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ON THE INEQUALITY
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We show that the inequality

IIV

§ i),

for all P, QeA,.={PER":P=(p,p2 ' ,p.) where
S,pi=landp; >0fori=1,2,---,n}and some integer n =3,
implies that f(p)= Ap° where A is an arbitrary nonzero
constant and either ¢ = —1 or ¢ =0. The converse holds as
well, so that this result yields a characterization of the informa-
tion gain.

1. One of the most important notions in information theory is the
gain of information. It is defined by the formula

M L(P/Q)= Z p log:

where P € A, and Q € A, are complete probability distributions. The
quantity I,(P/ Q) measures the gain of information achieved by the
replacement of the a priori distribution QQ by the a posteriori distribution
P. 1t is known that I,(P/Q)=0 and I(P/Q)=0iff P=Q.

A. Rényi introduced in [9] the measure of order ¢ + 1 of the gain
of information by the formula

c+1

2 L.P/Q)= -logzzf’— (c #0).

It is easy to see that lim._, I.,, = I,. The quantity (2) is only approp-
riate if it is nonnegative. This is the case if ¢ = — 1, since

(i) —1=c =0 implies that p*'/q =1, and

(i) ¢ =0 implies that Zp¢*'/q§ = 1.
On the other hand, I.,,=0 when ¢ < — 1.

These facts make it desirable to characterize the functions f
satisfying the inequality

) -
) Z Pifa)= !
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for all P,QE€A, where n is a fixed integer, n=2 and
f:(0, )—R —{0}. Similarly, we wish to characterize those functions f
satisfying the inequality

4) > o

T.E

for all P,Q&€A, where n is a fixed integer, n=2 and
f: (0, 1)—>R —{0}.

Related questions concerning (1) were settled in [3] and these
results were generalized in [5], [6] and [7]. The inequality (3), which
was introduced by A. Rényi in [8], was also treated in [4]. The
inequality (4) is the subject of the present paper.

Although (3) and (4) are similar in form we need an entirely
different approach to solve (4). The main tool used to attack the
inequality (4) is the theory of internal functions [1], [2].

2. For n =2, the inequality (4) has the following form

f) i__L =
©) P TP =g =1

forall0<p <1landforall0<q <1. The inequality (5) can be written
in the form:

®)=f@) 5 (j_ ) fA=gq)=f1-p)
© P TP TR

forall0<p <1 and forall 0<g <1.

In the following, we shall assume that f >0. From the inequality
(6) we see that f(1—q)=f(1—p) implies f(p)= f(q).

If we change the roles of p and g in the inequality (6), then from the
new inequality thus obtained and the inequality (6) we get that f satisfies
the inequality

_q fd-p) _ < f(1— ) — (1 —
@) =g jo) U@ —f@1=f1-q)-f1-p)

forall0<p <1landforall0<q <1. Putting p =1into (5), we obtain
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for all 0<g <1. Inequality (8) implies that
&) min([f(q), f(1—q)1=f(3)
for all 0<g <1, and if for some g min[f(q), f(1—q)) = f(}), then

f(@)=f(1~-q).

Putting g =; into (5), we obtain
(10) pf(p)+(1=p)f(1—p)=f(3)

for all 0<p <1, i.e.

(11) max[f(p), f(1—-p)1=f(3)
and if max[f(p), f(1—p)]=f(3) for some p, then
fp)=f1-p).

That is, we have shown that
(12) min[f(p), f(1 - p)]=f(}) = max[f(p), f(1-p)]

for all 0 <p <1, with equality iff f(p) =f(1—p).
We have shown a slightly more general result.

LemMma 1. If f: (0, a)— (0, ) satisfies the inequality

) _myfla=-p)_
13) pf(q)+(a p)f(a—q)=a

for all 0<p <a and for all 0< q < a, then
4y minlf(p), f(a ~p)=f($) = max(f(p), f(a - p)

for all 0<p <a, with equality iff f(p)=f(a—p).
We shall need the following lemma.

Lemma 2. Iff: (0, 1)— (0, ) satisfies the inequality (4) for a fixed
integer n =3, then f satisfies the inequality (13) for all a € (0, 1).
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Proof. Let a be a fixed number such that 0 <a <1. Putting
p|=p9 q|=q’ p2=a _pa Q2:a —q’

1—a
p3=q3:--..:pn=q"=n_2

into (4), we obtain that f satisfies the inequality (13) for this fixed a.
3. Now we shall prove the following theorem:

THEOREM 1. If f: (0, 1)—> (0, ) satisfies the inequality (4) for a
fixed integer n =3 and if f is monotonic, then f is differentiable.

Proof. First, we shall prove that f is continuous. According to
Lemma 2 f satisfies (13) for all a € (0, 1). Using (13) and (13) with p
and g interchanged we obtain that f satisfies for all 0<a <1 the
inequality

(19 AL 1fp) - f(@) = f(a - )~ fla ~p)

=P _[a=9) sy 54y

for all 0<p <a and for all 0< q < a.
From the inequality (15), which is similar to (7), we see that the
continuity of f at p implies its continuity at a — p, because

. fla—q) =

lim K= 1£p) - f(@)) =0
since f is monotonic. Assume that f is not continuous at a point p,,
0<po<1. Choosing py<a <1, we see that f is not continuous at the
point a — p,. This is impossible because the set of points of the form
a —p, forms an interval and since f is monotonic it is continuous
everywhere but on a countable set.

Using the fact that f is continuous we can deduce from the

inequality (15) that the differentiability of f at p implies its differentia-
bility at a —p. Moreover, the relation

P fla=p) ey s,

holds. Assume that f is not differentiable at a point p,, 0 <p,<
1. Choosing p,<a <1, we see that f is not differentiable at the point
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a —p,. This is impossible because the set of points of the form a — p,
forms an interval, but, according to a theorem of Lebesgue, f is
differentiable almost everywhere and this proves our Theorem.

With the aid of Theorem 1 we can prove the following:

THEOREM 2. Let f: (0, 1)— (0, «) and let f be monotonic. Then f
satisfies the inequality (4) for a fixed integer n =3 if and only if f has the
form f(p)= Ap°‘, where A >0 and either c = —1 or ¢ Z0.

Proof. From (16) it follows that

1
17 P =—2_ f'(4
for all p such that 0<p <1. Indeed, if p <3, then the substitution
a =3i+p gives (17) for p <2 If p =4 thena—p <3} forp <a<1and
(16) gives (17) also for p =3 since it is true fora —p <}. Therefore

(18) f(p)f(p) =c

for 0<p <1.
The relation (18) shows that f has to have the form

(19 flp)=Ap°

where A > 0 and c is constant.

Conversely, we shall show that f(p) = Ap° where A >0, satisfies
(4) if either c=—1 or ¢ =0, and if —1<c <0, then the function
f(p)=Ap° does not satisfy (4).

Indeed, if either ¢ =0 or ¢ = —1, then f(p)= Ap° satisfies
(4). Moreover, let either —1>c¢ or 0<c¢. Then by Hélder’s inequal-
ity we have

@  Sprarz(Seryee] " [ S e =

In the case — 1< c <0, by Hélder’s inequality

(21) 2 pl+c c<1

with equality holding if and only if p, =¢q; for i =1,2,---,n, which
proves our Theorem.



70 PAL FISCHER

4. The internal functions were introduced by A. Csaszar 1], [2].
A real function f defined on a interval I =(a, b) is an internal
function on I if for all x,y €1

@) min(f(x), fy) = (52 = max(fo), 1),

with equality iff f(x) = f(y).

It is evident from (22) that every strictly monotonic function on I is
internal on I. The converse is not true, because any solution of the
equation

(23) fx+y)=fx)+f(y)

is internal on every interval I, and Hamel showed the existence of

nonmonotonic solutions of (23). )
In this note we shall use the following three propositions of A.

Csaszar.

ProrosiTioN 1. If f is an internal function on I =(a,b), then
fIR(a, B) (the restriction of f to the set R,(a, B)) is either strictly
increasing or strictly decreasing or constant, where

Ri(a, B) ={a +r(B — a): ris a rational number}N I
and a <a <B<b. (Lemma 1 of [1].)

ProrosiTiON 2. If f is internal on the interval (a,b) and if f is
constant, resp. strictly increasing, resp. strictly decreasing on a subinter-
val J of (a,b), then f has the same property on the whole interval
(a,b). (Lemma 2 of [1].)

ProposiTION 3. If f is a nonmonotonic internal function on I =
(a,b), then the sets {x: f(x)>f(a) and x € I} and {x: f(x) < f(a) and
x €I} aredenseinl for any a such thata < a <b. (Lemma 4 of[1].)

First we shall prove the following theorem:

THEOREM 3. If f: (0, 1)— (0, ) satisfies the inequality (4) for a
fixed n =3, then f is internal on (0, 3].

Proof. Assume that f: (0, 1) — (0, «) satisfies the inequality (4) for
a fixed n=3. Let 0<r,<r,=3} and let r,+r,=a. According to
Lemma 1 f satisfies the inequality (13) for this fixed a. By Lemma 2 we
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see that (13) implies (14). Putting r, = p, r, = a — p into (14) we obtain
that

(24) minlf(r), f(r)] = £(252) = max(f(r), £7))

where equality holds iff f(r;) = f(r,), which proves our Theorem.
Now, we shall prove the main result of this paper.

THEOREM 4. If f: (0, 1)—> (0, ) satisfies the inequality (4) for a
fixed integer n = 3, then f is monotonic on (0, 1).

Proof. First we shall show that it is enough to prove that f is
monotonic on (0, 3). Indeed, let a be an arbitrary number such that
i=a<landleta/2=p <aanda/2=q <a. Itfollows from Lemma
1 that f satisfies the inequality (13) for this fixed a. It can be proved
from (13) that f(a —q)=f(a —p) implies f(p)=f(q). So, if f is
monotonic on (0, a/2], it is monotonic on (0, a). Since f is monotonic
on (0, a) for all a such that }=a <1, we have that f is monotonic on
o, 1.

Let us assume that f is nonmonotonic on (0, ). According to
Theorem 3 f is a nonmonotonic internal function on (0, ). Letusfix a
in such a way that 0 <a <3. According to Proposition 2 f is non-
monotonic on (0, a). As we showed earlier, f satisfies the inequality

L(L) _ L___.L(a— )>
) Pg) @ P Fa—q =1

for all 0<p <a and for all 0<q <a.

We shall show that it is possible to find p, and p, such that
0<p,<al2, 0<pg<a/l2 and /R (P a —Pp.) is strictly increasing
and f/R.(Ps, @ — pg) is strictly decreasing.

Indeed, since p+i(a—2p)=al2, we deduce that
al2€ Nypeap Roa(p, a —p). Therefore, if the statement were not
true, then according to Proposition 1 we would have either f(p) = f(a/2)
for all 0 <p < a/2 in the case when there is no p € (0, a/2) such that
fIRw.a(p, a — p) is strictly decreasing or f(p) = f(a/2) forall (a/2)<p <
a in the case when there is no p € (0, a/2) such that f/R.(p, a —p) is
strictly increasing. In either case the set {x: f(x)>f(a/2) and x €
(0, a)} is not dense in (0,a) which is a contradiction according to
Proposition 3. In the following we fix a p, and a p; with these
properties.

If g €ERo.(p,a—p) for some p such that 0<p <a/2, then
q =p +r(a—2p) where r is a rational number. Consequently, a —
q =p +(1—=r)(a —2p), which implies that a — q € R.,(p, a — p), too.
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We distinguish two cases:

(i) lim,_.,pf(p)=0,

(i) limsup,_.,pf(p)>0.

In the case (i) let us fix g, in such a fashion that 0 <g,<a/2 and
40€ Roaf(Par @ — p.). Since a/2 € Ry.(pa, a —p.) We have f(a/2) <
f(a—qo). Let us assume, furthermore, that 0<p <a/2 and
p € Roa(Ps» a —pg). Similarly, we can deduce that f(a/2)>f(a —p),
which yields

; fla-p) _,_
9 i, fama <1

PER.a)pp.a—ps)

for some € >0. Therefore

@ pEB + - fE=B<q

if p € Ry.(ps, a — pg) and if p is small enough, which is a contradiction
to (25).
In the case (ii) we choose p in such a way that

p e R(O,a)(pa’ a— pa)-
Therefore
lim  pf(p)=0.

PER©.a)(Pasa —Ppa)

Combining the facts that f is internal on (0,%) and f/R.)(P. @ — P.) 1S
strictly increasing we deduce that f/Ro3(p.,a —p.) is strictly
increasing. Since R 3(p., a — p.) is dense in (0,%), there exists a p’
such that p’ € Ry(Pas @ — Pa) = Ro.af(Pas @ — P.), Which implies that

lim  f(p)=f(p)< +.
PER.a)Pasa—pa)

Since sup,coq {f(x)}= +o, there exists a g, € (0, a) such that
f(a—q¢)>2f(p’). Therefore

) z(ae
Pfad T 9P Fa—gq) < °

if p € R.a/(Poy @ — p.) and if p is small enough, which is a contradiction
to (25). Thus we have shown that if f is non-monotonic on (0, 1), then f
does not satisfy (4) for a fixed integer n = 3.

Combining our previous results we have shown the following.



ON THE INEQUALITY 7

THEOREM 5. Let f: (0, 1)—>(0,). Then f satisfies the inequality
(4) for a fixed positive integer n =3 if and only if f has the form
f(p) = Ap° where A is an arbitrary positive number and either ¢ = — 1 or
c=0.

5. In this chapter we remove the condition that f is positive.

It is evident that f: (0, 1)— (— =, 0) satisfies the inequality (4) for a
fixed integer n =2 iff — f satisfies (4) for this fixed integer.

Next we shall show that if f: (0, 1)—> R —{0} and if f changes its
sign, then f fails to satisfy (4) for any fixed n = 2.

Assume first that n =2. If there exists a p, such that 0<p,<1,
f(po) >0 and f(1—p,) <0, then

f)_, 4 f(1=p)
Pogi-py t 7P gy <O

i.e. f does not satisfy (4). Therefore, the only case to be considered is
when sign f(p) = signf(1—p) for every 0<p <1. Then

(o) .L_P_
gy TP Ry <O

provided that sign f(po) + signf(qy) =0, i.e. f fails to satisfy (4).

Assume now that n =3 and n is fixed. If p, and p, exist so that
0<p, <1, 0<p,<1, p,+p,<1 and signf(p,)+signf(p,) =0, then
choosing

1-— -
Q1=p2, q2 ph q3 P3 '.'=qn=pn=__n'&_]_—2_&,

we have

fe) [P, 4
Pxf(p)"'sz(p)"‘(l pi—p)<l,

i.e. f does not satisfy (4). Therefore, f can satisfy the inequality (4) if

forall p,and p,such that0<p,<1,0<p,<1, p,+ p.<1 we have that

sign f(p,) + sign f(p,) # 0, which implies that f does not change its sign.
Thus we obtain the general solution of (4) for a fixed n =3.

THEOREM 6. Let f: (0, 1) > R —{0}. Then f satisfies the inequal -
ity (4) for a fixed positive integer n = 3 if and only if f has the form
f(p) = Ap° where A is an arbitrary nonzero constant and either ¢ = — 1
orc=0.
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