THE $\bar{\beta}$ TOPOLOGY FOR W*-ALGEBRAS

J. N. HENRY AND D. C. TAYLOR*

Let A be a W^* -algebra and A its unique predual. A new locally convex topology $\bar{\beta}$ is developed for the study of the algebra A. It is shown that if A is a type I W^* -algebra, that is either countably decomposable, commutative, or a factor, then $\bar{\beta}$ is the Mackey topology for the dual pair $\langle A, A \cdot \rangle$. Consequently, when $A = L^{\infty}(X, \mu)$, where X is completely regular and μ is a compact regular Borel measure on X, $A^*_{\bar{\beta}} = L^1(X, \mu)$ and $\bar{\beta}$ convergence on uniformly bounded sets is equivalent to convergence in measure.

Let X be a locally compact Hausdorff space, βX the Stone-Čech compactification of X, and $C(\beta X)$ the collection of all complex-valued continuous functions on βX . In 1958, R. C. Buck [2] introduced a new locally convex topology for $C(\beta X)$ that gave new insight into the intricate structure of $C(\beta X)$. This locally convex topology for $C(\beta X)$, which Buck called the strict topology, is the topology generated by the seminorms $\{\lambda_f\}_{f\in C_0(X)}$, where $\lambda_f(g)=\|fg\|_{\infty}$. Here, $C_0(X)$ denotes those functions in $C(\beta X)$ that vanish on $\beta X \setminus X$. Although Buck's approach is very useful in the study of $C(\beta X)$, X locally compact, it does not lend itself to the study of $C(\beta X)$, X completely regular, since $C_0(X)$ may be the {0} subspace in this setting. In [18], F. D. Sentilles was able to overcome this possibility by introducing a new topology which, in the locally compact setting, reduces to the strict topology. Sentilles' topology, β , is defined as follows: for each $Q \subseteq \beta X \setminus X$, let β_0 be the strict topology on $C(\beta X)$ determined by $C_0(\beta X \setminus Q)$. Then β is defined as the inductive limit of the topologies β_Q as Q ranges over all compact subsets of $\beta X \setminus X$ [18]. Note that β is determined by the collection of open sets V, $\beta X \supseteq V \supseteq X$, whose Stone-Čech compactification is βX and is therefore not a unique topology, since it depends on the underlying subspace X. Using this topology, substantial progress has been made in the study of $C(\beta X)$, X completely regular, by Sentilles, Wheeler and others (see [8], [18], [24], [25]).

The purpose of this paper is to define and study a noncommutative analogue of the topology introduced by Sentilles. Noncommutative versions of Buck's topology already exist in a Banach module setting [19] and in the C^* -algebra of double centralizers M(B) of the C^* -algebra B [3], [20], [22]. In the double centralizer setting, B is viewed as a closed two-sided ideal in M(B), and the strict topology for M(B) is

generated by the seminorms $\{\lambda_b, \rho_b\}_{b \in B}$, where $\lambda_b(x) = \|bx\|$ and $\rho_b(x) = \|bx\|$ ||xb|| for $x \in M(B)$. This topology has been very useful in the study of the C^* -algebra M(B). In general it would be desirable to use this approach to study C^* -algebras A with identity, that is, develop a locally convex topology for A with the essential properties of the strict topology. It would be natural to try to find a closed two-sided ideal $J \subset A$ such that M(J) = A, but this in general is difficult to do. Consequently, we find it necessary to place additional restrictions on our C^* -algebra. Namely, we will require A to be a W^* algebra. Here we view a W^* -algebra as a C^* -algebra which is the dual of a unique Banach space A_* [14]. In a W^* -algebra A, it is known that a closed two-sided ideal $J \subseteq A$ has the property that M(J) = A if and only if J is essential, that is, $J^0 = \{x \in A : xJ = \{0\}\} = \{0\}$ (see [22]). Since it is probable that more than one ideal with this property exists, it seems natural to apply Sentilles' method to our setting. Consequently, we define the $\bar{\beta}$ topology for a W*-algebra A as follows: for each essential closed two-sided ideal $J \subset A$, we define the strict topology β_I for A to be the locally convex topology generated by the seminorms $\{\lambda_a, \rho_a\}_{a \in J}$ as in the double centralizer setting above. We then define the $\bar{\beta}$ topology to be the inductive limit of the β_J topologies [13]. The algebra A under the $\bar{\beta}$ topology will be denoted by $A_{\overline{\beta}}$. If A is topologically simple, then the β topology is the norm topology, since A is the only ideal $J \subseteq A$ such that M(J) = A. Note that our $\bar{\beta}$ topology is space free and unique while Sentilles' topology is generated by a subclass of these ideals and, consequently, in Sentilles' setting our topology is a weaker topology than his β topology. main question that we consider in this paper is the following: for a countably decomposable W^* -algebra (for example, A_* separable), what are necessary and sufficient conditions for the dual of $A_{\bar{\beta}}$, denoted $A_{\bar{\beta}}^*$, to be A_* ? We show that a sufficient condition is for A to be a type I W^* -algebra and we have evidence to suggest it is a necessary condition as well. When $A_{\bar{\beta}}^*$ is A_{\cdot} , then $\bar{\beta}$ is the Mackey topology $\tau(A, A_{\cdot})$ as studied by Sakai [14], Akemann [1] and others. In the special case when A is $L^{\infty}(\Omega, \mu)$, $\bar{\beta}$ is the mixed topology of Dazord and Jourlin [4].

In §2 we discuss hyper-Stonean spaces as related to a W^* -algebra and §3 is devoted to the study of essential ideals. The general study of the $\bar{\beta}$ topology is presented in §4 with our main results appearing in §5. The reader is referred to [5], [6], and [14] for definitions and basic concepts of C^* -algebras and W^* -algebras.

2. Hyper-Stonean topological spaces. Let Ω be a compact Hausdorff space and $C(\Omega)$ the space of all complex-valued continuous functions on Ω . The space Ω is called *Stonean* if the

closure of every open set is open, or equivalently, $C(\Omega)$ is a conditionally complete lattice [9, 3N. 6, p. 52]. Now suppose Ω is Stonean. A finite positive regular Borel measure μ on Ω is said to be *normal* if it satisfies the following property: if $\{f_{\alpha}\}$ is a uniformly bounded increasing directed set of positive functions in $C(\Omega)$, then l.u.b. $\int_{\Omega} f_{\alpha} d\mu = \int_{\Omega} \text{l.u.b.}$ $f_{\alpha} d\mu$. A finite complex regular Borel measure is called normal if it is a linear combination of positive normal measures. We denote by $M(\Omega)$ the finite complex regular Borel measures on Ω and by $N(\Omega)$ the closed subspace of normal measures. The Stonean space Ω is said to be hyper-Stonean if the union of the supports of the positive normal measures is dense in Ω , or equivalently, $C(\Omega)$ is a W^* -algebra [14, p. 46].

Throughout this section we shall assume that Ω is a hyper-Stonean space. The results in this section are due to Dixmier [7] and we include them here for completeness.

2.1. PROPOSITION. Let $\{f_{\alpha}\}$ be an increasing net of continuous functions in $C(\Omega)$ which is bounded above. If f is the lattice supremum and f' the upper envelope $(f'(x) = \sup_{\alpha} f_{\alpha}(x), x \in \Omega)$, then f and f' differ on a set of first category.

Proof. For the proof, see [7, p. 154].

2.2. Proposition. In order that the measure μ in $M(\Omega)$ be normal it is necessary and sufficient that $\mu(\Delta) = 0$ for all nowhere dense Borel subsets Δ of Ω .

Proof. For a proof, see [7, Proposition 1, p. 157].

2.3. Proposition. Let μ be a positive normal measure on Ω and f a μ -measurable complex-valued function. Then there exists a continuous function f' on Ω such that f=f' almost everywhere.

Proof. For a proof, see [7, Proposition 2, p. 157].

2.4. Corollary. If the support of μ is Ω , then $C(\Omega)$ is *-isomorphic to $L^{\infty}(\Omega, \mu)$.

We note that by [14, 1.2.6, p. 5] every *-isomorphism of C^* -algebras is an isometry.

2.5. Proposition. Let μ be a positive normal measure on Ω and Δ a μ -measurable subset of Ω . Then Δ coincides, except on a set of μ -measure zero, with the closure $\bar{\Delta}$, with the interior Δ^i , with the closure of Δ^i , and with the interior of $\bar{\Delta}$.

- *Proof.* For a proof, see [7, Corollary, p. 158].
- 2.6. COROLLARY. The support of μ is both open and closed.
- 2.7. COROLLARY. If the support of μ is Ω and Δ is a μ -measurable set such that $\mu(\Delta) = 0$, then Δ is nowhere dense.

A measure space (Γ, ν) is said to be *localizable* if there exists a family $\{(\Gamma_{\alpha}, \nu_{\alpha})\}$ of finite measure spaces such that $\Gamma = \bigcup \Gamma_{\alpha}, \nu = \Sigma \bigoplus \nu_{\alpha}$, and the family $\{\Gamma_{\alpha}\}$ is pairwise disjoint. Note that $L^*(\Gamma, \nu) = \Sigma \bigoplus L^*(\Gamma_{\alpha}, \nu_{\alpha})$. The measure space (Γ, ν) is called W^* -localizable if each Γ_{α} is a hyper-Stonean space and ν_{α} is a positive normal measure on Γ_{α} with support Γ_{α} .

- 2.8. Proposition. Let Z be a commutative W*-algebra. Then Z is *-isomorphic to some $L^*(\Gamma, \nu)$, where (Γ, ν) is a W*-localizable measure space. Moreover, the Stone-Čech compactification of Γ is the spectrum of Z.
- *Proof.* Since Z is *-isomorphic to $C(\Omega)$, Ω hyper-Stonean, the result follows from the proof of [7, Theorem 1, p. 169].
- 3. Essential ideals in W^* -algebras. Let A be a W^* -algebra and J a closed two-sided ideal of A. The ideal J is called essential if $J^0 = \{x \in A : xJ = \{0\}\} = \{0\}$. The essential ideals of A will be denoted by \mathscr{E}_A , or \mathscr{E} is A is understood. We do not assume J is proper.

A double centralizer of the ideal J is an ordered pair (S, T) of functions from J to J such that xS(y) = T(x)y for all x, y in J. In [3] Busby shows S and T are bounded linear maps with ||S|| = ||T|| and the space of all double centralizers of J, denoted by M(J), is a C^* -algebra under the natural algebraic operations and norm ||(S, T)|| = ||S||. There is a natural embedding of A into M(J), namely, the map $x \to (L_x, R_x)$ where $L_x(y) = xy$ and $R_x(y) = yx$ for all $y \in J$. Our next result connects double centralizer algebras and essential ideals. For basic concepts and definitions of double centralizers, we refer the reader to [3], [20] and [22].

3.1. Lemma. Let J be a closed two-sided ideal of the W^* -algebra A. Then the map $x \to (L_x, R_x)$ is a *-homomorphism of A onto M(J). Moreover, the map is a *-isomorphism if and only if J is essential.

- **Proof.** Let A_0 be the W^* -subalgebra of A generated by J. It is easy to show that J is essential in A. The conclusion follows from [22, Theorem 2.1 and Corollary 2.2, p. 478].
- 3.2. Proposition. Let A be a W^* -algebra and I, J and K closed two-sided ideals of A. The following statements are true:
 - (1) If $J \subseteq K$ and $J \in \mathcal{E}$, then $K \in \mathcal{E}$.
 - (2) If $I, J \in \mathcal{E}$, then $I + J \in \mathcal{E}$.
 - (3) If $I, J \in \mathcal{E}$, then $I \cap J \in \mathcal{E}$.

Proof. The proof of (1) is trivial. It is well-known that I+J is a closed two-sided ideal, so (2) follows immediately from (1). It is straightforward to show, by utilizing 3.1, that $||x|| = \sup\{||xy||: y \in I \cap J, ||y|| \le 1\}$, since I and J are essential. Thus the map of 3.1 is an isometry and (3) follows.

The next result shows that W^* -algebras in general have an ample supply of essential ideals.

- 3.3. PROPOSITION. Let A be a W^* -algebra. Then A can be written as follows: $A = \sum_{\alpha \in \pi} \bigoplus A_{\alpha}$, where each W^* -algebra A_{α} is either topologically simple or each maximal two-sided ideal of A_{α} is essential with respect to A_{α} .
- **Proof.** Let F be the family of all sets $\{P_{\alpha}\}$ of central projections with the following properties: (1) $P_{\alpha}P_{\beta}=0$ for $\alpha \neq \beta$; (2) $P_{\alpha}A$ is topologically simple. It is easy to see, by using Zorn's lemma, that there is a maximal such family $\{P_{\alpha}\}$. Let $A_{\alpha}=P_{\alpha}A$ and $P=\Sigma P_{\alpha}$. It is straightforward to verify that $A=(\Sigma \bigoplus A_{\alpha}) \bigoplus (1-P)A$. Now suppose J is a maximal ideal of (1-P)A that is not essential. It follows that J^{0} is a nonzero topologically simple two-sided ideal of (1-P)A which is closed in the $\sigma(A,A)$ topology. Therefore, there is a central projection Q such that $QA=J^{0}[14, 1.10.5, p. 25]$. But this contradicts the fact that $\{P_{\alpha}\}$ was maximal. Hence our proof is complete.

It is well known that a factor contains a smallest nonzero, not necessarily proper, closed two-sided ideal [26, Remark 3, p. 61]. We will use this fact in the following proposition.

- 3.4. Proposition. Suppose that the W^* -algebra A is a factor. Then every nonzero closed two-sided ideal of A is essential.
- *Proof.* Let J be the smallest nonzero closed two-sided ideal of A. By virtue of 3.2, we need only show J is essential. If $J^0 \neq \{0\}$, then

- $J \subseteq J^0$. But this is clearly a contradiction. Hence $J^0 = \{0\}$ and our proof is complete.
- Let (Ω, μ) be a localizable measure space and A a W^* -algebra with separable predual A_* . We let $L^*(\Omega, \mu, A)$ denote the Banach space of all A-valued essentially bounded weakly* μ -locally measurable functions on Ω (see [11, 3.5, p. 72]). In [14, 1.22.13, p. 68], Sakai shows $L^*(\Omega, \mu, A)$ is a W^* -algebra under pointwise multiplication and its predual is $L^1(\Omega, \mu, A_*)$, where $L^1(\Omega, \mu, A_*)$ is the Banach space of all A_* -valued Bochner μ -integrable functions on Ω . The next lemma connects W^* -tensor products with the space $L^*(\Omega, \mu, A)$. For basic definitions and concepts of tensor products of C^* -algebras, we refer the reader to [14, 1.22, pp. 58–70]. For the definition of the $s(A, A_*)$ and $s^*(A, A_*)$ topologies see, [14, p. 20].
- 3.5. Lemma. Let Z be a commutative W^* -algebra and A a W^* -algebra with separable predual. Then $Z \bar{\otimes} A$ is *-isomorphic to $\Sigma_{\alpha \in \pi} \oplus L^{\infty}(\Omega_{\alpha}, \mu_{\alpha}, A)$, where each Ω_{α} is hyper-Stonean and μ_{α} is a positive normal measure with support Ω_{α} .
- *Proof.* The proof follows immediately from 2.8 and [14, 1.22.13, p. 68].
- 3.6. Lemma. Let Z be a commutative W*-algebra and A a factor with A* separable. If J is a closed two-sided ideal of $Z \otimes A$ such that $J \cap (Z \otimes_{aa} A) = \{0\}$, then $J = \{0\}$.
- *Proof.* By virtue of 3.5 we may assume $Z \bar{\otimes} A = L^{\infty}(\Omega, \mu, A)$, where Ω is hyper-Stonean and μ is a positive normal measure with support Ω . Moreover, by virtue of 2.4 and [14, 1.22.3, p. 61], we may assume $Z \otimes_{\alpha_0} A = C(\Omega, A)$, where $C(\Omega, A)$ is viewed as a subalgebra of $L^{\infty}(\Omega, \mu, A)$ in the natural way. Note that it follows from 2.4 that the center of $L^{\infty}(\Omega, \mu, A)$ is $C(\Omega) \cdot 1$, where 1 denotes the identity of A.

First, suppose A is finite. Then, by [14, 2.6.1, p. 98], $L^{\infty}(\Omega, \mu, A)$ is finite. The conclusion follows directly from Corollary 1 of Proposition 2 in [5, p. 256].

Next, suppose A is semi-finite. By [14, p. 157] there exists an increasing net of projections $\{e_{\alpha}\}$ which are finite and such that sup $e_{\alpha} = 1$. Set $A_{\alpha} = L^{\infty}(\Omega, \mu, e_{\alpha}Ae_{\alpha})$. Then A_{α} is a W^* -subalgebra of $L^{\infty}(\Omega, \mu, A)$. Suppose J is a closed two-sided ideal of $L^{\infty}(\Omega, \mu, A)$ such that $J \cap C(\Omega, A) = \{0\}$. Then $J \cap C(\Omega, e_{\alpha}Ae_{\alpha}) = \{0\}$ and therefore $J \cap A_{\alpha} = \{0\}$, since $e_{\alpha}Ae_{\alpha}$ is a finite factor and the above applies. Now

let $x \in J^+$ and set $E_{\alpha}(t) = e_{\alpha}$ for all $t \in \Omega$. It follows that $E_{\alpha}xE_{\alpha} \in J^+ \cap A_{\alpha}$ and consequently $E_{\alpha}xE_{\alpha} = 0$. Since $\{E_{\alpha}\}$ converges to the identity of $L^{\infty}(\Omega, \mu, A)$ in the $s(L^{\infty}(\Omega, \mu, A), L^{1}(\Omega, \mu, A))$ topology [14, 1.13.4, p. 30] and multiplication is jointly $s(L^{\infty}(\Omega, \mu, A), L^{1}(\Omega, \mu, A))$ continuous on uniformly bounded spheres [14, 1.8.12, p. 21], it follows that $E_{\alpha}xE_{\alpha}$, converges to x. Hence x = 0. Since x was chosen arbitrarily, y = 0.

Finally, suppose A is purely infinite. Since A is separable, A is countably decomposable [14, 2.1.9, p. 80]. Moreover, since the support of μ is Ω , it follows from [7, Proposition 7, p. 161] that $C(\Omega)$ is countably decomposable. Hence $L^{\infty}(\Omega, \mu, A)$ is a countably decomposable type III (purely infinite) W^* -algebra [14, 2.6.6, p. 101]. Now, if J is a closed two-sided ideal of $L^{\infty}(\Omega, \mu, A)$ such that $J \cap C(\Omega, A) = \{0\}$, then it follows directly from [14, 4.1.5, p. 155] that $J = \{0\}$.

Since A must be either finite, semi-finite or purely infinite, our proof is complete.

- 3.7. COROLLARY. Let Ω be a hyper-Stonean space, μ a positive normal measure with support Ω , and A a factor with separable predual A_* . If J is a closed two-sided ideal of $L^{\infty}(\Omega, \mu, A)$ such that $J \cap C(\Omega, A) = \{0\}$, then $J = \{0\}$.
- 3.8. THEOREM. Let Z be a commutative W*-algebra and A a factor with separable predual A_* . If J is an essential ideal of $Z \otimes A$, then $J \cap (Z \otimes_{\alpha o} A)$ is an essential ideal of $Z \otimes_{\alpha o} A$.

Proof. Just as in 3.6, we may assume $Z \otimes A = L^{\infty}(\Omega, \mu, A)$, where Ω is hyper-Stonean and μ is a positive normal measure with support Ω . Moreover, we may assume $Z \otimes_{\alpha_0} A = C(\Omega, A)$. Now suppose J is an essential ideal of $L^{\infty}(\Omega, \mu, A)$ such that $J_1 \equiv C(\Omega, A) \cap J$ is not essential in $C(\Omega, A)$.

First, we will show that there exists an open and closed subset G of Ω such that x(t)=0 for each $x\in J_1$ and $t\in G$. Since $J_1^0\neq\{0\}$, we may choose a nonzero $y\in J_1^0$. Because $t\to \|y(t)\|$ is a continuous map, it is clear that there is an open and closed set G for which $\|y(t)\|>0$ for each $t\in G$. Now suppose there is a t_0 in G and an x in J_1 such that $x(t_0)\neq 0$. Then $K_{t_0}=\{x(t_0)\colon x\in J_1\}$ is a nonzero closed two-sided ideal of A and moreover, by 3.4, K_{t_0} is essential in A. Since $y\in J_1^0$, $y(t_0)x(t_0)=0$ for each $x\in J_1$. Thus, $y(t_0)=0$ since K_{t_0} is essential in A. But this is a contradiction because $y(t_0)\neq 0$. So, x(t)=0 for each $x\in J_1$ and $t\in G$.

Due to the fact that J is essential in $L^{\infty}(\Omega, \mu, A)$, it is straightforward to show that $\chi_G J$ is a nonzero ideal of $L^{\infty}(\Omega, \mu, A)$. Thus, by 3.7,

- $\chi_G J \cap C(\Omega, A) \neq \{0\}$. It follows that there must be an $x \in J_1$ for which $x(t) \neq 0$ for some $t \in G$. But this contradicts the defining properties of G. Consequently, J_1 must be essential in $C(\Omega, A)$ and our proof is complete.
- 3.9. COROLLARY. Let Ω , μ , and A be defined as in 3.7. If J is an essential ideal of $L^*(\Omega, \mu, A)$, then $J \cap C(\Omega, A)$ is an essential ideal of $C(\Omega, A)$.
- 3.10. PROPOSITION. Let Ω , μ , and A be defined as in 3.7. If K is an essential closed two-sided ideal in A, then $L^{\infty}(\Omega, \mu, K)$ is an essential closed two-sided ideal of $L^{\infty}(\Omega, \mu, A)$.
- *Proof.* Let $J = L^{\infty}(\Omega, \mu, K)$ and suppose $J^{0} \neq \{0\}$. Since J^{0} is a closed two-sided ideal, there exists by 3.6 a nonzero x in $J^{0} \cap C(\Omega, A)$. In particular, we have xy = 0 for all $y \in C(\Omega, K)$. Since $C(\Omega, K)$ is essential in $C(\Omega, A)$ it follows that x = 0, contradicting that $x \neq 0$. Thus J is essential and our proof is complete.
- Let H be a separable Hilbert space, B(H) the bounded linear operators on H, $B_0(H)$ the compact operators, and T(H) the trace class operators. It is well known that the dual of $B_0(H)$ is T(H) [14, 1.19.1, p. 47] and that the predual of B(H) is T(H) [14, 1.15.3, p. 39]. Furthermore, T(H) is separable whenever H is separable [14, 2.1.10, p. 81]. These facts will be used in the following examples.
- 3.11. EXAMPLE. Let Ω and μ be defined as in 3.7 and H as above. Then $L^*(\Omega, \mu, B_0(H))$ is an essential ideal of $L^*(\Omega, \mu, B(H))$.
- 3.12. Example. Let J be a closed two-sided ideal of $L^*(\Omega, \mu, B(H))$. Then J is essential if and only if there exists a closed nowhere dense, possibly empty, subset E of Ω with the property that for each $x \in J$ and $\epsilon > 0$, there is an open neighborhood V of E such that $||x||V|| \le \epsilon$. We will denote by J_E the essential ideal consisting of all those elements of $L^*(\Omega, \mu, B_0(H))$ which satisfy this property. If B(H) is the complex number system, this essential ideal of $L^*(\Omega, \mu)$ will be denoted by J_E .
- **4.** The $\bar{\beta}$ topology. In this section, A will always denote a W^* -algebra and A_* its predual. Let J be an essential ideal of A. Recall that the β_J topology for A is the locally convex topology generated by the family of seminorms $\{\lambda_a, \rho_a\}_{a \in J}$, where $\lambda_a(x) = \|ax\|$ and $\rho_a(x) = \|xa\|$ for all $x \in A$, and the $\bar{\beta}$ topology for A is the inductive limit [13, p. 79] of all the β_J topologies. As before, let \mathscr{E}_A , or \mathscr{E} if A is

understood, denote the family of all essential ideals of A. In this section we study the algebra A under the $\bar{\beta}$ topology.

The proofs of 4.1 through 4.5 are by virtue of [20, Corollary 2.7, p. 638], simple adaptations of arguments given by Sentilles. Consequently, we do not include them, but rather refer the reader to [18, pp. 317–318] and [20, pp. 636–638].

- 4.1. THEOREM. Let W be a convex, balanced and absorbing subset of A. Then W is a $\bar{\beta}$ neighborhood of zero if and only if, for each r > 0 and $J \in \mathcal{E}$, there is a β_J neighborhood of zero V_J such that $V_J \cap \{x : ||x|| \le r\} \subseteq W$. Consequently, the strongest locally convex topology for A that agrees with the $\bar{\beta}$ topology on uniformly bounded subsets of A is the $\bar{\beta}$ topology.
- 4.2. COROLLARY. The continuity of linear maps on $A_{\bar{\beta}}$ is determined on the uniformly bounded subsets of A.
- 4.3. COROLLARY. Let B be a locally convex space and $T: A \to B$ a linear or conjugate linear map. Then T is $\bar{\beta}$ continuous if and only if T is β_I continuous for each $J \in \mathcal{E}$.
- 4.4. COROLLARY. The mappings $x \to ax$, $x \to xa$ and $x \to x^*$ are $\bar{\beta}$ continuous for x, $a \in A$.
- 4.5. PROPOSITION. The following statements are true: (1) as subsets of A^* , $A^*_{\beta} = \bigcap_{J \in \mathscr{E}} A^*_{\beta,J}$; (2) if, for each $J \in \mathscr{E}$, β_J is the Mackey topology of the dual pair $\langle A, A^*_{\beta,J} \rangle$, then $\bar{\beta}$ is the Mackey topology of the dual pair $\langle A, A^*_{\beta} \rangle$.

Note that A_* is a uniformly closed subspace of A^* .

- 4.6. THEOREM. For the dual pair $\langle A, A_{\cdot} \rangle$, we have $\tau(A, A_{\cdot}) \leq \bar{\beta}$, where $\tau(A, A_{\cdot})$ denotes the Mackey topology of the dual pair $\langle A, A_{\cdot} \rangle$.
- **Proof.** By virtue of [14, 1.16.7, p. 41], A can be viewed as a weakly closed self-adjoint subalgebra of B(H), where H is some Hilbert space with the property $H = \{T(h): T \in A, h \in H\}$. Let J be an essential ideal in A. By the Cohen-Hewitt factorization theorem [10, Theorem 2.5, p. 151], $H_0 = \{T(h): T \in J, h \in H\}$ is a closed subspace of H. Furthermore, since J is essential, $H = H_0$. It follows that the β_J topology is stronger than the strong operator topology and therefore stronger than the $s(A, A_0)$ topology on uniformly bounded spheres [14, 1.15.2, p. 35]. Moreover, due to the fact that the map

- $x \to x^*$ is β_J continuous and multiplication is jointly β_J continuous on uniformly bounded spheres, the β_J topology is stronger than the $s^*(A, A_*)$ topology on uniformly bounded spheres. But, Akemann has shown that on uniformly bounded spheres the $\tau(A, A_*)$ and $s^*(A, A_*)$ topologies agree [1, Theorem II.7, p. 292]. The conclusion now follows from 4.1.
- 4.7. COROLLARY. The Banach space A_* is equal to $A_{\bar{\beta}}^*$ if and only if $\bar{\beta} = \tau(A, A_*)$.
- 4.8. Corollary. A set $V \subseteq A$ is $\bar{\beta}$ bounded if and only if V is uniformly bounded.
 - 4.9. COROLLARY. The unit ball of A is closed in the $\bar{\beta}$ topology.
 - 4.10. Proposition. The following statements are equivalent
 - $(1) \quad \mathscr{E} = \{A\}$
 - (2) $\bar{\beta}$ is normable
 - (3) $\bar{\beta}$ is metrizable
 - (4) $\bar{\beta}$ is bornological
 - (5) $\bar{\beta}$ is barrelled.
- **Proof.** It is clear that (1) implies (2), (2) implies (3), and (3) implies (4). Assume (4) holds, that is, $\bar{\beta}$ is bornological. Then $\bar{\beta}$ is the strongest locally convex topology on A with the same class of bounded sets. Thus, by 4.8 $\bar{\beta}$ is the norm topology and therefore barrelled. Now assume $\bar{\beta}$ is barrelled. It follows that the unit ball B_1 of A is a $\bar{\beta}$ neighborhood of zero. Thus the norm and β_J topologies agree on A for all $J \in \mathscr{E}$. From [8, 3.2.4, p. 78] we have, for $J \in \mathscr{E}$, A = M(J) = J and our proof is complete.
- 4.11. PROPOSITION. Suppose $\{A_{\alpha}\}$ is a family of W*-algebras such that $A = \sum_{\alpha \in \pi} \bigoplus A_{\alpha}$. Then $A \not\equiv (\sum_{\alpha \in \pi} \bigoplus (A_{\alpha}) \not\equiv (I_{\alpha})$, [14, 1.1.5, p. 2]. Consequently, $A \not\equiv A$ if and only if $(A_{\alpha}) \not\equiv (A_{\alpha})$ for each $\alpha \in \pi$.
- *Proof.* Note that essential ideals of A of the form $(\Sigma_{\alpha \in \pi} \oplus J_{\alpha})_0$, where J_{α} is essential in A_{α} , generate the $\bar{\beta}$ topology for A. By $(\Sigma_{\alpha \in \pi} \oplus J_{\alpha})_0$ we mean those $\{x_{\alpha}\}$ in A such that $x_{\alpha} \in J_{\alpha}$ and $\alpha \to \|x_{\alpha}\|$ vanishes at infinity. By using this fact together with 4.3 and 4.13, the proof becomes straightforward.
- 4.12. Proposition. Let f be a hermitian $\bar{\beta}$ continuous linear functional on A. Then there exists a unique decomposition $f = f_1 f_2$, where f_1 and f_2 are positive $\bar{\beta}$ continuous linear functionals such that $||f|| = ||f^+|| + ||f^-||$.

- *Proof.* The proof follows directly from [6, 12.3.4, p. 245], [21, Corollary 2.6, p. 164] and 4.3.
- 4.13. COROLLARY. The space A_{β}^* is the linear span of its positive elements.
- For $f \in A^*$ and $x, y \in A$ we define the elements of $A^* x \cdot f$, $f \cdot x$ and $x \cdot f \cdot y$ by $(x \cdot f)(a) = f(ax)$, $(f \cdot x)(a) = f(xa)$ and $(x \cdot f \cdot y)(a) = f(yax)$ for all $a \in A$.
- 4.14. PROPOSITION. Suppose J is an essential ideal of A. Then $A_{\overline{B}}^*$ is the linear span of all linear functionals in $A_{\overline{B}}^*$ of the form $x \cdot g \cdot x$, where $x \in J^+$ and g is a positive $\overline{\beta}$ continuous linear functional on A.
- Proof. Let $f \in A_{\beta}^*$. Suppose $\{e_{\lambda}\}$ is a positive approximate identity for J. Since f is also β_{J} continuous, it follows from [20, Corollary 2.2, p. 635] that $\lim e_{\lambda} \cdot f = \lim f \cdot e_{\lambda} = f$. Due to the fact that A_{β}^* is both a left and right J-module, we see that $f = a \cdot h \cdot b$ by virtue of [19, Theorem 2.1, p. 142], where $h \in A_{\beta}^*$. By a variant of [19, Theorem 2.1, p. 142] there exist elements x, y, z in J such that $x \ge 0$ and a = xy and b = zx. Thus $f = x \cdot g \cdot x$, where $g = y \cdot h \cdot z$. The remainder of the proof follows immediately from 4.13.
- 4.15. PROPOSITION. Suppose A is a factor and J is the smallest closed two-sided ideal of A. Then $A_B^* = A_{BJ}^*$.

Proof. The proof is trivial.

- 4.16. PROPOSITION. Suppose A is a factor. Then $A_{\beta}^* = A_{\bullet}$ if and only if A is of type I.
- *Proof.* If A is a type I factor, then A = B(H) for some Hilbert space H. For this case $A_* = T(H)$, the trace class operators, and $A_{\beta}^* = A_{\beta}^*$, where $J = B_0(H)$. But $T(H) = B_0(H)^* = A_{\beta}^*$, [20, Corollary 2.3, p. 635]. So, the first part of our proof is complete.

Now suppose $A_{\beta}^* = A_{\bullet}$. By 4.15 and [20, Corollary 2.3, p. 635], $A_{\beta}^* = A_{\beta}^* = J^* = A_{\bullet}$. So $A_{\beta}^{**} = A$ and by [23, Theorem 5.1, p. 533], A is of type I.

5. The main results. In this section, A will denote a W^* -algebra, A its unique predual, \mathscr{E}_A the essential ideals of A, or \mathscr{E} if A is understood, and $A \not\equiv B$ the dual of A under the B topology. We will now state one of the main results of the section.

THEOREM I. If A is a countably decomposable type I W*-algebra, then $A^*_{\beta} = A_*$. Consequently, the $\bar{\beta}$ topology is the Mackey topology of the dual pair $\langle A, A_* \rangle$.

Before we proceed with the proof of Theorem I, we will need the following three lemmas.

5.1. Lemma. If A is a countably decomposable type I_n W*-algebra (n a cardinal number), then $n \leq \aleph_0$. Consequently, A is *-isomorphic to $\Sigma_{\alpha \in \Gamma} \bigoplus L^{\infty}(\Omega_{\alpha}, \mu_{\alpha}, B(H))$, where Ω_{α} is hyper-Stonean, μ_{α} is a finite positive normal measure with support Ω_{α} , and the dimension of the Hilbert space H is n.

Proof. The proof follows from [14, 2.3.3, p. 89] and 3.5.

In the next two lemmas we will assume Ω is hyper-Stonean, μ is a finite positive normal measure with support Ω , and H is a separable Hilbert space.

5.2. Lemma. Let B_1 be the set of all finitely-valued functions x in $C(\Omega, B_0(H))^+$ with $\|x\| \le 1$. Then $\bigcup_{J \in \mathscr{C}} Cl_{\beta_J}(B_1)$ is equal to D_1 , the set of all x in $L^{\infty}(\Omega, \mu, B_0(H))^+$ with $\|x\| \le 1$. Here, $Cl_{\beta_J}(B_1)$ denotes the closure of B_1 in the β_J topology.

Proof. By 4.9, $\bigcup_{J \in \mathscr{E}} Cl_{\beta_J}(B_1) \subseteq D_1$. Let $x \in D_1$. By [11, Corollary 1 and Corollary 2, p. 73], there exists a sequence $\{x_n\}_{n=1}^{\infty}$ in D_1 of countably-valued functions such that $||x_n - x|| \to 0$. Thus, it suffices to assume that x is countably-valued. Let $\{T_i\}_{i=1}^{\infty}$ be the values in $B_0(H)^+$ assumed by x. Then set $E_i = \{t : x(t) = T_i\}$. By virtue of 2.2, 2.5 and 2.7, we may assume $x = \sum_{i=1}^{\infty} T_i \chi_{E_i}$, where $E_i \cap E_j = \emptyset$, $i \neq j$, and E_i is open and closed. Let $E = \overline{\bigcup_{i=1}^{\infty} E_i} \setminus \bigcup_{i=1}^{\infty} E_i$ and suppose $E \neq \emptyset$. Then E is closed and, by 2.5 and 2.7, nowhere dense. Let J_E be the ideal of $L^{\infty}(\Omega, \mu, B_0(H))$ defined in 3.12. We shall show that $x_n \to x$ in the β_{I_E} topology where $x_n = \sum_{i=1}^n T_i \chi_{E_i}$. Given $z \in J_E$ and $\epsilon > 0$, there exists an open set $V_{\epsilon} \supseteq E$ such that $||z(t)|| < \epsilon/2||x||$ for almost all $t \in V_{\epsilon}$. Since x is continuous on \tilde{V}_{ϵ} , the complement of V_{ϵ} , the functions $t \to ||x_n(t)||$ x(t) form a decreasing sequence of positive continuous functions that converge pointwise to 0 on the compact set \tilde{V}_{ϵ} . Consequently, by Dini's Theorem there exists an integer N such that $||x_n(t) - x(t)|| < \infty$ $\epsilon/\|z\|$ for all $t \in \tilde{V}_{\epsilon}$ and $n \ge N$. It easily follows that $\|zx_n - zx\| < \epsilon$ and $||x_n z - xz|| < \epsilon$ for $n \ge N$. Thus, $x_n \to x$ in the β_{J_E} topology. If $E = \emptyset$, then by Dini's theorem $x_n \to x$ uniformly on Ω . Therefore $x \in \bigcup_{I \in \mathcal{X}} Cl_{\beta_I}(B_I)$ and our proof is complete.

In the following lemma let A denote the W^* -algebra $L^{\infty}(\Omega, \mu, B(H))$.

5.3. Lemma. If $F \in A_B^*$ and x is a finitely valued function in $C(\Omega, B_0(H))$, then $x \cdot F \in A_*$.

Proof. It is straightforward to verify, by utilizing the spectral theorem for compact operators, 4.13, and 2.5, that we can make the following assumptions: (1) $x = \chi_G P$, where G is an open and closed subset of Ω and P is a one-dimensional projection on H; (2) F is positive. First, we will show that $x \cdot F \cdot x \in A$, or equivalently, $x \cdot F \cdot x$ is normal [14, 1.13.2, p. 28]. Let $\{z_{\alpha}\}$ be an increasing net in A^+ with $z = \sup z_{\alpha}$. Since $x \cdot F \cdot x(z_{\alpha}) = F(xz_{\alpha}x)$ and F is $\bar{\beta}$ continuous, it will suffice to show $xz_{\alpha}x \rightarrow xzx$ in the $\bar{\beta}$ topology.

Let $E \subseteq \Omega$ be a closed nowhere dense set, I_E the ideal of $L^{\infty}(\Omega, \mu)$ as defined in 3.12 and J_E the corresponding ideal of $L^{\infty}(\Omega, \mu, B_0(H))$ (see 3.12). For $y \in J_E$ we have

$$||y(t)x(t)[z(t) - z_{\alpha}(t)]x(t)||$$

$$\leq \sup\{||y(t)x(t)[z(t) - z_{\alpha}(t)]x(t)h||: h \in H, ||h|| \leq 1\}$$

$$\leq \sup\{|\langle h, h_0 \rangle \langle (z(t) - z_{\alpha}(t))(h_0), h_0 \rangle |||y(t)(h_0)||: h \in H, ||h|| \leq 1\}$$

$$\leq |\langle (z(t) - z_{\alpha}(t))(h_0), h_0 \rangle |||y(t)||,$$

where $P(h_0) = h_0$ and $||h_0|| = 1$. By [11, Theorem 2.8.5, p. 34] and [11, Theorem 3.5.2, p. 72], the map $t \to ||y(t)||$ is measurable and thus equal to, almost everywhere, a continuous function that vanishes on E. Therefore, it sufficies to find a closed nowhere dense set E for which $\phi_{\alpha}(t) \equiv \langle z_{\alpha}(t)(h_0), h_0 \rangle$ converges to $\phi(t) \equiv \langle z(t)(h_0), h_0 \rangle$ in the β_{I_E} topology, for then $xz_{\alpha}x$ will converge to xzx in the β_{I_E} topology, and hence, in the $\bar{\beta}$ topology.

Since $xz_{\alpha}x \to xzx$ in the $\sigma(A, A)$ topology [14, 1.7.4, p. 15] and the predual of $L^{\infty}(\Omega, \mu, B(H))$ is $L^{1}(\Omega, \mu, T(H))$, it is easy to show that $\int_{\Omega} \phi_{\alpha}(t) d\mu \to \int_{\Omega} \phi(t) d\mu$. By virtue of 2.4 we can choose functions f_{α} , f in $C(\Omega)$ such that $f_{\alpha} = \phi_{\alpha}$ and $f = \phi$ almost everywhere. Note that f_{α} is an increasing net with $f \ge f_{\alpha}$, so $f \ge \sup f_{\alpha} \equiv f'$. Since μ is a positive normal measure, $\int_{\Omega} f_{\alpha} d\mu \to \int_{\Omega} f' d\mu$. Hence, $\int_{\Omega} (f - f') d\mu = 0$, or equivalently, f = f'. Now, let E be the closure of $\{t: f(t) > \sup f_{\alpha}(t)\}$. By 2.1, 2.2, 2.5 and 2.7, E is nowhere dense. By virtue of Dini's theorem, it is straightforward to show that $f_{\alpha} \to f$ in the $\beta_{I_{E}}$ topology for $C(\Omega)$ and consequently $xz_{\alpha}x \to xzx$ in the $\beta_{I_{E}}$ topology for $L^{\infty}(\Omega, \mu, B(H))$. Thus $x \cdot F \cdot x \in A_{*}$.

Finally, we must show $x \cdot F \in A_*$. Suppose $x_{\alpha} \to 0$ for the

 $s^*(A, A_*)$ topology where $||x_{\alpha}|| \le 1$. Then $x_{\alpha}^* \to 0$ for the $s^*(A, A_*)$ topology and by [14, 1.8.9, p. 20] and [14, 1.8.12, p. 21] it follows that $x_{\alpha}^*x_{\alpha} \to 0$ for the $s(A, A_*)$ topology. By utilizing the Schwartz inequality [14, p. 9], [14, 1.8.10, p. 21] and the above result for $x \cdot F \cdot x$ it is easy to show that $(x \cdot F)(x_{\alpha}) \to 0$. Thus $x \cdot F \in A_*$ and our proof is complete.

Proof of Theorem I. By [14, 2.3.2, p. 89], $A = \sum_{n \in \Gamma} \bigoplus A_n$, where each A_n is a type I_n W^* -algebra. By virtue of 4.11 we may assume A is of type I_n and consequently by 5.1 and 4.11 we may assume $A = L^{\infty}(\Omega, \mu, B(H))$ where Ω is hyper-Stonean, μ is a positive normal measure with support Ω , and H is a separable Hilbert space.

Let $F \in L^{\infty}(\Omega, \mu, B(H))_{\overline{\beta}}^*$ such that $F \ge 0$. By 4.14 and 3.11 we may assume $F = x \cdot G \cdot x$ for some $x \in L^{\infty}(\Omega, \mu, B_0(H))^+$ and G a positive $\overline{\beta}$ continuous linear functional on $L^{\infty}(\Omega, \mu, B(H))$. Clearly, we may assume $||x|| \le 1$. By 5.2 there exists an essential ideal J in $L^{\infty}(\Omega, \mu, B(H))$ such that $x \in Cl_{\beta_J}(B_1)$. Consequently, there exists a net $\{x_{\alpha}\}$ in B_1 that converges to x in the β_J topology. By 4.14 we may assume $G = y \cdot G_1 \cdot y$ for some $y \in J^+$ and G_1 a positive $\overline{\beta}$ continuous linear functional on $L^{\infty}(\Omega, \mu, B(H))$. Therefore $x_{\alpha} \cdot G \cdot x_{\alpha} \to F$ uniformly. Hence, by virtue of 5.3, $F \in A_*$. Since $A_{\overline{\beta}}^*$ is the linear span of its positive linear functionals, $A_{\overline{\beta}}^* = A_*$. That $\overline{\beta}$ is the Mackey topology of the dual pair $\langle A, A_* \rangle$, is an immediate consequence of 4.7 and our proof is now complete.

For a type I W^* -algebra, the condition of being countably decomposable is not necessary for Theorem I to hold. In fact, Theorem I holds for A = B(H), H not separable (see 4.16), and for any commutative W^* -algebra Z. Moreover, it is easy to see from our proof, that Theorem I holds for $Z \bar{\otimes} B(H)$ where H is a separable Hilbert space. It is of interest to note that for the W^* -algebra $L^* = L^*(X, \nu)$, where X completely regular and ν is a compact regular Borel measure on X, we have $\bar{\beta} = \tau(L^*, L^1)$ where $L^1 = L^1(X, \nu)$. Thus, $\bar{\beta}$ is the mixed topology considered by Dazord and Jourlin [4]. These results lead us to the following two related questions.

- 5.4. Question. Suppose A is a type I W*-algebra that is not countably decomposable. Must $A_{\frac{\pi}{B}}$ be equal to A_{\bullet} ?
- 5.5. Question. Let A be a countably decomposable W^* -algebra such that $A_{\beta}^* = A_*$. Must A be a type I W^* -algebra? In other words, does the converse of Theorem I hold?

Our next result suggests that the converse of Theorem I may indeed be true. We will now view A as a W^* -algebra on a separable Hilbert space.

THEOREM II. Let $A = \int_{\Gamma} A(t) \mu(dt)$ be the direct integral decomposition of A into factors [17, Corollary 10, p. 53]. Let B be a factor and define Λ to be the set of all $t \in \Gamma$ for which A(t) is spatially isomorphic to B. If $A_{\beta}^* = A_{\beta}$ and $\mu(\Lambda) > 0$, then B must be a type I factor.

Proof. By virtue of [17, Theorem 2, p. 228], 4.11, and 3.5, we need only consider the case $A = L^{\infty}(\Omega, \mu, B)$, where Ω is hyper-Stonean, μ is a positive normal measure with support Ω , and $\mu(\Omega) = 1$. Now, let D be the set of all elements in $C(\Omega, B)$ of the form $\sum_{k=1}^{n} x_k \chi_{E_k}$, where $x_k \in B$ and $\{E_k\}_{k=1}^n$ are pairwise disjoint sets that are both open and closed. Since D is a *-subalgebra of $C(\Omega, B)$ that separates points and contains the identity, we have by [6, 11.5.3, p. 234] that D is uniformly dense in $C(\Omega, B)$. Consequently, it follows from [14, 1.22.3, p. 61] and [14, p. 67] that D is $\sigma(A, A_*)$ dense in $L^{\infty}(\Omega, \mu, B)$. Now, for $f \in (B_{\beta_B}^*)^+$ define \tilde{f} on D as follows: for $x = \sum_{k=1}^n x_k \chi_{E_k}$, set $\tilde{f}(x) = \sum_{k=1}^n f(x_k)\mu(E_k)$. We will now show that \tilde{f} is continuous on the unit ball of D for the relative β_A topology. By 4.1 and 4.3, it will suffice to show that \tilde{f} is continuous on the unit ball of D in the relative β_I topology for each $I \in \mathcal{E}_A$.

Let J be a closed two-sided essential ideal of A, I_0 the smallest closed two-sided ideal of B, and $\epsilon > 0$. Since f is $\bar{\beta}_B$ continuous on B, there exists a $b \in I_0$ such that $|f(x)| \le \epsilon/2$ whenever $||bx|| + ||xb|| \le 1$. Now set $J_1 = J \cap C(\Omega, B)$. By 3.9, J_1 is essential in $C(\Omega, B)$, so the set $E = \{t \in \Omega: x(t) = 0 \text{ for all } x \in J_1\}$ is a closed nowhere dense subset of Ω . Since μ is normal, there exists an open and closed set $G \supseteq E$ such that $\mu(G) < \epsilon/2||f||$. For each $t_0 \in \tilde{G}$, the complement of G, the set $\{x(t_0): x \in J_1\}$ contains I_0 . Therefore, it is straightforward to show that there exists a subset V_{t_0} of \tilde{G} and an element a_0 in J_1 that satisfy the following:

- (1) $t_0 \in V_{t_0}$ and V_{t_0} is both open and closed;
- (2) $||a_0(t) b|| < 1/8$ for $t \in V_{t_0}$ and $a_0(t) = 0$ otherwise. Since \tilde{G} is compact and $\{V_t\}_{t \in \tilde{G}}$ is an open cover, there exists a finite collection $\{V_{t_i}\}_{i=1}^n$ that covers \tilde{G} . Due to the fact that each set V_{t_i} is both open and closed, we can construct an element a in J_1 such that ||a(t) b|| < 1/4 for $t \in \tilde{G}$ and a(t) = 0, $t \in G$. Now let x be an element of the unit ball of D, where $x = \sum_{k=1}^n x_i \chi_{E_i}$, and suppose $||xa|| + ||ax|| \le 1/2$. We may assume that, for some positive integer k, E_1, E_2, \dots, E_k are subsets of G

and E_{k+1}, \dots, E_n are subsets of \tilde{G} . Since $||x|| \le 1$ and $||ax|| + ||xa|| \le 1/2$, it is easy to show that $||x_ib|| + ||bx_i|| \le 1$ for $i = k + 1, \dots, n$. Therefore

$$|\tilde{f}(x)| \leq \sum_{i=1}^{k} |f(x_i)| \mu(E_i) + \sum_{i=k+1}^{n} |f(x_i)| \mu(E_i)$$

$$\leq ||f| ||\mu(G) + (\epsilon/2) \mu(\tilde{G}) < \epsilon/2 + \epsilon/2 = \epsilon.$$

Thus, \tilde{f} is $\bar{\beta}_A$ continuous on the unit ball of D. Since $A_{\beta_A}^* = A_*$, the $\bar{\beta}_A$ topology is the Mackey topology of the dual pair $\langle A, A_* \rangle$. Consequently, it follows from [14, 1.9.1, p. 22] and [14, 1.8.10, p. 21] that \tilde{f} can be extended uniquely to a $\bar{\beta}_A$ continuous positive linear functional on A. Hence $\tilde{f} \in A_*$ and this implies $f \in B_*$. But, by 4.16 this can only happen when B is a type I factor and our proof is complete.

REFERENCES

- 1. C. A. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc., 126 (1967), 286-302.
- 2. R. C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J., 5 (1958), 95-104.
- 3. R. C. Busby, Double centralizers and extensions of C*-algebras, Trans. Amer. Math. Soc., 132 (1968), 79-99.
- 4. J. Dazord and M. Jourlin, La dualite entre les espaces L^{+} and L^{∞} (submitted).
- 5. J. Dixmier, Les algebras d'operateurs dans l'espace Hilbertien, 2nd edition, Gauthier-Villars, Paris, 1969.
- 6. ——, Les C*-algebras et leurs representations, 2nd edition, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1969.
- 7. ——, Sur certain espaces consideres par M. H. Stone, Summa Brasil. Math., 2 (1951), fasc. 11, 151-182.
- 8. R. A. Fontenot, Approximate identities and strict topologies, Ph.D. dissertation, Louisiana State University, 1972.
- 9. L. Gillman and M. Jerison, Rings of continuous functions, Princeton, 1960.
- 10. E. Hewitt, The ranges of certain convolution operators, Math. Scand., 15 (1964), 147-155.
- 11. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Coll. Publ.
- 31, Providence, 1957.
- 12. S. E. Mosiman and R. F. Wheeler, The strict topology in a completely regular setting: relations to topological measure theory, Canad. J. Math., 24 (1972), 873–890.
- 13. A. P. Robertson and W. J. Robertson, *Topological vector spaces*, Cambridge Univ. Press, New York, 1964.
- 14. S. Sakai, C*-algebras and W*-algebras, Springer-Verlag, New York, 1971.
- 15. H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1964.
- 16. K. S. Scheinberg, Topologies which generate a complete measure algebra, Advances in Math. 7 (1971), 231-239.
- 17. J. T. Schwartz, W*-algebras, Gordon and Breach, New York, 1967.
- 18. F. D. Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc., 168 (1972), 311-336.
- 19. F. D. Sentilles and D. C. Taylor, Factorization in Banach algebras and the general strict topology, Trans. Amer. Math. Soc., 142 (1969), 141-152.
- 20. D. C. Taylor, The strict topology for double centralizer algebras, Trans. Amer. Math. Soc., 150 (1972), 633-643.

- 21. _____, Interpolation in algebras of operator fields, J. Functional Analysis, 10 (1972), 159–190.
- 22. ——, A general Phillips theorem for C *-algebras and some applications, Pacific J. Math., 40 (1972), 477–488.
- 23. B. Tomiuk and P. K. Wong, *The Arens product and duality in B*-algebras*, Proc. Amer. Math. Soc., 25 (1970), 529-535.
- 24. R. F. Wheeler, The strict topology, separable measures and paracompactness, Pacific J. Math., (to appear).
- 25. ——, The strict topology for P-spaces, Proc. Amer. Math. Soc., 41 (1973), 466-472.
- 26. W. Wils, Two-sided ideals in W*-algebras, J. Reine Angew. Math., 244 (1970), 55-68.

Received March 5, 1974. This research was supported in part by the National Science Foundation, under contract No. GP-38884.

DEPARTMENT OF MATHEMATICS MONTANA STATE UNIVERSITY