rotation of S2 thru the axis containing
the north and south poles. Then rf is fixed point free, no two are
conjugate, and each of these is almost periodic. (Note that if r is
the 180° rotation, then rf is the antipodal map.) Are conjugates
of these maps the only fixed point free homeomorphisms on S2?
Gerhard Ritter has just informed me that he will answer this
question in the affirmative, in a forthcoming paper.
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