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GREEN'S FUNCTION INEQUALITIES FOR TWO-POINT
BOUNDARY VALUE PROBLEMS

P. W. BATES AND G. B. GUSTAFSON

Simple inequalities are obtained for the Green's function
G(t, s) of a two-point boundary value problem for a kth order
linear ordinary differential equation. The constants appear-
ing in the inequalities are best possible. Each estimate has
right side a product of a function of t and a function of s.
Illustrations are given for k—2,3,4 and certain kih order
constant coefficient operators.

1* Introduction* The purpose of this paper is to obtain a
separable inequality of the form

(1.1) I G(ί, 8)| £ Σ Pi(tMs)χEi(t, 8), (ί, 8) G [a, b] x [α, 6] ,
ί=l

for the Green's function G(t, s) of the two-point boundary value
problem

(1.2) Kv = f{t), v^(a) - v<»φ) = 0 , 0 ^ i ^ ϊ - l , 0 ^ i ^ f c - ί - l .

The linear ordinary differential operator K has coefficients smooth
enough to define its adjoint operator K*, the operator K is assumed
disconjugate on [α, 6] (see Section 2), Eί\jEi = [α, b] x [a, b], EιΓ\E2 =
φ, and f e C[a, δ]. For non-smooth coefficients, see Section 6.

The motivation for this kind of inequality is in the study of the
linear integral operator

Tf = \bG(t, s)f(s)ds

associated with problem (1.2). Indeeed, (1.1) provides a practical
estimate for \\T\\X in various Banach spaces X, and allows very tight
manipulations with the integral equation v — Tf.

The demands that we make on (1.1) is that it be an identity
for k = 2, and that it cannot be improved for k^3, in the sense
that

sup - 1 (i = 1, 2) .

The main result is Theorem 3.1, in which we prove the two-point
inequality

(1.8) I Git. s) I ̂  min
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This takes the form of (1.1) for appropriate definition of Ex and E2.
The functions are positive on (α, b) and satisfy Kv = Kw = K*v* =
K*w* = 0, plus certain boundary conditions at α and b [see (3.1) and
(3.2)].

The proof of (1.3) appears in §3, with suitable preparation being
done in §2.

Illustrations of inequality (1.3) appear in §§4 and 5, and appli-
cations are discussed in § 7. In particular, we obtain the Ostroumov
inequality [9] for K = (d/dt)k (see (4.2) infra).

A general discussion of constant coefficient operators appears in
§ 5. Illustrations are given to show the nonspecialist how to find the
interval of disconjugacy and the functions v, v*, w, w* in (1.3).

2* Preliminaries* Consider the linear ordinary differential e-
quation

(2.1) Kv - 0; Kv = v{k) + *"'

The adjoint equation is defined by

(2.2) K*u = 0; K*u == (-l)ku{k) +

Throughout the paper, pte C*[α, δ], whenever iΓ* is defined.
The two-point boundary-value problem

( 2 . 3 ) K u = / ; u ( i ) ( a ) = u U ) ( b ) = 0, 0 g i ^ ! - l , O ^ j <

is assumed to have a Green's function G(t, s), so that

u{t) =

Let us make the stronger hypothesis that K is a disconjugate
operator on [α, 6]. This means that the only solution of Ku = 0 with
& zeros, counting multiplicities, is u = 0. Then IT* is also discon-
jugate; see Sherman [10],

The hypothesis of disconjugacy on [α, b] is known to be equivalent
to the factorization of K on [α, b] into first-order operators:

The functions 6t are positive on [α, 6]. This is called the Libri-
Frobenius-Mammana factorization; see Willett [11], Libri [8].

Let {u*n(t)} be the set of solutions of Ku = 0 satisfying utf{b) =
ftfj«} (α) = 0, < f (a) = «iff, < f (6) - δ i w 0 ^ i, g ^ I - 1, 0 ^ i, j> ^
k — £ — 1, and put
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Let W(t) be the Wronskian matrix generated by U(t), and let
V(s) = diag [χEo(s), ..., χ*000, χ^(s), ., χ^(s)], with I spaces occupied
by χ*0(8), Eo = {a}, E, = [α, 6], F(s) being ϋ x i

Put h(t, s) = UitW-^e, β = (0, 0, I f . The function Λ(ί, s) is
the solution of Ku — 0 satisfying fe(i)(s, s) = δj^^Cauchy function).

The Green's function G(ί, s) for problem (2.3) is given by (see
Gustafson [5]) the vector-matrix identity

(2.4) G(ί, β) = U(t)[e(t ~ s)/ - F(β)I W'\8)e

where e(ί — s) = 1 for t — s > 0, e(ί — s) = 0 otherwise. The form
of (2.4) to be used most often is the scalar identity

(2.5) G(t, s) =

3=0

The following lemmas are singled out for later use. The first,
on continuity of (t, s)—+G(t, s), does not require that ptBC*[af 6],
nor is disconjugacy needed; it follows immediately from (2.5). The
second is a consequence of the Peano identities (Hartman [7], p. 95).

LEMMA 2.1. The Green7s function G{t, s) for the two-point bound-
ary value problem (2.3) is continuous on the square [α, b] x [a, b].

LEMMA 2.2. Let h{t, s) be the solution of Ku = 0, u{i)(s) = δitk==ι.
Assume that iΓ* is defined, then:

(2.6) K*[h{j)(tQ, s)] = 0 for each fixed t0 .

(2.7) Γ y - Ί V ^ , x) = 0 for i + j < k - 1 ,

(2.8)

LEMMA 2.3. Let

(2.9)

(2.10)

P M s & — p — 1 ^βros at a, I ^ p t^ k — 1, and ψr has k — r — 1

zeros at b, k — l ^ r ^ k — 1.
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Proof. First, we record that h(t, s) == U(t)W~\s)e.

After a short calculation with the basis U'= (%*0, , ̂ *fe_i_i),
one finds that

( } = detΦ0(s)

where Φ0(s) is the matrix with successive rows U(s), •••, Ua~2)(s) and

last row « Γ ( & ) , , <&&), 0, , 0).
Differentiating this relation and using the Liouville identity [7]

we obtain

where Φx(s) is the same as Φ0(s), except we must replace U{k'2)(s) by
U^is). By induction,

+ g7 (
det TF(s) ί o

where / t ι α has & — a + i continuous derivatives, and Φa(s) has the
same last row as Φ0(s), the same first k — a — 1 rows as Φ0(s), but
the next rows are U{k-a)(s), , tΓ*- 1 ^) .

For 0<La^k~r — 2 each Φα(δ) has the block matrix form

Γ——1
where E has two equal rows, I = (k — I) x (k — I) identity. Therefore,
det Φa(b) = 0. This proves that ψr has & — r — 1 zeros at 6, & — ϊ ^
r ^ fc - 1.

The proof for φp is similar, and will be omitted.

REMARK. In the notation of Gustafson [5], the function φp has
a zero of order (k — p — 1,1) at {α, 6}, and α/rr has a zero of order
(k — I, k — T — 1). These functions collectively form a basis for
iΓ% = 0.

3* The Green's function inequality. Let v(t), v*(8), w(t), w*(t),
be defined by the following relations:

(3.1) Kv = J5L*Ϊ;* = 0, v and v* have zeros of order (I, k — I — 1)
and (A? — ί — 1, Z) at {α, 6}, resp., with ^ - ^ ( δ ) = ( - I ) * " 1 - 1 and

(3.2) Kw = K*w* = 0, w and have zeros of order (I - 1, k - I)
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and (k-1,1-1) at {a, b), resp., with ^α"1 )(α) = 1, w*(ϊ"1}(δ) = (-1)1"1.
The functions defined in (3.1), (3.2) are positive on (α, 6) because

of the disconjugacy of the operators K and K*.

Two-point Inequality Theorem

THEOREM 3.1. Let pt e C*[a9 b] (0 ^ i ^ k — 1) αwώ assume K is
disconjugate on [a, b], v, v*, w, w* are given by (3.1), (3.2). Then the
Green's function G(t, s) for problem (2.3) satisfies the inequality

(8.8). I G(t, s) I £ min

/or a ^ t, s -^b. The constants are best possible.

COROLLARY 3.2. On the upper triangle a s^ t ^ s <*b,

(3.3)b ±

and on the lower triangle a ^ s ^ t ^ b,

(8.8)β IG(ί, β)I ^ , ( Λ

Both (3.3)b and (3.3)c hold on the entire square [α, b] x [a, b].
Inequality (3.3)a is of the correct order of magnitude, in the sense
that \G(t, s)|/[The RHS of (3.3)a]->l as (ί, s) -> d([a, b] x [α, &]); see
Lemmas 3.2, 3.3, 3.4, infra.

Proof of Theorem 3.1. The proof of (3.3)c on [α, 6] x [α, b] follows
in the same way as (3.3)b, so it will be omitted. For convenience,
let us put u(s) = v*(s) hereafter.

The theorem will be proved by the sequence of lemmas to follow.
To introduce notation, let

(3.4) k(t,s)= % tt<*,8<6-

v(t)u(s)
Then inequality (3.3)b on the open square is the same as ( - ΐ)k~ιk(t,s) <^

l/v{l)(a). Here we have used the fact that (t - a)\t - b)k~ιG(t,s) > 0
on the open square (see Coppel [3], p. 108).

For k = 2, one can easily verify (3.3), because in this case

(3.5) G(t, s) =
7Γ~\—» τ — s '

v'(a)

v'(a)
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The inequalities (3.3) hold on the entire square because w(t) = v*(t),
w*(t) = v(t), and v(x)v*(y) ^ v(y)v*(x) for x g y.

For k ^ 3, the theorem follows from (3.4), (3.9), (3.11), (3.13).

The problem with the function k(t, s) given in (3.4) is that it is
not defined on the boundary of the square. If one examines the
Green's function for the (2, l)-problem for K — [d/dtf:

(3.6)
G(t, s) = J

b — t , t — a b — t Ί(α
b — a b — a b — a J 2

+ ft - α)(δ - 0(α - g)
b — a

- α 7 (δ - s)2 ^ ^Γ t-aΎ

Lδ - aΛ

then we seen that k(t, s) has a jump discontinuity at (a, a) and (δ, δ).
In fact, on the upper triangle, k(t, s) ~ (b — α)/2 near (α, α) and (δ, δ),
but on the lower triangle k{t, s) —' 0.

Most of our work below is aimed at settling upon the correct
boundary values for k(t, s). It turns out that k(t, s) will assume
only two values on the boundary. Then we show that sup \k\ must
occur on the boundary, and write down the answer. The reader
will find (3.6) useful for interpretation of the various arguments to
follow.

LEMMA 3.2. The quotient k(t, s) can be defined on the upper
triangle ^ u = {(£, s): t ^ s} so as to have the following properties:

(3.7) k{t, s) is bounded on

(3.8) k(t, s) is continuous on ^\{(a, a), (δ, δ)}

(3.9) k(t, s) = ^~^[ on Ωu = {(ί, s):t=a or 8 = 6 } .
u{l)(b)

Proof. Define k(t, s) on Ωu by relation (3.9). It will be shown
that (3.8) is valid. We use below the Landau symbol "0" , defined
by f(t) = O(g(t)) iff for some M> 0, | /( ί ) | ^ M\g(t)\ as t-+ω.

The first step of the proof is to assemble with the help of (2.7),
(2.8), (3.1), (3.2) the following order relations:

b, s) = Oi\s- δ Γ ^ X O ^ j ^ k - 1), h{k-ι-l)φ, s)

= ib-s)1 + Oi\b - s\ι+ι), [u(s)]~ι

= O[\s~b\~ι] as s->b;

Ms)]'1 = Oi\s~a\~k+ι+1) as s~+ a

[vit)]'1 = Oi\t - a Γ ) as t -> a
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[v(t)Yι = 0(| t - 6 |-*+'+i) as t — δ

&|0 a s £ - > & ;

To analyze the boundary behavior of ft(ί, s), write Λ(ί, s) =
-Σi^o""1 Q, (*, s)> where Qy(ί, s) = utj(t)h{j)(b, s)/[u(s)v(t)], using relation
(2.5).

Since |δ - s| ^ |δ - t\ for (ί, s)e_^;, it follows that Q*-ι-i(ί, «)-•
(-l)*/tt(l)(&) and Qy(t, β) —0(0 ^ j ^ A; - ί - 2) as (t, s)->(α, 6). There-
fore (3.8) is correct at (α, 6).

By virtue of Lemma 2.2, one can write fc(ί, s) = ( — l)k/u{l)(b) +
0(|s — 61) uniformly on compact subsets of α < £ < δ as s —> δ. There-
fore, (3.8) is correct along the upper edge of ^"u.

To verify (3.8) along the left edge of J ^ , each u?tj(t) is replaced
by its Taylor expansion about t = a in the expression QΛ (ί, s), and an
application of Lemma 2.3 gives fc(ί, s) — — 9>i(s)/[tt(s)i;(I>(α)] + 0(|ί — α|)
as ί —• a, uniformly on compact subsets of a < s < 6.

The functions <̂  and u have the same zero properties at s = a
and s = δ, therefore by the disconjugacy assumption they must be
constant multiples of one another. Using Lemmas 2.2, 2.3 and Green's
formula (Hartman [7], p. 67) one can establish the following identities:

9l(s) = (-l)*-'-Hφ); (-l)ιv{l)(a) = uU)(b). Consequently,

k(t, s) = (~l)k/ua)(b) + 0(|ί - a\) as t > a ,

uniformly on compact subsets of a < s < δ. This completes the proof
of (3.8).

To verify (3.7), one only needs to examine small neighborhoods
of (a, a) and (δ, δ). The details are left to the reader.

LEMMA 3.3. The quotient k(t, s) can be defined on the lower
triangle ^Ί — {(t, s):t > s} to have the following properties

(3.10) k(t, s) is bounded on

(3.11) Jc(t, s) = 0 on Ωx = {(ί, s) e ^ : ί = δ or s = a} .

(3.12) k(t, s) is continuous on

Proof. The proof proceeds in the same way as Lemma 3.2, with
appropriate use of Lemmas 2.2 and 2.3. The details are left to the
reader.

LEMMA 3.4. Let k(t, s) be defined on Ω — [a, b] x [a, b] as in
Lemmas 3.2, 3.3. Then
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(3.13) sup I k(t, s) I = sup | k(t, s) \ = ί=£jL - -
Ω SΩ u{l)(b) v

Proof. Suppose not, then there exists (t0, s0) e Ω such that
\k(t0, sQ)\ > sup3 β \k(t, s)\. Therefore, (tQ, sQ) must belong to the in-
terior of Ω. Consider the function y(t) = k(t, s0), a ^ t ^ δ. This
function is continuous on a^t^b, by Lemmas 2.1,3.2,3.3, and
differentiable on a < t < 6.

The derivative y'(t) on a < t < b cannot vanish. Indeed, suppose

y'(Q = 0 for some tt e (a, b). Then

where TΓ is the Wronskian determinant. Define a = G(ίt, ^\v{t^),
then the function

s(ί) = αv(ί) - G(t, s0)

has a double zero at t — tγe{a, b). The function z(t) has a zero of
order I at t — a, k — l—1 at £ = 6, hence fc + 1 zeros in [a, b].
However, the function z(t) is a solution of the disconjugate equation
Kz = 0 on α ̂  t ^ s0 and on δ0 ̂  ί ^ 6. By the proof of Theorem
11 in Coppel [3], p. 108, it follows that z(t) = 0,a^t£b. Therefore,

= a, a < t < b .

Letting t —> 6 we find that α = 0, which is a contradiction.
This proves that y(t) is monotonic on [a, b]. Since y(a) —

(-l)V^α )(δ), 1/(6) - 0, it follows that

|fc(ί0, s0) I ̂  |fc(α, s0) I ̂  sup dβ|ft(ί, β)| .

This contradicts our original assumption on (t0, s0). Therefore, (3.13)
holds, because the supremum over the boundary is the larger of
0 and (-l)ι/u{l)(b). The proof is complete.

REMARK 3.5. The inequality (3.3)b is the best result of its kind,
because we may divide by v(t)v*(s) in (3.3)b and let (£, s) —• (α, 6) to
obtain equality. In (k — 1, l)-problems, equality holds in (3.3)b in the
entire upper triangle. Similar statements hold for (3.3)c.

The monotonicity argument of Lemma 3.4 shows that (3.3)a is
weakest along the diagonal t = s. For example, the behavior of
(3.6) along t = s is quite usual.

Inequalities of this same type hold for singular boundary-value
problems. However, the application of the Green's function inversion
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method is more complicated, and is an integral part of the selection
of the space of action of the integral operator. For example, the
singular problem

V" = f(t) ,
y(0) = 0, ?/(oo) = 0 ,

under ordinary inversion loses the boundary value at 00. A definitive
statement about the options here will be the subject of a future
paper.

4* The Ostroumov inequality for Dk. Consider the problem

(4.1) y™ - /(ί), y^(a) = yM(b) = 0, 0 ^ i ^ ϊ - 1, O ^ i ^ f c - ϊ - 1 ,

and denote by G(ί, s) the corresponding Green's function (see [5]).
The Ostroumov inequality [9] can be obtained from (3.3)b:

(4.2) I G(t, s) I < <* W ^ - ^ ^ " " ^ >'
l\ (k - I - 1)! (6 - α)*-1

It is only necessary to verify by inspection that

(k-l-ϊ)l(b-a)1 ' W ( k - l - 1)1 (b - a)1

and then compute

(k ~ I — 1)! (6 — α)*

for then (4.2) follows from (3.3)b, (4.3), (4.4).
However, inequality (3.3)a is a decided improvement over (4.2).

One easily verifies that

v(t)v*(s) = m > c)w(t)w*(t)

where

ί (s — α)(6 — t)

T h e level s e t M(t, s) = 1 for fc = 2Ϊ is t h e d i a g o n a l t = s. For jfc

22, the level set Λf(ί, s) = 1 is the curve

2ί A:
1

— A: (21-k)2 t - a - (b - α)l/[2l - fcj '

w h i c h goes t h r o u g h (α, α), (6, 6) a n d is concave for 21 — k > 0, convex
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for 21 - k < 0.
If we make use of this curve, then we have

1 G(t's)' ιnk-ι-i)i(b-ay-1 U ]

(t - aγ-\b - <)*-'(« - α)*-'(6 - a)ι-\ (f v

where χ# denotes the characteristic function of the set E and Ex ~
{(*, s): M(t, s) rg 1}, E2 - {(ί, s): M(ί, «) > 1}.

This shows that (3.3)b is better than (3.3)c for (ί, s)eE19 where-
as the opposite is true for (t, s) e E2.

When k = 21, E1 is the upper triangle t <£ s and JE?2 is the lower
triangle s < t.

The advantage of this observation is that

[\G(t, 8)| |/(8) |ds ̂  - g
J (ί)(

Now you can use the definitions of Et and Ez to make the right side
the sum of two Volterra operators.

There are other inequalities in the literature which are similar
to (4.2). The most notable is due to Beesack [1], and we refer the
reader to this paper and the references therein.

5* Disconjugate operators with constant coefficients* The con-
stant coefficient operator

Kv = v{k) + Σ α ^ ( ί )

ί=0

will be disconjugate on an interval [α, b] iff it is disconjugate on [0,
b — a], because the equation is autonomous.

Due to the theory of extremal solutions, carried out by Sherman
[10], Ku — 0 will be disconjugate on [0, T] iff the only solution u
with a zero of order I at 0, order k — I at T, u > 0 on (0, T), is u ==
0, for 1 <̂  I <Ξ k — 1. Together with linear algebra, this gives an
effective way to test the disconjugacy of K. For example, if Ky =
y"f + y1\ then it is relatively easy to show that K is disconjugate
on [α, b] iff b — a < 2π, because any solution with a double zero at
c must be multiple of 1 — cos (t — c).

The adjoint operator

K*u = (-l)kuik) + Σ t t i ί - l ) ' ^
i = 0
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also has constant coefficients, therefore the possibility of computing
the various functions in inequality (3.3) is close at hand. Indeed,
v(—s) is a solution of K*u — 0, hence also v(—s + c) is a solution
for any real c. But v(b + a — s) vanishes k — I — 1 times at a and
I times at δ, therefore, in the case of constant coefficients,

(5.1) v*(s) = v(b + α - s), w*(s) = w(δ + a - s) .

On the other hand, one can write down v(t) in terms of any
standard basis {vu •••,%} for Kv — 0, as follows. Let V(t) = (̂ i(£)>
•.., vfc(ί)), then let Φz(ί; Γ) be the matrix with rows F(0), 7'(0), •••,
7(Z-1}(0), V(T), V(T), . . . , F ( f c-Z"2 )(T), V(t). Let Γ f ( Γ ) be the same
as Φz(ί; T) except the last row is F ( / b- z-1 }(T). Then

(5.2) v(t) = (,i)*-z-

— a b — a)
W{t) { λ ) d e t ^ ( δ - α ) *

This formula is useful when you can select the basis V so as to
make Ψx close to the identity.

The constants appearing in (3.3) are

(5.3) *<»<α)
det Ψi(b — a)

Wik-D(h\ = Λ . l u - t - i det y 1^(6 ~ α)
w V } d e t ?F,(δ - α)

T h e r e f o r e , in t e r m s of a n a r b i t r a r y b a s i s vίt ---,vk we have t h e
e s t i m a t e

(5 4) I G i t s) I < d e t φ i ( t - K b - a) d e t Φ t ( b - s b - a)
v ' ; i v> ;ι - d e t r ί + 1 ( δ ~ a)\ άetΨ^b - a)\

i = I - 1, ϊ ,

valid for any constant coefficient operator K, disconjugate on [a, b].
In the case of lower order operators, k = 2, 3, 4 especially, we

usually t ry to guess v(t), w(t) first, then resort to (5.4) upon failure.
Therefore, we sometimes prefer

(5.5) • G{t, s) I <ί min { v(t)v(b + α - «) u K ^ + α - ») t .
I v(Z)(α) w{k~l)(b) )

Let us now turn our attention to (3.3)b, and illustrate the results.
The reader can fill in the details for (3.3)c.

EXAMPLE 5.1. The operator Kv = v"' + v' on [0, T], Γ < 2τr.
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The (2, l)-problem and (1, 2)-problem have Green's functions G2Λ

and Glf2 satisfying (5.5), and it is easy to see that

Therefore,

(t s)\ \G (t s)I <

EXAMPLE 5.2. Γfte operator Ky = yiv - y on [0, T], T ̂  4.73.

The solution y = sin (ί) — sinh (ί) has three zeros at 0 and is posi-
tive for t > 0. Therefore, the critical value of T is the first positive
double zero To of z — cosh ί — cos t + C(sinh t — sin ί), which is deter-
mined by the identity cos To cosh TQ = 1. Solving numerically, 4.7300 <
Γo < 4.7301.

The following inequalities follow from (3.3)b:

- sin (t)][sinh (Γ - s) - sin (Γ - s)]
2(sinh(Γ)-sin(Γ))

t, s)\ £ ri7eoshrcosri ( y _ ( )

L sinh Γ - s m Γ J

^ Γ
L

1 " c o s h

smh T — sin T

where

Γ C Q S h ^ — cos ̂  sinh t — sin t

L
(t) —

L cosh T - cos Γ sinh T - sin Γ

χ (cosh Γ - cos T)(sinh T - sin T)
2[1 - cosh Γ cos Γ]

These results can be formulated for the operator Kaz — ziυ — tfz
as well, since z(x) = -2/(α#). The relations (3.3)c are obtained from the
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identities wM(ί) = vΛtί(T - t), wttl(t) = v2,2{T - t), w.fl(ί) = fl,,,(ί)M!«(0)-

EXAMPLE 5.3. The operator K = (D — α)fc <m [α, δ].

The Libri factorization iΓi; = eat(e~atvYk) is immediate from

(D - α)v - eat(e-atv)' ,

therefore iΓ is disconjugate on any [a, b]. This factorization allows
us to verify by inspection that in (3.3)b,

v W β ( f c - Z - 1 ) 1 ( 6 - α ) '

because of what we know about Dk. Then inequality (3.3)b is

) l) l - i! (* - i - 1)! (6 - α)*"1

EXAMPLE 5.4. T%β operator K = [D2 - 2aD + a2 + β2]2 on [0, T].

The equation Kv — 0 can be replaced by (Z)2 + l)2y = 0 by virtue
of the relation i?(ί) = y(βt)eat. The largest interval of disconjugacy
for (Z>2 + lfy = 0 is [0, Γ0J, where Γo is the smallest positive root of
tan To = Γo. So To - 4.4916, and 0 < T ^ 4.4916/3.

The functions vits(t)(i + j = 4) given by

sin T o - T o cos T o

77 /,x = (t - Γ o ) s i n t s i n T o + T o ^s in (To - t)
1>Λ ; s in 2 Γ o - T0

2

a r e r e l a t e d t o t h e d e s i r e d f u n c t i o n s v{J(t)(i + 3=4) b y t h e i d e n t i t y

vUt) = β-%Λβt)ea{t~T) , i + j = 4 ,

where βTa = T.

EXAMPLE 5.5. The operator K = (D - a)\D - βf on [0, T].

The (2, 2), (3, 1) and (1, 3)-problems satisfy (5.5). Here,

Δ Δ

with

Λ = Γ(e<^β)Γ - 1) , Δ3 = - Λ ,

Λ = [(/5 - α ) Γ - l ]e '^ α ) Γ + 1 , J 4 = e ( ί-α ) Γ - (β - a)T -
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By inspection of D\D - Ί)\ Ύ = β - a, we see that

(t) _ 2[g" - e"] + (β- a)t[eat + e>*]

" > l W OS - «)3(1 + OS - α '

On the other hand,

6* The two-point inequality for operators K with coefficients
in C[a, &]• Throughout the preceding sections it was assumed that
the coefficients of K were smooth enough to define the adjoint operator
ϋΓ*. It will be shown below that this smoothness assumption can be
deleted, and replaced by the usual requirement that the coefficients
belong only to C[a, 6].

LEMMA 6.1. Let K=Dk + Σ*=o Pi(t)Dj, D = d/dt, with pά e C[a, δ],
0 ^ j ^ k — 1. If K is disconjugate on [a, δ], then there exists
e > 0 such that q$e [a, δ], 0 ^ j ^ & — 1, ami max {!#/£) — qj(t)\: a ^
ί <̂  δ} ϊβss £/*,cm ε, 0 ^ i ^ fc — 1, implies L = Dk + Σj=o Qj(t)Dj is
disconjugate on [α, δ].

Proof. Proceed indirectly, using the results in Hartman [7], p. 55.

LEMMA 6.2. Let K = Dk + ΣJj~lPj(i)Dj be disconjugate on [α, δ].

and qj>n —*p3- as n —> oo in C[a, δ], 0 ^ y ^ & — 1, £Λew ί/̂ e Green's
functions Gn(t, s) and G(t, s) for the operators Kn and K, respectively,
satisfy

lim Gn(t, s) = G(t, s) ,

pointwise in [a, b] x [a, δ].

Proof. Let I70(ί) and UJt) be row vector bases for Ku = 0 and
Knu = 0, respectively, and denote the corresponding Wronskian
matrices by WQ(s) and Wn(s). Suppose that Uo and Un are chosen
so that the representation (2.4) holds for G and Gn. Since F(s)
is the same in each representation, it suffices to prove that U{J\t)
converges uniformly on [α, δ] to U^fy) a s ^ — > o o , 0 ^ i ^ & — 1. This
can be done using the results in Hartman [7], p. 55. The details
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are left to the reader.
To introduce notation for the next lemma, let K be a disconjugate

operator on [a, b] and denote the basis U of §2 by

u#t; I, K) .

Let w(s; I, K) be the determinant of the Wronskian matrix W(s) of
the basis U and denote by wti(s;lf K) the minor of the element
uij(8; I, K) appearing in w(s; I, K). Define

(6.1) φfa K) = Ϊ C ( α ί I, K Wfi}5?
w(s; I, K)

(6.2) ψ^is; K) = Σ < Γ Z ) ( δ ; I, g ) . ™o,;(*;*, g

i w(s; ϊ if

LEMMA 6.3 Let Kn and K be defined as in Lemma 6.2 and assume
that qj',n—*qj as n-+°° in C[a, 6], 0 ̂  i ^ jfc — 1, £ftβw ^(s; -8ΓJ—>Ψι{s\ K)
and ψk-ι(s; Kn) —• ψk-ι(s; K) as n—» oo uniformly on a ^ s ^b.

Proof. We argue as in Lemma 6.1 that U{:\t)-*U{

o

i](t) as w-»
oo uniformly on [α, 6], 0 ^ i ^ & — 1. It follows that the components
in the formula (6.1) with K replaced by Kn converge uniformly on
[α, b] to the corresponding components of (6.1), as n~• oo. A similar
statement holds for relation (6.2). The proof is complete.

Suppose that we select Kn to converge to K in the sense of the
preceding lemmas, but Kn has coefficients of class Ck and K has
coefficients that are only assumed to be continuous. By Lemma 6.1
the Green's function GJt, s) exists for the operator Kn and we can
apply Theorem 3.1 to obtain the inequality

(6.3) 1 g.ft s) 1 ^ min {-JL^ ^ R * ( s ) , [ ̂ | ) ( f t ) | - wn{t)wt(s)) ,

n = 1, 2, .

We let n—> oo in relation (6.3) and apply Lemma 6.2 and Lemma
6.3 to get the inequality

(6.4) I Git, s) I ̂  min j - j ± _ . . v{t) | ̂ ( S ) |, ^

where <pz(s) = φz(s; i^) and ψk-ι(s) = ψk-ι(s> K); indeed, the proof of
Lemma 3.2 shows that v*(t) — (—l)k~l~^i(t; Kn) and similarly it is easy
to show that wt{t) = \ψk^(t; Kn)\.

Inequality (6.4) does not require the existence of if*. The right
hand side of inequality (6.4) is computed directly from the basis U.
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7* Applications There are many immediate applications of
inequality (3.3). The first and most ovbions is the theory of two-point
boundary value problems for kth order nonlinear ordinary differential
equations. Applications amount to finding conditions such that the
mapping

Ty = \bG(t, s)f(s, y(s), , y^(s))ds + φ(t)

is a contraction mapping, or maps a closed convex set into itself,
or satisfies certain fixed-point index conditions.

The second application is to intervals of uniqueness for linear
differential operators. This kind of application is illustrated in the
work of Ostroumov [9], and in subsequent work of Hartman [6],
Willett [12], Fink [4].

The sharpness of inequality (3.3) makes it useful for error
analysis. Ramifications in the theory of differential equations in
Banach spaces and in the theory of functional differential equations
should be clear, especially in the conversion of boundary value pro-
blems to integral equations and in the estimation of norms of inverse
operators.

The requirement of disconjugacy can sometimes by checked via
algebraic inequalities involving the coefficients of K; see Hartman
[6], Ostroumov [9], Willett [12], Coppel [3], Gustafson and Bogar
[2]. There is some evidence that this requirement can be dropped
for self-adjoint equations, provided it is replaced by another, more
complicated condition.
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