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SETS OF p- SPECTRAL SYNTHESIS

WALTER R. BLOOM

Let G b e a Hausdorff locally compact Abelian group, Γ its
character group. Certain closed subsets of Γ are introduced,
these being closely related to sets of spectral synthesis for
L\G)\ Some properties and examples of these sets are discus-
sed, and then a Malliavin-type result is obtained.

In general we follow the notation used in [1]. We shall let A, θ
denote Haar measures on G, Γ respectively, chosen so that PlanchereΓs
theorem holds.

1. The definition and some properties of Sp- and
Cp-sets.

DEFINITION 1.1. Let Ξ be a closed subset of Γ. We shall call S
an 5p-set (p e[l,oo)) if, given e > 0 and fELιΠLp(G) such that /
vanishes on Ξ, there exists g GLιΠLp(G) such that g vanishes on a
neighbourhood of Ξ and ||/ - g \\p < e. If such a g can be found of the
form h */, where h E L\G) and h vanishes on a neighbourhood of Ξ,
then Ξ will be called a Cp-set. We also define Sx- and CΌo-sets as
above, with /, g in V Π C0(G) (rather than V Π L°°(G)).

Since, by [1], (33.12), V(G) admits a bounded positive approximate
identity {w/}iGj such that for each i G /, M, E V Π CQ(G) and suρp(M,) is
compact, it follows (see [1], (32.33) (b) and (32.48) (a)) that we can (and
shall) assume in Definition 1.1 that /, g, h E V Π C0(G)y where supp(/) is
compact and both supp(g) and supp(/ί) are compact and disjoint from Ξ
(pe[l,«>]).

Clearly every Q-set is an 5p-set. For the case p = 1 we just have
the familiar 5-set and C-set; see [3], 7.2.5 (a) and 7.5.1 respectively.

For / E L°{G) the spectrum (written Σ(/)) will be defined as in [1],
(40.21). For / E LP(G) (p E [1,°°)), we define its spectrum by

= U{Σ(φ*/):ψECoo(G)}

It is easily proved that for / E L\G), Σ(/) = supp(/).
Given ΞcΓ, we write

= {/Eί/(G):Σ(/)CΞ}.
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We now have the following characterisation of Sp- and Cp-sets:

THEOREM 1.2. Let p E [I,0 0) and suppose Ξ is a closed subset of
Γ. Then

(a) Ξ is an Sp-set if and only if for all I E L|'(G) and for all
/ E L ' Π Co(G) SMC/I that supp(/) is compact and f vanishes on B, we
have / * / = 0;

(b) Ξ w a Cp-seί // and on/y // for all f E V Π C0(G) swcft tfiaί
supp(/) (5 compact and f vanishes on Ξ, and for all I E LP\G) such that
/ * / E L l ' ( G ) , w ftai;e / * / = 0.

This'result is known for the case p = 1 (see [2], Chapter 7, 1.2 and
4.9). The proof is standard, and we shall not include it.

It is easy to adapt the proof of [3], Theorem 7.5.2 to give:

THEOREM 1.3. Let p e [ l , » ] . Then
(a) every one-point subset of Γ is a Cp-set in Γ;
(b) finite unions of Cp~sets in Γ are Cp~sets in Γ;
(c) // the boundary of a closed set Ξ is a Cp~set, so is Ξ;
(d) // Ξ is a closed subset of a closed subgroup Λ of Γ, if dA(Ξ) is

the boundary of Ξ relative to Λ, and if dA(3) is a Cp-set in Γ then Ξ is
also a Cp-set in Γ;

(e) each closed subgroup of Γ is a Cp-set in Γ.

For p E [1, 2) it is not known whether the notions of Cp-set and
Sp-set are identical (it appears in Theorem 2.1 that every closed set is a
Cp-set for p ^ 2 ) . Furthermore we cannot say whether the union of
two Sp-sets is itself an 5p-set. We can however obtain two partial
results in this direction. Both these results (Theorem 1.4 (a), (b)) are
known for the case p = 1 (see [2], Chapter 2, 7.5).

THEOREM 1.4. (a) Suppose Ξ = Ξ i U Ξ 2 , where Ξi and Ξ2 are
disjoint closed subsets of Γ. Then, for p E [1, oo), Ξ is an Sp-set if and
only if both Bi and Ξ2 are Sp~sets.

(b) Let pE[l,oo) and suppose Ξi is an Sp-set and S 2 is a
Cp-set. Then Ξ = Ξ, U Ξ2 is an Sp-set.

The final result of this section gives us an inclusion result between
the set of Cp-sets (respectively 5p-sets) and the set of Q-sets (respec-
tively 5^-sets) for 1 ̂ p < q ^oo.

THEOREM 1.5. Let l^p <q ^°°. Then every Cp-set (respec-

tively 5p-set) is a Cq-set (respectively 5q-set).
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Proof, Assume Ξ is a Q-set. Suppose we are given e > 0 and
/EL'Π C0(G) with supp(/) compact and / vanishing on Ξ. We can
find heVΠ C0(G) such that \\f-h *f\\q< e/2. Since Ξ is a Q-set
there exists g E V(G) such that g has compact support disjoint from Ξ
and l|Λ||r||/-g*/||p <*/2, where p" ' + r~l- q~ι = 1 (with the usual
convention for the cases p = 1 and q = <*>). Now (see [1], (20.18))

\\f-h*g*f\\q^\\f-h*f\\q+\\h\\r\\f-g*f\\p

It remains only to note that h *g E V Π C0(G) and (ft * g)A has compact
support disjoint from Ξ.

The proof that every Sp-set is an S^-set is similar.

2. Examples of Sp- and Cp-sets.

THEOREM 2.1. Forp E [2, oo] every closed subset of Γ is a Cp-set.

Proof. In view of Theorem 1.5 we need only prove the theorem
for p =2.

Let Ξ be a closed subset of Γ and suppose we are given e > 0 and
fEVΓ)C0(G) with supp(/) compact, / vanishing on Ξ and ||/||i =
1. Now ίl = {γ EΓ:/(γ)τ^0} is a relatively compact open set, and
hence there exists a compact set Y CΩ such that 0(Ω\Y) < e2. Choose
an open set V such that YCVCV'CΩ, and (see [3], 2.6.1) keVΠ
C0(G) such that ξY^k ^ξv. Then, using PlanchereΓs theorem,

Ω\Y

and clearly, k has compact support disjoint from Ξ.

DEFINITION 2.2. Let Ω be a relatively compact open subset of
Γ. We shall call Ω a β -symmetry set (β > 0) if there exist nets {Yi}ie/

and {V/}ie/ such that each Y, is compact, {V/}ιeJ is a base of symmetric
open neighbourhoods of zero in Γ, partially ordered by

Vi < V, if and only if V, D V;,

(Yt -f 2Vf)~ CΩ for each i E 7, and

0(Vt)
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THEOREM 2.3. Suppose we are given β > 0 and a closed subset Ξ
of Γ with the property that for any relatively compact set YcΞ c there
exists a β-symmetry set Ω such that YCί)cΞ c . Then Ξ is a Cp-set for
α//p ^ (2+ j8Γ1(2

Proof Let p = (2 + βγ\2 + 2β). Suppose we are given e > 0
and / G L ' Π C0(G), where supρ(/) is compact, / vanishes on Ξ and
11/11, g 1. Now Y = {γ E Γ: /(γ) ^ 0} is a relatively compact open sub-
set of Ξc and hence, by assumption, there exists a relatively compact
open set Ω such that Y c Ω c Ξ c , and nets {Y/}ie/ and {Vi}ie/ satisfying
the conditions of Definition 2.2. Choose i E / such that Y, is nonvoid
and

L 0(V) J < 2 * ( Ω ) 6

where a = (1 + β)~ι. Define k, = 0(V,)-'gΛ, where gh Λ, in L2(G) are
such that & = ξVl (cf. [3], 2.6.1) k, G V Π C0(G), ^ g £ ^ fVl+Wl and

It follows from Holder's inequality that

l-α)j2

(recall that a - (1 + /8)'1 and p = (2 + j3)I(2 + 2/8) = 2(1 + α"1)"1). Noting
that fe has compact support disjoint from Ξ we see that Ξ is a Cp-set,
and the conclusion follows from Theorem 1.5.

We have two corollaries when G is a Euclidean space.

COROLLARY 2.4. Let m S 1 and suppose Ξ C Rm is an open set
with the property that for any relatively compact set Y CRm there exists
a number κm ( = κm (Y)) such that
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for all n E {1,2, •}, where d(a) denotes the boundary of a and

Vn={xERm:\\x\\<n-1}.

Then Ξ, Ξc and d (Ξ) are Cp-sets for all p > (2 + m )~\2 + 2m).

Proof. By Theorem 1.3 (c) we need consider only <9(Ξ).
Let Y be any relatively compact open subset of d (Ξ)c. We shall

show that for any e > 0 there exists an (m + e)- symmetry set Ω such
that Y C Ω C d (Ξ)c. Since Y is relatively compact in R m there exists an
integer no>O such that

For each n E {1,2, •} define

Yπ = (3(Ξ) + VnY ΓΊ

Clearly Yn is compact and

Putting Ω = Δπo (Ί d(a)c we have

Ω\YB = (Ω n (a (Ξ) + vn)) u (Ω n (ΔJΔ^-O)

= (Δ^ n d(Bγ n (a(B) + vn)) u (Δ^ n d(Z)c n

CίΔ^ Π (3(S) + Vπ)) U (Δ^Δ-^n-)

c(((Δno + v.) n a(Ξ)) + vn) u (ΔjΔ^-o.

Hence, since Δ^ + V, is relatively compact,

0(Ω\Yn) ^ κn{^ + V,)n-f

Using the fact that

for some constant K^, we have

lim — - — = 0,
θ(\3n)

and so Ω is an (m -fβ)-symmetry set for all e >0 .
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Thus θ(Ξ) satisfies the conditions of Theorem 2.3 with β = m + €,
and hence is a Cp-set for aH p >(2 + m)~!(2 + 2m).

COROLLARY 2.5. Lei m ^ 1 and

Ξ is a Q-sίtf /or all p >(2 + m )"1(2 + 2m).

Proo/. Let V be any relatively compact set in Rm. Then

where /ĉ  is a constant. Now apply Corollary 2.4.

REMARK 2.6. For m ^ 3, Corollary 2.5 gives an example of a
Cp-set ((2 + m )~1(2 + 2m) < p < 2) which is not an 5-set; cf. [3], 7.3.2.

3. The failure of certain closed sets to be Sp -sets. In
this section we use a proof along the lines of that of Malliavin's theorem
([3], 7.6.1) to show that every nondiscrete Γ contains a closed set which
is not an Sp-set for any p E [ l , 2 ) . As in the proof of [3], Theorem
7.6.1, we first consider the cases:

(a) Γ is an infinite compact group;
(b) Γ = R.

THEOREM 3.1. Let G be an infinite discrete group. Then there
exists a closed set Ξ CΓ which is not an Sp-set for any p E [1, 2).

Proof. Using the notation of [3], Theorem 7.8.6 we consider the
function φ, on G defined by

It is easily proved from [3], 7.6.4 and Theorem 7.8.6 that /0 G L\G) and
φ, (as above) can be chosen so that f0 and ζ satisfy the hypotheses of
[3], 7.6.3 (Theorem) (with f = f0 and ξ = ζ) and φx<ΞLq(G) for all
q > 2. Having thus chosen /0 and φλ we shall prove that the closed set
Ξ = {γ EΓ: /o(γ) = ζ} is not an Sp-set for any p E [1, 2).
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Let p G[l, 2) and put

/, = the closed ideal of V{G) generated by fo~ ζξw,

I2 = the closed ideal of L\G) generated by (f0-££{0})*2,

and J = {f G V{G): f vanishes on a neighbourhood of Ξ}~.

Clearly
Ξ = Z(I) = Z{h) = Z(I2) = Z(J)

(where Z(I) denotes the zero set of the ideal /; see [3], 7.1.3). Since /
and / are respectively the largest and smallest closed ideals in V(G)
having Ξ as their zero set, we have that / C/2C J, CJ.

As φi G LP\G) we can define a continuous linear functional T on
(L'(G),|H|p)by

τ(g)=Σcg(-χ)φι(χ)

(recall that G is discrete and hence L\G)CLP{G)). By [3], 7.6.3, T
annihilates I2 but not /,.

Now suppose that Ξ is an 5p-set and let h G V Π C0(G) = L\G)
with h vanishing on Ξ. Then, given e > 0, there exists h1 G / such that
| | f t-A'| |p<€ and hence, since Γ(/Γ) = 0, | T(h)\ = | T(h - h')\ ^
e | |φ, ||p . AS this holds for all e > 0 we must have that T(h) = 0; thus T
annihilates /, a contradiction of the fact that T does not annihilate
/, c/. It follows that Ξ is not an 5p-set for any p G [1, 2).

We shall now examine the case when Γ contains an infinite compact
open subgroup. We require two lemmas for arbitrary Hausdorff
locally compact Abelian groups.

LEMMA 3.2. Let G be a Hausdorff locally compact Abelian group
and suppose H is a closed subgroup ofG. Then a continuous integrable
function f on G is constant on cosets of H if and only if

supp(/)CΛ(Γ,H)

(the annihilator of H in Γ).

Proof. The result follows readily from the property

for all γ G Γ (where „/: x -*f(x + h)).
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LEMMA 3.3. Let G be a Hausdorff locally compact Abelian group
and suppose A is an open subgroup of Γ. // Ξ is a closed subset of A
which is not an Sp-set in A then Ξ is not an Sp-set in Γ.

Proof Put H = A(G,A). By [1], (23.24) (e), H is compact.
Furthermore, in view of Theorem 2.1, we can assume that p <°°.

Suppose, to the contrary, that^Ξ is an Sp-set in Γ. Given e >0 and
/ G L ' Π Co(G/H) such that supp(/) is compact and / vanishes on Ξ, put
/ = / o TΓH, where πH denotes the natural homomorphism of G onto
G/H. Denoting the Haar measures on //, G/H by λH, λG/H respectively
(normalised as in [2], Chapter 3, 3.3 (i) with λH(H) = 1) we have, by [2],
Chapter 3, 4.5,

= f i f \f(x+y)\pdλH(y)}dλa,H(x)
JGIH I J H J

-I ί ί !/-»<* + >
JGIH i J H

= ί \f{x)\" dkGIH{x),
JGIH

that is,

(3.1)

It is easily seen that

x)=\ f(x + y)dλH(y)

and, by [2], Chapter 4, 4.3 ((3.1) shows that / e V(G)),

(3.2) /

for all γ E Λ. Furthermore, since / is constant on ςosets of if, Lemma
3.2 shows that supp(/) CΛ(Γ, H) = A. As supp(/) is assumed to be
compact it follows from (3.2) that supp(/) is compact and hence (note
that / is continuous) we see that / E CQ(G).

Now / vanishes on Ξ U Λc and, since by Theorem 1.4 (recall that Λc

is open and closed) Ξ U Λc is an Sp- set, there exists g E V Π C0(G) such
that g has compact support disjoint from ΞUΛC and ||/ - g \\p < e. By
Lemma 3.2 again g is constant on cosets of H and we have the
existence of g E V Π C0(GIH) such that g = g ° πH(g E CJjGIH) since,
by [2], Chapter 3, 1.8 (vii), g is continuous and by (3.2), g has compact
support). From (3.1) ||/ - g ||p < 6, and (3.2) shows that g vanishes on a
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neighbourhood of Ξ. Hence Ξ is shown to be an 5p-set in Λ, contrary
to assumption.

COROLLARY 3.4. Let G be a Hausdorff locally compact Abelian
group, Γ its character group. If Γ contains an infinite compact open
subgroup then there exists a closed subset of Γ which is not an Sp-set for
any p <Ξ [1,2).

Proof. Combine Theorem 3.1 and Lemma 3.3.

Before considering the case Γ = R we need to extend the result in
[3], Theorem 2.7.6.

THEOREM 3.5. Suppose f Gl\Z), δ E (0, π) and/(exp(/jc)) = Ofor
x E [TΓ - δ, π 4- δ]. Let u be defined on R by

ί/(expθ*)) ( | * | S τ τ )
-\O (\x\>π).

Then u = gfor someg E V(R). Moreover, given p E [1, °°], there exists
a positive number κp(= κp(δ)) such that

Proof The first part of Theorem 3.5 is proved in [3], 2.7.6.
Let p ε [1, oo]. Consider the linear operator T from V Π L"(R) to

l\Z), defined by

(3.3) (T(k))(n) = k*h(n),

where n EZ, and h E L\R) is defined as in [3], 2.7.6. The argument at
the end of the proof of [3], 2.7.6 shows that there is a constant KJ = κ,(δ)
such that || Γ(fc)||i ^ #c,||ifc ||,. It is clear from (3.3) that || Γ(ik)||. ̂  κ2||fc ||-,
where κ2 = \\h ||i By the Riesz-Thorin convexity theorem T is continu-
ous as

(L1 n L"(R), || L)-^(/l(Z), II L)

(recall that /1(Z)C/00(Z)), where a E(0, 1), pα = ( l - a r ! and | |Γ | | ( β ) ^
K \~aK$. In particular, choosing a E [0, 1) such that pa = p (and α = 1 if
p =oo) and noting that g<ΞLιΠ L°°(Λ) and (see [3], 2.7.6, (5)) f(n) =
g * /ι(n) for all n E Z, we have

as required.
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THEOREM 3.6. The real line R contains a closed set which is not an
Sp-set for any p G [ l , 2 ) .

Proof. It appears from Theorem 3.1 that there exists a closed set
Ξi C T (the circle group) which is not an Sp-set for any p G [ l , 2 ) . By
translation if necessary we can assume that - 1 £ Bi and that Si is
disjoint from Ξ2 for some closed arc Ξ 2 CT containing - 1 . Put

Y, = {x G ( - TΓ, TΓ): exp(ύc) G S,},

Y2 = {x G ( - TΓ, TΓ): exp(ά) G Ξ2} U [TΓ, «>) U ( - oo, - π],

Ξ = Bi U Ξ2 and Y = Y, U Y2.

Let p G [1, 2) and suppose Yj is an Sp-set. By Theorem 1.4, Y is
an Sp- set. Given / G / \Z) with /(Ξ) = {0} define g e L ' Π C0(R) by

. . . ί/(exp(ix)) ( | x | ^ τ r )
8{X)-\0 ( | j c | > π )

(see Theorem 3.5). Clearly g vanishes on Y and hence, since Y is an
Sp-set, there exists a sequence (gn) C V Π C0(R) such that each gn

vanishes on a neighbourhood of Y and

(3.4) | | g-g n | | p -*0.

If, for each x G ( - TΓ, TΓ], we define /„ G / !(Z) by

fn(εxp(ix)) = gn(x)

(see [3], Theorem 2.7.6) then Theorem 3.5 applied to (3.4) gives
ll/~~/n||p "-*0 (note that each /„ vanishes on a neighbourhood of
Ξ). Hence Ξ and consequently (see Theorem 1.4) Bi would be an
Sp-set, contradicting our choice of Bi. It follows that Yj is not an
Sp-set for any p G[l, 2).

We require two lemmas before proving the main result of this
section.

LEMMA 3.7. Let G, H be Hausdorff locally compact Abelian
groups and suppose k G V Π C0(G x H) is such that Y = supp(fc) is
compact. Then the function y —> k(x, y)(x -> /C(JC, y)) is integrable over
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H for every x EG (over G for every y E H). Furthermore the func-
tions

I /c(x, y)dλH(y), φ2: y -» I

continuous.

Proof. Since /c is continuous the function y—>/C(JC, y) is con-
tinuous, and hence measurable, for every J C E G .

Choose /c,(/c2) in V Π C0(G)(V Π Co(//)) such that fc, = 1 (k2 = 1) on
a neighbourhood Vi(V2) of YG(YH), where YG, YH are the projections of
Y onto G, H respectively. If we define h on G x if by Λ[(JC, y)] =
A:1(jc)fc2(y) then [1], (31.7) (b) shows that h = 1 on V, x V2, a neighbour-
hood of Y. Thus h * k = k l.a.e. and, since ft * fc and k are continuous,

(3.5) h*k=k.

Now the map i/x o n H x G x ί ί , defined by

M(y, 5, 0] = h(x - s, y - t)k(s, t),

is continuous for every x EG. Applying [1], (13.4) to | vx \, considered
as a function on H x (G x fί), it follows that ι/x is integrable and, using
(3.5), that the function y->k(x9y) is integrable over H for every
x EG. Furthermore, since vx is integrable on H x (G x H), we can use
(3.5) and [1], (13.8) to deduce that

ΦAx) = ί k2{y)dλH(y) ί fc,(x - s)fc(s, ί)dλG x λH(s, ί).
JH JGXH

As k E V(G x //), k2 E L\H) and A:, is uniformly continuous it follows
that φι is continuous.

The other part of the lemma is proved similarly.

LEMMA 3.8. Suppose G, H are Hausdorff locally compact Abelian
groups, with character groups Γ, Λ respectively. If p G[l, 2) and the
closed set Ξ' CΓ is noί an Sp-set, then Ξ = Ξ' x Λ is not an Sp-set in
ΓxΛ.

Proof. Suppose to the contrary that Ξ is an 5p-set in Γ x Λ. Let
/ E V Π Co(G) with suρp(/) compact and / vanishing on Ξ, and choose
g ELιΓ\ CO(H) such that suρp(g) is compact and \g(y)\ ^ 1 for all y in
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some neighbourhood V of zero in H. Define h on G x H by
h [(x, y)] = f(x)g(y). Then, by [1], (31.7) (b), supp(/ϊ) is compact and

for all [γ,, γ2] e Ξ.
Let € > 0 be given. Since Ξ is assumed to be an Sp-set we can find

k ELιΠ CO(G x H) such that supp(fc) is compact and disjoint from Ξ,
and

(3.6) \\h-kl<€kH{V)xl>.

Thus, for all yx in some neighbourhood V of Ξ' and for all γ 2 £Λ, we
have (see [1], (13.8))

L
= I fc(χ, y)([γ,, rJ)"U, y)^AG x λH(χ, y)

= 0.

Since γ2 E Λ was chosen arbitrarily

ί fc(x,y)ri(x)dλσ(jc) = 0 A H -a.e..

Now

i/ί: (x, y)-^/c(

is continuous and integrable, and supp(ψ) is compact. Hence, by
Lemma 3.7, the function φ on H defined by

Φ(y)= ί ψ(x,y)dλG(x)
JG

is continuous and so, for all y E H and γ, E V,

(3.7) ί /c(x,y)γ1(jc)dλG(jc) = O.

Using (3.6) we see that

eV:fG \h(x,y)-k(x,y)\pdλG(x)<ep}
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has the property that λH(V\W) < AH(V), that is, λH(W) >0. Choose
any y0E W (W is nonempty). Then

ί |/(x) - gίyoΠcOr, yo)|pdλc(x) < ep \g(yo)\'1 ^
JG

(3.8)

and so, defining / . ε L ' Π C ^ G ) by /i(x) = g(yo)"lfc(x,yo), (3.7) shows
that /, vanishes on V and, from (3.8), | | /-/ i | | p <e; thus we have a
contradiction of the assumption that Ξ' is not an 5p-set.

THEOREM 3.9. Lei G be a Hausdorff noncompact locally compact
Abelian group, Γ its character group. Then Γ contains a closed set
which is not an Sp-set for any p E [1, 2).

Proof. By [1], (24.30), Γ is topologically isomorphic with Rn x Γo,
where Γo is a Hausdorff locally compact Abelian group containing a
compact open subgroup.

If n ^ 1 then Theorem 3.6 and Lemma 3.8 combine to show that
Rn x Γo contains a closed set which is not an Sp-set for any p E [1, 2).

If n = 0 then Γ contains a compact open subgroup (with is infinite
since Γ is nondiscrete) and the result follows from Corollary 3.4.
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