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A CHARACTERIZATION OF PRUFER
DOMAINS IN TERMS OF

POLYNOMIALS

ROBERT GILMER AND JOSEPH F. HOFFMANN

Assume that D is an integral domain with identity and with
quotient field K. Each element of K is the root of a polynomial
/ in D[X] such that the coefficients of / generate D if and only if
the integral closure of D is a Prύfer domain.

All rings considered in this paper are assumed to be commutative
and to contain an identity element. By an overring of a ring R, we
mean a subring of the total quotient ring of R containing R. The
symbol X in the notation R[X] denotes an indeterminate over R.

In the study of integral domains, Prϋfer domains arise in many
different contexts. See, for example, [1; Exer. 12, p. 93] or [2; Chap.
IV] for some of the multitudinous characterizations of Prϋfer
domains. Among such characterizations there are at least two in terms
of polynomials: (1) The domain D is a Prϋfer domain if and only if
AfΛg =Afg for all /, gED[X], where Ah denotes the ideal of D
generated by the coefficients of the polynomial h E D[X] (Ah is called
the content of h) [3], [10], [2; p. 347]. (2) D is a Prϋfer domain if and
only if D is integrally closed and for each prime ideal P of D, the only
prime ideals of D[X] contained in P[X] are those of the form P\[X],
where P{ is a prime ideal of D contained in P [2; p. 241], In Theorem 2
we provide another characterization of Prϋfer domains in terms of
polynomials: D is a Prϋfer domain if and only if D is integrally closed
and each element of the quotient field K of D is a root of a polynomial
/ E D[X] such that Af = D. Then in Theorem 5 we obtain an extension
of this result to the case where D need not be integrally closed.

Our interest in domains D such that each element of K is a root of
a polynomial f ED[X] with Af = D stemmed from the fact that this
property is common to both Δ-domains—that is, integral domains
whose set of overrings is closed under addition [4]—and to integral
domains having property (n) for some n > 1—that is, integral domains
D with the property that (JC, y)n = (xn, yn) for all JC, y E D [9]. Thus, if
D is a Δ-domain with quotient field K and if t E K, then since
D[t2] + D[t3] is an overring of D, ί5 = ί 2 ί 3 E D [ ί 2 ] + D[ί 3], whence it is
evident that t is the root of a polynomial in D[X] in which the
coefficient of X5 is a unit. If D has property (n) for some n > 1 and if
t = a/b EK, where a,b ED and b^ 0, then from the equality (α,b)n =
(a\bn) it follows that an~ιb = dxa

n +d2b
n for some du d2ED; divid-
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ing both sides of this equation by bn yields dxX
n - Xn~ι + d2 as a

polynomial satisfied by t.
We show that the condition described in the preceding paragraph is

equivalent to the condition that each element of the quotient field of D
satisfies a polynomial with a unit coefficient.

THEOREM Let / = ΣΓ=0/X' be an element of R[X]. Then A, =
(fo,/i, * * %/n) is the set of coefficients of elements of the principal ideal of
R [X] generated by f

Proof. Denote by E the set of coefficients of elements of (f); E is
an ideal of R and the inclusion Af D E is clear. Conversely, if t = ΣJr^
is an element of Af, then (ΣΐaBθriX

n~i)f is an element of (/) and the
coefficient of Xn in this polynomial is t. Hence t GE and the equality
E = Af holds, as asserted.

A modification of the proof of Theorem 1 shows that the result
generalizes to polynomials in an arbitrary set of indeterminates, and this
observation, in turn, yields a further generalization of Theorem 1.

COROLLARY 1. Let {fa} be a subset of the polynomial ring R [{Xλ}],
and for each α, let Afa be the ideal of R generated by the coefficients of
/α. Then ΣaAfa is the set of coefficients of the ideal ofR [{Xλ}] generated
by {/*}.

The equivalence of the two conditions mentioned in the paragraph
immediately preceding Theorem 1 also follows at once from this
result. If 5 is a unitary extension ring of R> we say that R has property
(P) with respect to S or that 5 is a P-extension ofR if each element of S
satisfies a polynomial in R [X] one of whose coefficients is a unit of /?,
or, equivalently, whose coefficients generate the unit ideal of R. The
next result is not unexpected.

THEOREM 2. Let D be an integrally closed domain with quotient
field K. Then D is a Prύfer domain if and only if K is a P-extension of
D.

Proof If D is a Prϋfer domain, then D has property (n) for each
positive integer n [5; Theorem 2.5 (e)], [2; Theorem 24.3], and hence, as
already shown, D has property (P) with respect to K. Conversely,
suppose that K is a P- extension of D. Let M be a maximal ideal of D
and let t be an element of K. Then t is a root of a polynomial / in
D[X] such that Af = D, and hence / £ M[X]. It then follows from [11;
p. 19] that t or t~λ is in DM. Consequently, DM is a valuation ring and D
is a Prϋfer domain, as asserted.
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To obtain a characterization of domains D for which K is a
P- extension of D, we introduce some useful notation. Let I? be a ring,
let {Mλ}λeΛ be the set of maximal ideals of /?, and let N be the set of
elements / in R [X] such that Af = R W. Krull [7] observed that N is a
regular multiplicative system in R [X] and he considered properties of
the ring R[X]N, which M. Nagata in [8; p. 17] denotes by R(X). It is
clear that N = R[X] - U λMλ[X], and in Chapter 33 of [2] it is shown
that if an ideal E of R [X] is contained in U kMλ [X], then E is contained
in one of the ideals Mλ [X], Consequently, {Mλ [X]} is the set of prime
ideals of R [X] maximal with respect to not meeting N and {MλR (X)} is
the set of maximal ideals of R (X). With these facts recorded, we state
and prove our next theorem.

THEOREM 3. Let The a unitary extension ring of the ring R and let
S be the integral closure of R in T.

(a) The ring S(X) is integral over R(X).
(b) // T[X] is integrally closed, then S(X) is the integral closure of

R(X) in Γ(X).

Proof, (a): Let {Mα}αGΛ and {Mβ}βEB be the sets of maximal ideals
of R and 5, respectively. If N = R[X]- UαMα[X] and Nf =
S[X] - UβM'β[X], then R(X) = R[X]N and S(X) = S[X]N> The ring
S[X]N is integral over Λ [ X ] N and we prove (a) by showing that N' is
the saturation of the multiplicative system N in S[X]. Let N* be the
saturation of N in S[X]; since NQN' and since N' is saturated, it
follows that N* C N'. The multiplicative system N* is characterized
as the complement in S[X] of the set 9 of prime ideals of S[X]
maximal with respect to not meeting N; hence, to prove that N' is
contained in ΛΓ*, we prove that 9 C {Mf

β[X]}βBB. Thus, let PΈ& and
let P' Π R [X] = P. Since P'ΠN = 0JP also fails to meet N—that is,
P QUaEA Ma[X]; as we remarked earlier, this inclusion implies that
P C Ma [X] for some a E A. Since 5 [X] is integral over R [X], there is
a prime ideal Qf of S[X] such that Q' contains P' and Q'ΠR[X] =
Ma[X} Hence (Q'ΠS)ΠR =(Q'ΠR[X])ΠR = Ma[X]ΠR =Ma9

a maximal ideal of R from the integrality of 5 over R we infer that
Q' ίΊ 5 is a maximal ideal of S, that is, Q' Π S = Mβ for some β EB. It
follows that M'β[X] C Q' and in fact, Q' = M'β[X] since S[X] is integral
over R[X] and since Q' ΠR[X] = M'β[X] ΠR[X] = Ma[X]. We
therefore obtain the inclusion P' CM'β[X]. Since Mβ[X] misses N
and since P' is maximal with respect to missing N9 it follows that
Pf = Mβ[X] and 0> C {Mf

β[X]}β(ΞB This completes the proof of (a).
To prove (b) we recall that S[X] is the integral closure of R[X] in

T[X] [2, Theorem 10.7], and hence S[X]N = S(X) is the integral closure
of R[X]N =R(X) in T[X]N. If T[X] is integrally closed, then T[X]N
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is also integrally closed, and since T(X) is an overring of T[X]N, it
follows that the integral closure of R(X) in T(X) coincides with the
integral closure of R(X) in T[X]N. Thus S(X) is the integral closure
of R(X) in Γ(X), as asserted.

REMARK 1. The following result follows from the proof of part (a)
of Theorem 3: Assume that 5 is a unitary ring extension of the ring R
and that S is integral over R. Let N be a multiplicative system in R, let
{Pa} be the set of prime ideals of JR maximal with respect to not meeting
N, and let {P'β} be the set of prime ideals of S such that P'β Π R G
{Pa}. Then 5 - (U P'β) is the saturation of ΛΓ in 5 (cf. [2; Proposition
11.10]). More generally, this conclusion is valid if the extension R CS
satisfies going up in the terminology of [6; p. 28].

REMARK 2. We do not know if the conclusion of (b) is valid
without the hypothesis that T[X] is integrally closed. As the proof of
part (b) of Theorem 3 shows, sufficient conditions for S(X) to be the
integral closure of JR (X) in T(X) are that T[X]N is integrally closed in
Γ(X), a quotient ring of T[X]N. It is easy to give examples to show
that the inclusion T[X]N C T(X) may be proper; if R is a v- domain
with quotient field Γ, then a necessary condition that T(X) should be
T[X]N is that I? be a Prufer v- multiplication ring (see §33 of [2] for
terminology). The condition that T[X] is integrally closed is not,
insofar as we know, definitive in terms of Γ; it implies that T is
integrally closed, but the converse fails in general.

THEOREM 4. Assume that T is a unitary extension ring of the ring
R and that S is an intermediate ring integral over R. If T is a
P-extension of 5, then T is a P-extension of R.

Proof. Let t E Γ, let Q' = {/E S[X]\f(t) = 0}, and let Q =
Q' Π R [X]. UN and N ' are defined as in the proof of Theorem 3, so
that R(X) = R[X]N and S(X) = S[X]N; then the hypothesis that T is a
P-extension of 5 implies that Q'ΠN'^0. If we show that QΠ
N y 0 , then the proof of Theorem 4 will be complete. We first observe
that QR(X) = Q'(S[X])N ΠR(X). That the right side contains the left
side is clear, and if fin =dlm E Q'(S[X])N ΠJR(X), where / E Q \
d ER[X], and n, mBN, then fm=dnG Q' ΠR[X] = Q, so that
fin = fmInm E QR(X) and Q'(S[X])N ΠR(X) = QR(X). It follows
from the proof of Theorem 3 that (S[X])N = (S[X])N>; hence

QR(X) = Q'S(X) ΠR(X) = S(X) ΠR(X) =

which means that Q



A CHARACTERIZATION OF PRUFER DOMAINS 85

The characterization of Prϋfer domains stated at the beginning of
this paper is a direct consequence of the preceding results.

THEOREM 5. Let D be an integral domain with quotient field K,
and let J be the integral closure of D. Then J is a Prufer domain if and
only if K is a P-extension of D.

Proof.* Suppose that K is a P-extension of D. Then K is, a
fortiori, a P- extension of /. We invoke Theorem 2 to conclude that / is
a Prϋfer domain.

If, conversely, / is a Prufer domain, then by Theorem 2, K is a
P-extension of / and hence, by Theorem 4, a P-extension of D.

There is an extension of Theorem 5 to the case where K is not the
quotient field of D.

THEOREM 6. Let D be a domain with integral closure J, and let L
be an algebraic extension field of the quotient field K of D. Then J is a
Prufer domain if and only if L is a P-extension of D.

Proof If L is a P- extension of D, then so is K, and hence / is a
Prϋfer domain by Theorem 5. Conversely, if / is a Prϋfer domain, and
if t E L, then t is a root of a nonzero polynomial / E J[X]. The ideal
Af of / is finitely generated, and hence is invertible. If A~f

ι =
(go,gi, •••,&), and if g =Σΐ=ogiX

i thenA/g = AfAg = J so that fg E J[X]
and (fg) (t) = f(t)g(t) = 0. It follows that L is a P-extension of /, and
hence by Theorem 4, L is a P-extension of D.

REFERENCES

1. N. Bourbaki, Elements de Mathematique, Algebre Commutative, Chapitre VII, Diviseurs,
Hermann, Paris, 1965.
2. Robert Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
3. , Some applications of the Hilfssatz von Dedekind-Mertens, Math. Scand., 20 (1967),
240-244.
4. Robert Gilmer and James A. Huckaba, Δ-rings, J. Algebra, 28 (1974), 414-432.
5. Robert Gilmer and Jack Ohm, Integral domains with quotient overlings, Math. Ann., 153 (1964),
97-103.
6. Irving Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
7. W. Krull, Beitrάge zur Aήthmetik Kommutativer Integritάtsbereiche. VII. Multiplikativ
abgeschlossene Systeme von endlichen Idealen, Math. Z., 48 (1943), 533-552.
8. M. Nagata, Local Rings, Interscience, New York, 1962.
9. Jack Ohn, Integral closure and (x,y)n =(xn,yn), Monatsh. Math., 71 (1967), 32-39.
10. Hwa Tsang, Gauss' Lemma, University of Chicago Dissertation, 1965.
11. O. Zariski and P. Samuel, Commutative Algebra, Volume II, Van Nostrand, Princeton, N.J.,
1960.

Received September 25, 1974. The first author received partial support from National
Science Foundation Grant GP-40526 while work on this paper was in progress.

FLORIDA STATE UNIVERSITY






