A CHARACTERIZATION OF PRÜFER
 DOMAINS IN TERMS OF POLYNOMIALS

Robert Gilmer and Joseph F. Hoffmann

Abstract

Assume that D is an integral domain with identity and with quotient field K. Each element of K is the root of a polynomial f in $D[X]$ such that the coefficients of f generate D if and only if the integral closure of D is a Prüfer domain.

All rings considered in this paper are assumed to be commutative and to contain an identity element. By an overring of a ring R, we mean a subring of the total quotient ring of R containing R. The symbol X in the notation $R[X]$ denotes an indeterminate over R.

In the study of integral domains, Prüfer domains arise in many different contexts. See, for example, [1; Exer. 12, p. 93] or [2; Chap. IV] for some of the multitudinous characterizations of Prüfer domains. Among such characterizations there are at least two in terms of polynomials: (1) The domain D is a Prüfer domain if and only if $A_{f} A_{g}=A_{f g}$ for all $f, g \in D[X]$, where A_{h} denotes the ideal of D generated by the coefficients of the polynomial $h \in D[X]$ (A_{h} is called the content of h) [3], [10], [2; p. 347]. (2) D is a Prüfer domain if and only if D is integrally closed and for each prime ideal P of D, the only prime ideals of $D[X]$ contained in $P[X]$ are those of the form $P_{[}[X]$, where P_{1} is a prime ideal of D contained in P [2; p. 241]. In Theorem 2 we provide another characterization of Prüfer domains in terms of polynomials: D is a Prüfer domain if and only if D is integrally closed and each element of the quotient field K of D is a root of a polynomial $f \in D[X]$ such that $A_{f}=D$. Then in Theorem 5 we obtain an extension of this result to the case where D need not be integrally closed.

Our interest in domains D such that each element of K is a root of a polynomial $f \in D[X]$ with $A_{f}=D$ stemmed from the fact that this property is common to both Δ-domains-that is, integral domains whose set of overrings is closed under addition [4]-and to integral domains having property (n) for some $n>1$-that is, integral domains D with the property that $(x, y)^{n}=\left(x^{n}, y^{n}\right)$ for all $x, y \in D[9]$. Thus, if D is a Δ-domain with quotient field K and if $t \in K$, then since $D\left[t^{2}\right]+D\left[t^{3}\right]$ is an overring of $D, t^{5}=t^{2} t^{3} \in D\left[t^{2}\right]+D\left[t^{3}\right]$, whence it is evident that t is the root of a polynomial in $D[X]$ in which the coefficient of X^{5} is a unit. If D has property (n) for some $n>1$ and if $t=a / b \in K$, where $a, b \in D$ and $b \neq 0$, then from the equality $(a, b)^{n}=$ (a^{n}, b^{n}) it follows that $a^{n-1} b=d_{1} a^{n}+d_{2} b^{n}$ for some $d_{1}, d_{2} \in D$; divid-
ing both sides of this equation by b^{n} yields $d_{1} X^{n}-X^{n-1}+d_{2}$ as a polynomial satisfied by t.

We show that the condition described in the preceding paragraph is equivalent to the condition that each element of the quotient field of D satisfies a polynomial with a unit coefficient.

Theorem Let $f=\sum_{i=0}^{n} f_{i} X^{i}$ be an element of $R[X]$. Then $A_{f}=$ $\left(f_{0}, f_{1}, \cdots, f_{n}\right)$ is the set of coefficients of elements of the principal ideal of $R[X]$ generated by f.

Proof. Denote by E the set of coefficients of elements of $(f) ; E$ is an ideal of R and the inclusion $A_{f} \supseteq E$ is clear. Conversely, if $t=\sum_{0}^{n} r_{i} f_{i}$ is an element of A_{f}, then $\left(\sum_{i=0}^{n} r_{i} X^{n-i}\right) f$ is an element of (f) and the coefficient of X^{n} in this polynomial is t. Hence $t \in E$ and the equality $E=A_{f}$ holds, as asserted.

A modification of the proof of Theorem 1 shows that the result generalizes to polynomials in an arbitrary set of indeterminates, and this observation, in turn, yields a further generalization of Theorem 1.

Corollary 1. Let $\left\{f_{\alpha}\right\}$ be a subset of the polynomial ring $R\left[\left\{X_{\lambda}\right\}\right]$, and for each α, let $A_{f_{\alpha}}$ be the ideal of R generated by the coefficients of f_{α}. Then $\Sigma_{\alpha} A_{f_{\alpha}}$ is the set of coefficients of the ideal of $R\left[\left\{X_{\lambda}\right\}\right]$ generated by $\left\{f_{\alpha}\right\}$.

The equivalence of the two conditions mentioned in the paragraph immediately preceding Theorem 1 also follows at once from this result. If S is a unitary extension ring of R, we say that R has property (P) with respect to S or that S is a P-extension of R if each element of S satisfies a polynomial in $R[X]$ one of whose coefficients is a unit of R, or, equivalently, whose coefficients generate the unit ideal of R. The next result is not unexpected.

Theorem 2. Let D be an integrally closed domain with quotient field K. Then D is a Prüfer domain if and only if K is a P-extension of D.

Proof. If D is a Prüfer domain, then D has property (n) for each positive integer n [5; Theorem 2.5 (e)], [2; Theorem 24.3], and hence, as already shown, D has property (P) with respect to K. Conversely, suppose that K is a P-extension of D. Let M be a maximal ideal of D and let t be an element of K. Then t is a root of a polynomial f in $D[X]$ such that $A_{f}=D$, and hence $f \notin M[X]$. It then follows from [11; p. 19] that t or t^{-1} is in D_{M}. Consequently, D_{M} is a valuation ring and D is a Prüfer domain, as asserted.

To obtain a characterization of domains D for which K is a P-extension of D, we introduce some useful notation. Let R be a ring, let $\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}$ be the set of maximal ideals of R, and let N be the set of elements f in $R[X]$ such that $A_{f}=R$; W. Krull [7] observed that N is a regular multiplicative system in $R[X]$ and he considered properties of the ring $R[X]_{N}$, which M. Nagata in [8; p. 17] denotes by $R(X)$. It is clear that $N=R[X]-\cup_{\lambda} M_{\lambda}[X]$, and in Chapter 33 of [2] it is shown that if an ideal E of $R[X]$ is contained in $\cup_{\lambda} M_{\lambda}[X]$, then E is contained in one of the ideals $M_{\lambda}[X]$. Consequently, $\left\{M_{\lambda}[X]\right\}$ is the set of prime ideals of $R[X]$ maximal with respect to not meeting N and $\left\{M_{\lambda} R(X)\right\}$ is the set of maximal ideals of $R(X)$. With these facts recorded, we state and prove our next theorem.

Theorem 3. Let T be a unitary extension ring of the ring R and let S be the integral closure of R in T.
(a) The ring $S(X)$ is integral over $R(X)$.
(b) If $T[X]$ is integrally closed, then $S(X)$ is the integral closure of $R(X)$ in $T(X)$.

Proof. (a): Let $\left\{M_{\alpha}\right\}_{\alpha \in A}$ and $\left\{M_{\beta}^{\prime}\right\}_{\beta \in B}$ be the sets of maximal ideals of R and S, respectively. If $N=R[X]-\cup_{\alpha} M_{\alpha}[X]$ and $N^{\prime}=$ $S[X]-\cup_{\beta} M_{\beta}^{\prime}[X]$, then $R(X)=R[X]_{N}$ and $S(X)=S[X]_{N^{\prime}} \quad$ The ring $S[X]_{N}$ is integral over $R[X]_{N}$ and we prove (a) by showing that N^{\prime} is the saturation of the multiplicative system N in $S[X]$. Let N^{*} be the saturation of N in $S[X]$; since $N \subseteq N^{\prime}$ and since N^{\prime} is saturated, it follows that $N^{*} \subseteq N^{\prime}$. The multiplicative system N^{*} is characterized as the complement in $S[X]$ of the set \mathscr{P} of prime ideals of $S[X]$ maximal with respect to not meeting N; hence, to prove that N^{\prime} is contained in N^{*}, we prove that $\mathscr{P} \subseteq\left\{M_{\beta}^{\prime}[X]\right\}_{\beta \in B}$. Thus, let $P^{\prime} \in \mathscr{P}$ and let $P^{\prime} \cap R[X]=P$. Since $P^{\prime} \cap N=\varnothing, P$ also fails to meet N-that is, $P \subseteq \cup_{\alpha \in A} M_{\alpha}[X]$; as we remarked earlier, this inclusion implies that $P \subseteq M_{\alpha}[X]$ for some $\alpha \in A$. Since $S[X]$ is integral over $R[X]$, there is a prime ideal Q^{\prime} of $S[X]$ such that Q^{\prime} contains P^{\prime} and $Q^{\prime} \cap R[X]=$ $M_{\alpha}[X]$. Hence $\left(Q^{\prime} \cap S\right) \cap R=\left(Q^{\prime} \cap R[X]\right) \cap R=M_{\alpha}[X] \cap R=M_{\alpha}$, a maximal ideal of R; from the integrality of S over R we infer that $Q^{\prime} \cap S$ is a maximal ideal of S, that is, $Q^{\prime} \cap S=M_{\beta}^{\prime}$ for some $\beta \in B$. It follows that $M_{\beta}^{\prime}[X] \subseteq Q^{\prime}$ and in fact, $Q^{\prime}=M_{\beta}^{\prime}[X]$ since $S[X]$ is integral over $R[X]$ and since $Q^{\prime} \cap R[X]=M_{\beta}^{\prime}[X] \cap R[X]=M_{\alpha}[X]$. We therefore obtain the inclusion $P^{\prime} \subseteq M_{\beta}^{\prime}[X]$. Since $M_{\beta}^{\prime}[X]$ misses N and since P^{\prime} is maximal with respect to missing N, it follows that $P^{\prime}=M_{\beta}^{\prime}[X]$ and $\mathscr{P} \subseteq\left\{M_{\beta}^{\prime}[X]\right\}_{\beta \in B}$. This completes the proof of (a).

To prove (b) we recall that $S[X]$ is the integral closure of $R[X]$ in $T[X]\left[2\right.$, Theorem 10.7], and hence $S[X]_{N}=S(X)$ is the integral closure of $R[X]_{N}=R(X)$ in $T[X]_{N}$. If $T[X]$ is integrally closed, then $T[X]_{N}$
is also integrally closed, and since $T(X)$ is an overring of $T[X]_{N}$, it follows that the integral closure of $R(X)$ in $T(X)$ coincides with the integral closure of $R(X)$ in $T[X]_{N}$. Thus $S(X)$ is the integral closure of $R(X)$ in $T(X)$, as asserted.

Remark 1. The following result follows from the proof of part (a) of Theorem 3: Assume that S is a unitary ring extension of the ring R and that S is integral over R. Let N be a multiplicative system in R, let $\left\{P_{\alpha}\right\}$ be the set of prime ideals of R maximal with respect to not meeting N, and let $\left\{P_{\beta}^{\prime}\right\}$ be the set of prime ideals of S such that $P_{\beta}^{\prime} \cap R \in$ $\left\{P_{\alpha}\right\}$. Then $S-\left(\cup P_{\beta}^{\prime}\right)$ is the saturation of N in S (cf. [2; Proposition 11.10]). More generally, this conclusion is valid if the extension $R \subseteq S$ satisfies going $u p$ in the terminology of [6; p. 28].

Remark 2. We do not know if the conclusion of (b) is valid without the hypothesis that $T[X]$ is integrally closed. As the proof of part (b) of Theorem 3 shows, sufficient conditions for $S(X)$ to be the integral closure of $R(X)$ in $T(X)$ are that $T[X]_{N}$ is integrally closed in $T(X)$, a quotient ring of $T[X]_{N}$. It is easy to give examples to show that the inclusion $T[X]_{N} \subseteq T(X)$ may be proper; if R is a v-domain with quotient field T, then a necessary condition that $T(X)$ should be $T[X]_{N}$ is that R be a Prüfer v-multiplication ring (see $\S 33$ of [2] for terminology). The condition that $T[X]$ is integrally closed is not, insofar as we know, definitive in terms of T; it implies that T is integrally closed, but the converse fails in general.

Theorem 4. Assume that T is a unitary extension ring of the ring R and that S is an intermediate ring integral over R. If T is a P-extension of S, then T is a P-extension of R.

Proof. Let $t \in T$, let $Q^{\prime}=\{f \in S[X] \mid f(t)=0\}$, and let $Q=$ $Q^{\prime} \cap R[X]$. If N and N^{\prime} are defined as in the proof of Theorem 3, so that $R(X)=R[X]_{N}$ and $S(X)=S[X]_{N^{\prime}}$, then the hypothesis that T is a P-extension of S implies that $Q^{\prime} \cap N^{\prime} \neq \varnothing$. If we show that $Q \cap$ $N \neq \varnothing$, then the proof of Theorem 4 will be complete. We first observe that $Q R(X)=Q^{\prime}(S[X])_{N} \cap R(X)$. That the right side contains the left side is clear, and if $f / n=d / m \in Q^{\prime}(S[X])_{N} \cap R(X)$, where $f \in Q^{\prime}$, $d \in R[X]$, and $n, m \in N$, then $f m=d n \in Q^{\prime} \cap R[X]=Q$, so that $f / n=f m / n m \in Q R(X)$ and $Q^{\prime}(S[X])_{N} \cap R(X)=Q R(X)$. It follows from the proof of Theorem 3 that $(S[X])_{N}=(S[X])_{N^{\prime}}$; hence

$$
Q R(X)=Q^{\prime} S(X) \cap R(X)=S(X) \cap R(X)=R(X),
$$

which means that $Q \cap N \neq \varnothing$.

The characterization of Prüfer domains stated at the beginning of this paper is a direct consequence of the preceding results.

Theorem 5. Let D be an integral domain with quotient field K, and let J be the integral closure of D. Then J is a Prüfer domain if and only if K is a P-extension of D.

Proof.. Suppose that K is a P-extension of D. Then K is, a fortiori, a P-extension of J. We invoke Theorem 2 to conclude that J is a Prüfer domain.

If, conversely, J is a Prüfer domain, then by Theorem $2, K$ is a P-extension of J and hence, by Theorem 4, a P-extension of D.

There is an extension of Theorem 5 to the case where K is not the quotient field of D.

Theorem 6. Let D be a domain with integral closure J, and let L be an algebraic extension field of the quotient field K of D. Then J is a Prüfer domain if and only if L is a P-extension of D.

Proof. If L is a P-extension of D, then so is K, and hence J is a Prüfer domain by Theorem 5. Conversely, if J is a Prüfer domain, and if $t \in L$, then t is a root of a nonzero polynomial $f \in J[X]$. The ideal A_{f} of J is finitely generated, and hence is invertible. If $A_{f}^{-1}=$ $\left(g_{0}, g_{1}, \cdots, g_{n}\right)$, and if $g=\sum_{i=0}^{n} g_{i} X^{i}$ then $A_{f g}=A_{f} A_{g}=J$ so that $f g \in J[X]$ and $(f g)(t)=f(t) g(t)=0$. It follows that L is a P-extension of J, and hence by Theorem $4, L$ is a P-extension of D.

References

1. N. Bourbaki, Elements de Mathématique, Algèbre Commutative, Chapitre VII, Diviseurs, Hermann, Paris, 1965.
2. Robert Gilmer, -Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
3. - Some applications of the Hilfssatz von Dedekind-Mertens, Math. Scand., 20 (1967), 240-244.
4. Robert Gilmer and James A. Huckaba, Δ-rings, J. Algebra, 28 (1974), 414-432.
5. Robert Gilmer and Jack Ohm, Integral domains with quotient overrings, Math. Ann., 153 (1964), 97-103.
6. Irving Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
7. W. Krull, Beiträge zur Arithmetik Kommutativer Integritätsbereiche. VII. Multiplikativ abgeschlossene Systeme von endlichen Idealen, Math. Z., 48 (1943), 533-552.
8. M. Nagata, Local Rings, Interscience, New York, 1962.
9. Jack Ohn, Integral closure and $(x, y)^{n}=\left(x^{n}, y^{n}\right)$, Monatsh. Math., 71 (1967), 32-39.
10. Hwa Tsang, Gauss' Lemma, University of Chicago Dissertation, 1965.
11. O. Zariski and P. Samuel, Commutative Algebra, Volume II, Van Nostrand, Princeton, N.J., 1960.
[^0]
[^0]: Received September 25, 1974. The first author received partial support from National Science Foundation Grant GP-40526 while work on this paper was in progress.

