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ON THE INEQUALITY

PAL FISCHER

We show that the inequality

for all P, Q G A n = { P G ^ n : P = (pI,p2, ,pn) where
ΣΓ=i p, = 1 and pt > 0 for / = 1,2, , n} and some integer n ^ 3,
implies that /(p) = Apc where A is an arbitrary nonzero
constant and either c ^ - 1 or c ^ O . The converse holds as
well, so that this result yields a characterization of the informa-
tion gain.

1. One of the most important notions in information theory is the
gain of information. It is defined by the formula

(1)

where P EAn and Q EAn are complete probability distributions. The
quantity I\{P^Q) measures the gain of information achieved by the
replacement of the a priori distribution Q by the a posteriori distribution
P. It is known that Ix(PfQ) ^ 0 and Ix(PfQ) = 0 iff P = Q.

A. Renyi introduced in [9] the measure of order c + 1 of the gain
of information by the formula

(2) /c+i(P/(?) = 7 log2

It is easy to see that limc_>oic+i = I\. The quantity (2) is only approp-
riate if it is nonnegative. This is the case if c ^ - 1, since

(i) - 1 ̂  c ^ 0 implies that ΣpVΊq' ^ 1, and
(ii) c ^ 0 implies that Σpϊ+Ίqϊ ^ 1.

On the other hand, /c+i = 0 when c < - 1.
These facts make it desirable to characterize the functions /

satisfying the inequality
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for all P, Q E An, where n is a fixed integer, n g 2 and
/: (0, 1) —> JR - {0}. Similarly, we wish to characterize those functions /
satisfying the inequality

for all P, Q E An, where n is a fixed integer, n § 2 and

Related questions concerning (1) were settled in [3] and these
results were generalized in [5], [6] and [7]. The inequality (3), which
was introduced by A. Renyi in [8], was also treated in [4]. The
inequality (4) is the subject of the present paper.

Although (3) and (4) are similar in form we need an entirely
different approach to solve (4). The main tool used to attack the
inequality (4) is the theory of internal functions [1], [2].

2. For n = 2, the inequality (4) has the following form

(5) yf(q) ' Vi y/m~q) = r

for all 0 < p < 1 and for all 0 < q < 1. The inequality (5) can be written
in the form:

( 6 ) p ( 1 p )
{) P f(q) = U P) m-q)
for all 0 < p < 1 and for all 0 < q < 1.

In the following, we shall assume that / > 0. From the inequality
(6) we see that /(I - q) ^ / ( l -p) implies f(p)^f(q).

If we change the roles of p and q in the inequality (6), then from the
new inequality thus obtained and the inequality (6) we get that / satisfies
the inequality

(7)

for all 0 < p < 1 and for all 0 < q < 1. Putting p = \ into (5), we obtain

(8) A ' 2
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for all 0<q < 1. Inequality (8) implies that

(9) min[f(ί),/(l-ί)]^/(i)

for all 0<q < 1, and if for some <? min[f(q),f(l - q)] = /(|), then

Putting q = | into (5), we obtain

(10)

for all 0<p < 1, i.e.

(Π)

and if max[/(p),/(l - p ) ] = /G) for some p, then

That is, we have shown that

(12)

for all 0 < p < 1, with equality iff /(p) = / ( l - p ) .
We have shown a slightly more general result.

LEMMA 1. ///: (0, α)—>(0, oo) satisfies the inequality

(13) p + fα n)
f(q) { P)f(a-q)

for all 0 < p < a and for all 0 < q < a, then

(14) min[/(p),/(α - p ) ] S / ( f ) Smax[f(p),/(α - p ) ]

/or all 0<p <a, with equality iff f(p) = f(a -p).

We shall need the following lemma.

LEMMA 2. ///: (0, 1) -* (0, oo) satisfies the inequality (4) /or a fixed
integer n ^ 3, f/ten / satisfies the inequality (13) /or α// α E (0, 1).
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Proof, L e t a b e a fixed n u m b e r s u c h t h a t 0 < α < l . P u t t i n g
P\ = P> q\ = q, Pi = a -p, q2 = a - q,

ί-a
p 3 = q 3 = =Pn=qn= y—2

into (4), we obtain that / satisfies the inequality (13) for this fixed a.

3 Now we shall prove the following theorem:

THEOREM 1. ///: (0, 1)—•((),°o) satisfies the inequality (4) for a
fixed integer n ^ 3 and if f is monotonic, then f is differentiable.

Proof First, we shall prove that / is continuous. According to
Lemma 2 / satisfies (13) for all a E (0, 1). Using (13) and (13) with p
and q interchanged we obtain that / satisfies for all 0 < a < 1 the
inequality

S / ( α - « ) - / ( " - P )

for all 0 < p < a and for all 0 < q < a.
From the inequality (15), which is similar to (7), we see that the

continuity of / at p implies its continuity at a — p, because

since / is monotonic. Assume that / is not continuous at a point p0,
0 < Po < l Choosing p 0 < a < 1, we see that / is not continuous at the
point a - p0. This is impossible because the set of points of the form
a - po forms an interval and since / is monotonic it is continuous
everywhere but on a countable set.

Using the fact that / is continuous we can deduce from the
inequality (15) that the differentiability of / at p implies its differentia-
bility at a — p. Moreover, the relation

holds. Assume that / is not differentiable at a point p0, 0 < p o <
1. Choosing p 0 < a < 1, we see that / is not differentiable at the point
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a - po This is impossible because the set of points of the form a -p0

forms an interval, but, according to a theorem of Lebesgue, / is
differentiable almost everywhere and this proves our Theorem.

With the aid of Theorem 1 we can prove the following:

THEOREM 2. Let f: (0, 1) -> (0, oo) and let f be monotonic. Then f
satisfies the inequality (4) for a fixed integer n g 3 if and only if f has the
form f(p) = Ap\ where A > 0 and either c S - 1 or c ^ 0 .

Proof From (16) it follows that

for all p such that 0 < p < 1. Indeed, if p < i then the substitution
& — 2 + P gives (17) for p <\. If p § | , then a — p <\for p <a < 1 and
(16) gives (17) also for p ^ \ since it is true for a -p <\. Therefore

(18)

for 0<p < 1 .
The relation (18) shows that / has to have the form

(19) f(p) = Apc

where A > 0 and c is constant.
Conversely, we shall show that f(p) = Apc where A >0, satisfies

(4) if either c ^ - 1 or c ^ 0, and if - 1< c < 0, then the function
f(p) = Apc does not satisfy (4).

Indeed, if either c = 0 or c = - 1 , then f(p) = Apc satisfies
(4). Moreover, let either - 1 > c or 0 < c. Then by Holder's inequal-
ity we have

(20) J pYcq7 ^ \ t (p!+ c)1 / ( 1 + c )l1 + C [ Σ ( « ? r 1 / c Γ = 1
i=i L/=i J L ί=i J

In the case - 1< c < 0, by Holder's inequality

(21) ΣPIV^I
i = ί

with equality holding if and only if p, = q{ for ί = 1,2, ,n, which
proves our Theorem.
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4. The internal functions were introduced by A. Csaszar [1], [2].
A real function / defined on a interval / = (a, b) is an internal

function on / if for all x j E /

(22)

with equality iff f(x) = /(y).
It is evident from (22) that every strictly monotonic function on / is

internal on /. The converse is not true, because any solution of the
equation

(23) /(*+y)=/(x) + /(y)

is internal on every interval I, and Hamel showed the existence of
nonmonotonic solutions of (23).

In this note we shall use the following three propositions of A.
Csaszar.

PROPOSITION 1. /// is an internal function on I = (a,b), then
fIRtia.β) (the restriction of / to the set #,(«, β)) is either strictly
increasing or strictly decreasing or constant, where

i?/(α, β) = {a + r(β -a): r is a rational number} Π /

and a <a <β <b. (Lemma 1 of [1].)

PROPOSITION 2. // / is internal on the interval {a, b) and if f is
constant, resp. strictly increasing, resp. strictly decreasing on a subinter-
val J of (a,b), then f has the same property on the whole interval
(a,b). (Lemma 2 of [1].)

PROPOSITION 3. If f is a nonmonotonic internal function on I =
(a, b), then the sets {x :/(*)> f(a) and x e /} and {x: f(x) < f(a) and
x El} are dense in I for any a such that a <a <b. (Lemma 4 of [1].)

First we shall prove the following theorem:

THEOREM 3. ///: (0, l)->(0,<») satisfies the inequality (4) for a
fixed n ^ 3 , t h e n f is internal on ( 0 , {].

Proof. Assume that /: (0, 1) —• (0,«) satisfies the inequality (4) for
a fixed n ^ 3 . Let 0 < r, < r2 ^ \ and let r, -I- r2 = a. According to
Lemma 1 / satisfies the inequality (13) for this fixed a. By Lemma 2 we
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see that (13) implies (14). Putting r, = p, r2 = a - p into (14) we obtain
that

(24) mint/to), /(r2)] g

where equality holds iff f(r{) = /(r2), which proves our Theorem.
Now, we shall prove the main result of this paper.

THEOREM 4. ///: (0, l)-»(0, °°) satisfies the inequality (4) for a
fixed integer n § 3, then f is monotonic on (0, 1).

Proof. First we shall show that it is enough to prove that / is
monotonic on (0, i). Indeed, let a be an arbitrary number such that
\g a < 1 and lcta/2^p<a and a/2^q <a. It follows from Lemma
1 that / satisfies the inequality (13) for this fixed a. It can be proved
from (13) that f(a -q)^f(a -p) implies f(p)^f(q). So, if / is
monotonic on (0, a 12], it is monotonic on (0, a). Since / is monotonic
on (0, a) for all a such that \^k a < 1, we have that / is monotonic on
(0, 1).

Let us assume that / is nonmonotonic on (0, {). According to
Theorem 3 / is a nonmonotonic internal function on (0, | ) . Let us fix a
in such a way that 0<a <\. According to Proposition 2 / is non-
monotonic on (0, a). As we showed earlier, / satisfies the inequality

for all 0 < p < a and for all 0 < q < a.
We shall show that it is possible to find pa and pβ such that

0<pa <a\2, 0<pβ <a/2 and flR(0,a)(pa,a -pa) is strictly increasing
and flR{o,a)(j>β9 a -pβ) is strictly decreasing.

Indeed, since p + |(α - 2p) = a/2, we deduce that
Λ/2EΠo<p<fl/2J?(o,fl)(p,α-p). Therefore, if the statement were not
true, then according to Proposition 1 we would have either f(p)^f(a/2)
for all 0 < p < a \2 in the case when there is no p G (0, a 12) such that
flRφ,a)(p, a - p) is strictly decreasing or f(p) ^ f(a 12) for all {a 12) < p <
a in the case when there is no p E (0, a 12) such that f/R(Ota)(p, a - p ) is
strictly increasing. In either case the set {x: f(x)>f(a/2) and x G
(0, a)} is not dense in (0, a) which is a contradiction according to
Proposition 3. In the following we fix a pa and a pβ with these
properties.

If q GRφ,a)(p, a -p) for some p such that 0<p<a/2, then
q =p +r(a -2p) where r is a rational number. Consequently, a -
q = p + (1 - r)(α - 2p), which implies that a - q G l?(0,fl)(p, a-p), too.
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We distinguish two cases:
(i)
(ii) p p / / )
In the case (i) let us fix q0 in such a fashion that 0<q0<a/2 and

q0ER(oΛPa, a-pa). Since α/2Ei?(o,α)(Pα, a -pa) we have f(a 12)<
f(a-q0). Let us assume, furthermore, that 0 < p < α / 2 and
p E R{0,a)(Pβ> <*-Pβ) Similarly, we can deduce that f(a/2)>f(a - p ) ,
which yields

(26) lim ί ^ 2 \f(a - q0)
peRφ,a)(Pβ,a-pβ)

for some e > 0. Therefore

if p e Ri0,a)(Pβ, a-Pβ) and if p is small enough, which is a contradiction
to (25).

In the case (ii) we choose p in such a way that

p E i?(0,fl)(pα, α -p β ) .
Therefore

lim

Combining the facts that / is internal on (0,1) and f/Ri0,a)(pa, a-pa) is
strictly increasing we deduce that flR(o,b(pa,cι-Pa) is strictly
increasing. Since R(0^(paJa -pa) is dense in (0,0> there exists a p'
such that p' E #(oi)(p«, a-pa)- 2?(0,α)(Pα, a-pa), which implies that

lim
p—•α— 0

Since supxE(0,a){/(jc)}= +<», there exists a q 0E(0, α) such that
/(α - q0) > 2f(p'). Therefore

ii p E i?(o,fl)(pα, a —pa) and if p is small enough, which is a contradiction
to (25). Thus we have shown that if / is non-monotonic on (0, \), then /
does not satisfy (4) for a fixed integer n ̂  3.

Combining our previous results we have shown the following.
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THEOREM 5. Let f: (0, l)-»(0,oo). Then f satisfies the inequality
(4) for a fixed positive integer n ^ 3 if and only if f has the form
f(p) = Apc where A is an arbitrary positive number and either c ^ -lor

5. In this chapter we remove the condition that / is positive.
It is evident that /: (0, l)-> ( - », 0) satisfies the inequality (4) for a

fixed integer n ^ 2 iff - / satisfies (4) for this fixed integer.
Next we shall show that if /: (0, l)-*R -{0} and if / changes its

sign, then / fails to satisfy (4) for any fixed n g 2.
Assume first that n = 2. If there exists a p0 such that 0 < p 0 < 1,

/(p0) > 0 and /(I - p0) < 0, then

i.e. / does not satisfy (4). Therefore, the only case to be considered is
when sign/(p) = sign/(I - p ) for every 0 < p < 1. Then

provided that sign/(po) + sign/(qo) = 0, i.e. / fails to satisfy (4).
Assume now that n ^ 3 and n is fixed. If px and p2 exist so that

0 < p ! < l , 0 < p 2 < l , Pi + p 2 < l and sign/(p,)4-sign/(p2) = 0, then
choosing

we have

Pi

i.e. / does not satisfy (4). Therefore, / can satisfy the inequality (4) if
for ail Pi and p2 such that 0 < p 1 < l , 0 < p 2 < l , p l + p 2 < l w e have that
sign/(pθ + sign f(p2) ^ 0, which implies that / does not change its sign.

Thus we obtain the general solution of (4) for a fixed n ^ 3.

THEOREM 6. Let f: (0, 1)-*R - {0}. Then f satisfies the inequal-
ity (4) for a fixed positive integer n^3 if and only if f has the form
f(p) = Apc where A is an arbitrary nonzero constant and either c ^ - 1
orc^O.
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