SETS OF p-SPECTRAL SYNTHESIS

WALTER R. BLOOM

Let G be a Hausdorff locally compact Abelian group, Γ its character group. Certain closed subsets of Γ are introduced, these being closely related to sets of spectral synthesis for $L^1(G)^{\wedge}$. Some properties and examples of these sets are discussed, and then a Malliavin-type result is obtained.

In general we follow the notation used in [1]. We shall let λ , θ denote Haar measures on G, Γ respectively, chosen so that Plancherel's theorem holds.

1. The definition and some properties of S_p - and C_p -sets.

DEFINITION 1.1. Let Ξ be a closed subset of Γ . We shall call Ξ an S_p -set $(p \in [1, \infty))$ if, given $\epsilon > 0$ and $f \in L^1 \cap L^p(G)$ such that \hat{f} vanishes on Ξ , there exists $g \in L^1 \cap L^p(G)$ such that \hat{g} vanishes on a neighbourhood of Ξ and $||f - g||_p < \epsilon$. If such a g can be found of the form h * f, where $h \in L^1(G)$ and \hat{h} vanishes on a neighbourhood of Ξ , then Ξ will be called a C_p -set. We also define S_{∞} - and C_{∞} -sets as above, with f, g in $L^1 \cap C_0(G)$ (rather than $L^1 \cap L^{\infty}(G)$).

Since, by [1], (33.12), $L^1(G)$ admits a bounded positive approximate identity $\{u_i\}_{i\in I}$ such that for each $i\in I$, $u_i\in L^1\cap C_0(G)$ and $\operatorname{supp}(\hat{u}_i)$ is compact, it follows (see [1], (32.33) (b) and (32.48) (a)) that we can (and shall) assume in Definition 1.1 that $f, g, h \in L^1 \cap C_0(G)$, where $\operatorname{supp}(\hat{f})$ is compact and both $\operatorname{supp}(\hat{g})$ and $\operatorname{supp}(\hat{h})$ are compact and disjoint from Ξ $(p\in [1,\infty])$.

Clearly every C_p -set is an S_p -set. For the case p=1 we just have the familiar S-set and C-set; see [3], 7.2.5 (a) and 7.5.1 respectively.

For $f \in L^{\infty}(G)$ the spectrum (written $\Sigma(f)$) will be defined as in [1], (40.21). For $f \in L^{p}(G)$ $(p \in [1, \infty))$, we define its spectrum by

$$\Sigma(f) = \bigcup \{ \Sigma(\phi * f) : \phi \in C_{00}(G) \}$$

It is easily proved that for $f \in L^1(G)$, $\Sigma(f) = \operatorname{supp}(\hat{f})$. Given $\Xi \subset \Gamma$, we write

$$L \not \subseteq (G) = \{ f \in L^p(G) \colon \Sigma(f) \subset \Xi \}.$$

We now have the following characterisation of S_p - and C_p -sets:

- THEOREM 1.2. Let $p \in [1, \infty)$ and suppose Ξ is a closed subset of Γ . Then
- (a) Ξ is an S_p -set if and only if for all $l \in L_{\Xi}^p(G)$ and for all $f \in L^1 \cap C_0(G)$ such that $supp(\hat{f})$ is compact and \hat{f} vanishes on Ξ , we have l * f = 0;
- (b) Ξ is a C_p -set if and only if for all $f \in L^1 \cap C_0(G)$ such that $\operatorname{supp}(\hat{f})$ is compact and \hat{f} vanishes on Ξ , and for all $l \in L^p(G)$ such that $l * f \in L^p(G)$, we have l * f = 0.

This result is known for the case p = 1 (see [2], Chapter 7, 1.2 and 4.9). The proof is standard, and we shall not include it.

It is easy to adapt the proof of [3], Theorem 7.5.2 to give:

Theorem 1.3. Let $p \in [1, \infty]$. Then

- (a) every one-point subset of Γ is a C_p -set in Γ ;
- (b) finite unions of C_p -sets in Γ are C_p -sets in Γ ;
- (c) if the boundary of a closed set Ξ is a C_p -set, so is Ξ ;
- (d) if Ξ is a closed subset of a closed subgroup Λ of Γ , if $\partial_{\Lambda}(\Xi)$ is the boundary of Ξ relative to Λ , and if $\partial_{\Lambda}(\Xi)$ is a C_p -set in Γ then Ξ is also a C_p -set in Γ ;
 - (e) each closed subgroup of Γ is a C_p -set in Γ .

For $p \in [1, 2)$ it is not known whether the notions of C_p -set and S_p -set are identical (it appears in Theorem 2.1 that every closed set is a C_p -set for $p \ge 2$). Furthermore we cannot say whether the union of two S_p -sets is itself an S_p -set. We can however obtain two partial results in this direction. Both these results (Theorem 1.4 (a), (b)) are known for the case p = 1 (see [2], Chapter 2, 7.5).

THEOREM 1.4. (a) Suppose $\Xi = \Xi_1 \cup \Xi_2$, where Ξ_1 and Ξ_2 are disjoint closed subsets of Γ . Then, for $p \in [1, \infty)$, Ξ is an S_p -set if and only if both Ξ_1 and Ξ_2 are S_p -sets.

(b) Let $p \in [1, \infty)$ and suppose Ξ_1 is an S_p -set and Ξ_2 is a C_p -set. Then $\Xi = \Xi_1 \cup \Xi_2$ is an S_p -set.

The final result of this section gives us an inclusion result between the set of C_p -sets (respectively S_p -sets) and the set of C_q -sets (respectively S_q -sets) for $1 \le p < q \le \infty$.

THEOREM 1.5. Let $1 \le p < q \le \infty$. Then every C_p -set (respectively S_p -set) is a C_q -set (respectively S_q -set).

Proof. Assume Ξ is a C_p -set. Suppose we are given $\epsilon > 0$ and $f \in L^1 \cap C_0(G)$ with supp (\hat{f}) compact and \hat{f} vanishing on Ξ . We can find $h \in L^1 \cap C_0(G)$ such that $\|f - h * f\|_q < \epsilon/2$. Since Ξ is a C_p -set there exists $g \in L^1(G)$ such that \hat{g} has compact support disjoint from Ξ and $\|h\|_r \|f - g * f\|_p < \epsilon/2$, where $p^{-1} + r^{-1} - q^{-1} = 1$ (with the usual convention for the cases p = 1 and $q = \infty$). Now (see [1], (20.18))

$$||f - h * g * f||_q \le ||f - h * f||_q + ||h||_r ||f - g * f||_p$$
 $< \epsilon.$

It remains only to note that $h * g \in L^1 \cap C_0(G)$ and $(h * g)^{\wedge}$ has compact support disjoint from Ξ .

The proof that every S_p -set is an S_q -set is similar.

2. Examples of S_p - and C_p - sets.

THEOREM 2.1. For $p \in [2, \infty]$ every closed subset of Γ is a C_p -set.

Proof. In view of Theorem 1.5 we need only prove the theorem for p = 2.

Let Ξ be a closed subset of Γ and suppose we are given $\epsilon > 0$ and $f \in L^1 \cap C_0(G)$ with supp (\hat{f}) compact, \hat{f} vanishing on Ξ and $||f||_1 \le 1$. Now $\Omega = \{\gamma \in \Gamma: \hat{f}(\gamma) \ne 0\}$ is a relatively compact open set, and hence there exists a compact set $Y \subset \Omega$ such that $\theta(\Omega \setminus Y) < \epsilon^2$. Choose an open set ∇ such that $Y \subset \nabla \subset \nabla^- \subset \Omega$, and (see [3], 2.6.1) $k \in L^1 \cap C_0(G)$ such that $\xi_Y \le \hat{k} \le \xi_V$. Then, using Plancherel's theorem,

$$||f - k * f||_2 = \left(\int_{\Omega \setminus Y} |1 - \hat{k}(\gamma)|^2 |\hat{f}(\gamma)|^2 d\theta(\gamma) \right)^{\frac{1}{2}}$$

$$< \theta(\Omega \setminus Y)^{\frac{1}{2}}$$

$$< \epsilon;$$

and clearly, \hat{k} has compact support disjoint from Ξ .

Definition 2.2. Let Ω be a relatively compact open subset of Γ . We shall call Ω a β -symmetry set $(\beta > 0)$ if there exist nets $\{Y_i\}_{i \in I}$ and $\{\nabla_i\}_{i \in I}$ such that each Y_i is compact, $\{\nabla_i\}_{i \in I}$ is a base of symmetric open neighbourhoods of zero in Γ , partially ordered by

$$\nabla_i < \nabla_j$$
 if and only if $\nabla_i \supset \nabla_j$,

 $(Y_i + 2\nabla_i)^- \subset \Omega$ for each $i \in I$, and

$$\lim_{i\in I}\frac{\theta(\Omega\backslash Y_i)^{\beta}}{\theta(\nabla_i)}=0.$$

THEOREM 2.3. Suppose we are given $\beta > 0$ and a closed subset Ξ of Γ with the property that for any relatively compact set $\Upsilon \subset \Xi^c$ there exists a β -symmetry set Ω such that $\Upsilon \subset \Omega \subset \Xi^c$. Then Ξ is a C_p -set for all $p \ge (2+\beta)^{-1}(2+2\beta)$.

Proof. Let $p = (2+\beta)^{-1}(2+2\beta)$. Suppose we are given $\epsilon > 0$ and $f \in L^1 \cap C_0(G)$, where $\operatorname{supp}(\hat{f})$ is compact, \hat{f} vanishes on Ξ and $||f||_1 \le 1$. Now $Y = \{\gamma \in \Gamma : \hat{f}(\gamma) \ne 0\}$ is a relatively compact open subset of Ξ^c and hence, by assumption, there exists a relatively compact open set Ω such that $Y \subset \Omega \subset \Xi^c$, and nets $\{Y_i\}_{i \in I}$ and $\{\nabla_i\}_{i \in I}$ satisfying the conditions of Definition 2.2. Choose $i \in I$ such that Y_i is nonvoid and

$$\left[\frac{\theta(\Omega\backslash Y_i)^{\beta}}{\theta(\nabla_i)}\right]^{\alpha/2} < 2^{-\alpha}\theta(\Omega)^{-\alpha/2}\epsilon,$$

where $\alpha = (1 + \beta)^{-1}$. Define $k_i = \theta(\nabla_i)^{-1} g_i h_i$, where g_i, h_i in $L^2(G)$ are such that $\hat{g}_i = \xi_{\nabla_i}$ (cf. [3], 2.6.1) $k_i \in L^1 \cap C_0(G)$, $\xi_{Y_i} \leq \hat{k_i} \leq \xi_{Y_i + 2\nabla_i}$ and

$$||k_i||_1 \leq \left[\frac{\theta(\Upsilon_i + \nabla_i)}{\theta(\nabla_i)}\right]^{\frac{1}{2}}.$$

It follows from Hölder's inequality that

$$\begin{aligned} \|f - k_i * f\|_{\rho} &\leq \|f - k_i * f\|_{1}^{\alpha} \|f - k_i * f\|_{2}^{1-\alpha} \\ &\leq \|f\|_{1}^{\alpha} \left[1 + \left[\frac{\theta(Y_i + \nabla_i)}{\theta(\nabla_i)}\right]^{\frac{1}{2}}\right]^{\alpha} \theta(\Omega \setminus Y_i)^{(1-\alpha)/2} \\ &\leq 2^{\alpha} \theta(Y_i + \nabla_i)^{\alpha/2} \frac{\theta(\Omega \setminus Y_i)^{(1-\alpha)/2}}{\theta(\nabla_i)^{\alpha/2}} \\ &\leq \epsilon \end{aligned}$$

(recall that $\alpha = (1+\beta)^{-1}$ and $p = (2+\beta)^{-1}(2+2\beta) = 2(1+\alpha^{-1})^{-1}$). Noting that \hat{k}_i has compact support disjoint from Ξ we see that Ξ is a C_p -set, and the conclusion follows from Theorem 1.5.

We have two corollaries when G is a Euclidean space.

COROLLARY 2.4. Let $m \ge 1$ and suppose $\Xi \subset R^m$ is an open set with the property that for any relatively compact set $Y \subset R^m$ there exists a number κ_m (= $\kappa_m(Y)$) such that

$$\theta((\partial(\Xi)\cap Y)+\nabla_n) \leq \kappa_m n^{-1}$$

for all $n \in \{1, 2, \dots\}$, where $\partial(\Xi)$ denotes the boundary of Ξ and

$$\nabla_n = \{ x \in \mathbb{R}^m : ||x|| < n^{-1} \}.$$

Then Ξ, Ξ^c and $\partial(\Xi)$ are C_p -sets for all $p > (2+m)^{-1}(2+2m)$.

Proof. By Theorem 1.3 (c) we need consider only $\partial(\Xi)$.

Let Y be any relatively compact open subset of $\partial(\Xi)^c$. We shall show that for any $\epsilon > 0$ there exists an $(m + \epsilon)$ -symmetry set Ω such that $Y \subset \Omega \subset \partial(\Xi)^c$. Since Y is relatively compact in R^m there exists an integer $n_0 > 0$ such that

$$Y \subset \Delta_{n_0} = \{x \in \mathbb{R}^m : ||x|| < n_0\}.$$

For each $n \in \{1, 2, \dots\}$ define

$$Y_n = (\partial (\Xi) + \nabla_n)^c \cap (\Delta_{n_0} \backslash \Delta_{n_0 - n^{-1}})^c \cap \Delta_{n_0}.$$

Clearly Y_n is compact and

$$(\Upsilon_n + 2\nabla_{3n})^- \subset \Delta_{n_0} \cap \partial(\Xi)^c$$
.

Putting $\Omega = \Delta_{n_0} \cap \partial (\Xi)^c$ we have

$$\Omega \backslash \Upsilon_{n} = (\Omega \cap (\partial(\Xi) + \nabla_{n})) \cup (\Omega \cap (\Delta_{n_{0}} \backslash \Delta_{n_{0}-n^{-1}}^{-1}))
= (\Delta_{n_{0}} \cap \partial(\Xi)^{c} \cap (\partial(\Xi) + \nabla_{n})) \cup (\Delta_{n_{0}} \cap \partial(\Xi)^{c} \cap (\Delta_{n_{0}} \backslash \Delta_{n_{0}-n^{-1}}^{-1}))
\subset (\Delta_{n_{0}} \cap (\partial(\Xi) + \nabla_{n})) \cup (\Delta_{n_{0}} \backslash \Delta_{n_{0}-n^{-1}}^{-1})
\subset (((\Delta_{n_{0}}^{c} + \nabla_{1}) \cap \partial(\Xi)) + \nabla_{n}) \cup (\Delta_{n_{0}} \backslash \Delta_{n_{0}-n^{-1}}^{-1}).$$

Hence, since $\Delta_{n_0} + \nabla_1$ is relatively compact,

$$\theta(\Omega \setminus \Upsilon_n) \leq \kappa_m (\Delta_{n_0} + \nabla_1) n^{-1} + O(n^{-1}).$$

Using the fact that

$$\theta(\nabla_{3n}) = \kappa'_{m} 3^{-m} n^{-m}$$

for some constant κ'_m , we have

$$\lim_{n\to\infty}\frac{\theta(\Omega\backslash Y_n)^{m+\epsilon}}{\theta(\nabla_{3n})}=0,$$

and so Ω is an $(m + \epsilon)$ -symmetry set for all $\epsilon > 0$.

Thus $\partial(\Xi)$ satisfies the conditions of Theorem 2.3 with $\beta = m + \epsilon$, and hence is a C_p -set for all $p > (2+m)^{-1}(2+2m)$.

Corollary 2.5. Let $m \ge 1$ and put

$$\Xi = \{x \in R^m : ||x|| = 1\}.$$

Then Ξ is a C_p -set for all $p > (2+m)^{-1}(2+2m)$.

Proof. Let ∇ be any relatively compact set in \mathbb{R}^m . Then

$$\theta((\Xi \cap \nabla) + \nabla_n) \leq \theta(\Xi + \nabla_n)$$

$$= \kappa'_m((1 + n^{-1})^m - (1 - n^{-1})^m)$$

$$= O(n^{-1}),$$

where κ'_m is a constant. Now apply Corollary 2.4.

REMARK 2.6. For $m \ge 3$, Corollary 2.5 gives an example of a C_p -set $((2+m)^{-1}(2+2m) which is not an S-set; cf. [3], 7.3.2.$

- 3. The failure of certain closed sets to be S_p -sets. In this section we use a proof along the lines of that of Malliavin's theorem ([3], 7.6.1) to show that every nondiscrete Γ contains a closed set which is not an S_p -set for any $p \in [1, 2)$. As in the proof of [3], Theorem 7.6.1, we first consider the cases:
 - (a) Γ is an infinite compact group;
 - (b) $\Gamma = R$.

THEOREM 3.1. Let G be an infinite discrete group. Then there exists a closed set $\Xi \subset \Gamma$ which is not an S_p -set for any $p \in [1, 2)$.

Proof. Using the notation of [3], Theorem 7.8.6 we consider the function ϕ_1 on G defined by

$$\phi_1: x \to (D^1 m_x)(\zeta).$$

It is easily proved from [3], 7.6.4 and Theorem 7.8.6 that $f_0 \in L^1(G)$ and ϕ_1 (as above) can be chosen so that f_0 and ζ satisfy the hypotheses of [3], 7.6.3 (Theorem) (with $f = f_0$ and $\xi = \zeta$) and $\phi_1 \in L^q(G)$ for all q > 2. Having thus chosen f_0 and ϕ_1 we shall prove that the closed set $\Xi = \{ \gamma \in \Gamma : \hat{f}_0(\gamma) = \zeta \}$ is not an S_p -set for any $p \in [1, 2)$.

Let $p \in [1, 2)$ and put

$$I = \{ f \in L^1(G) : \hat{f}(\Xi) = \{0\} \},$$

 I_1 = the closed ideal of $L^1(G)$ generated by $f_0 - \zeta \xi_{(0)}$,

 I_2 = the closed ideal of $L^1(G)$ generated by $(f_0 - \zeta \xi_{(0)})^{*2}$,

and $J = \{f \in L^1(G): \hat{f} \text{ vanishes on a neighbourhood of } \Xi\}^-$.

Clearly

$$\Xi = Z(I) = Z(I_1) = Z(I_2) = Z(J)$$

(where Z(I) denotes the zero set of the ideal I; see [3], 7.1.3). Since I and J are respectively the largest and smallest closed ideals in $L^1(G)$ having Ξ as their zero set, we have that $J \subset I_2 \subset I_1 \subset I$.

As $\phi_1 \in L^{p'}(G)$ we can define a continuous linear functional T on $(L^1(G), \|\cdot\|_p)$ by

$$T(g) = \sum_{x \in G} g(-x)\phi_1(x)$$

(recall that G is discrete and hence $L^1(G) \subset L^p(G)$). By [3], 7.6.3, T annihilates I_2 but not I_1 .

Now suppose that Ξ is an S_p -set and let $h \in L^1 \cap C_0(G) = L^1(G)$ with \hat{h} vanishing on Ξ . Then, given $\epsilon > 0$, there exists $h' \in J$ such that $\|\hat{h} - h'\|_p < \epsilon$ and hence, since T(h') = 0, $|T(h)| = |T(h - h')| \le \epsilon \|\phi_1\|_p$. As this holds for all $\epsilon > 0$ we must have that T(h) = 0; thus T annihilates I, a contradiction of the fact that T does not annihilate $I_1 \subset I$. It follows that Ξ is not an S_p -set for any $p \in [1, 2)$.

We shall now examine the case when Γ contains an infinite compact open subgroup. We require two lemmas for arbitrary Hausdorff locally compact Abelian groups.

LEMMA 3.2. Let G be a Hausdorff locally compact Abelian group and suppose H is a closed subgroup of G. Then a continuous integrable function f on G is constant on cosets of H if and only if

$$\operatorname{supp}(\hat{f}) \subset A(\Gamma, H)$$

(the annihilator of H in Γ).

Proof. The result follows readily from the property

$$(hf)^{\hat{}}(\gamma) = \gamma(h)\hat{f}(\gamma)$$

for all $\gamma \in \Gamma$ (where $_h f: x \to f(x + h)$).

LEMMA 3.3. Let G be a Hausdorff locally compact Abelian group and suppose Λ is an open subgroup of Γ . If Ξ is a closed subset of Λ which is not an S_p -set in Λ then Ξ is not an S_p -set in Γ .

Proof. Put $H = A(G, \Lambda)$. By [1], (23.24) (e), H is compact. Furthermore, in view of Theorem 2.1, we can assume that $p < \infty$.

Suppose, to the contrary, that Ξ is an S_p -set in Γ . Given $\epsilon > 0$ and $\dot{f} \in L^1 \cap C_0(G/H)$ such that supp (\dot{f}) is compact and \dot{f} vanishes on Ξ , put $f = \dot{f} \circ \pi_H$, where π_H denotes the natural homomorphism of G onto G/H. Denoting the Haar measures on H, G/H by λ_H , $\lambda_{G/H}$ respectively (normalised as in [2], Chapter 3, 3.3 (i) with $\lambda_H(H) = 1$) we have, by [2], Chapter 3, 4.5,

$$||f||_p^p = \int_{G/H} \left\{ \int_H |f(x+y)|^p d\lambda_H(y) \right\} d\lambda_{G/H}(\dot{x})$$

$$= \int_{G/H} \left\{ \int_H |\dot{f} \circ \pi_H(x+y)|^p d\lambda_H(y) \right\} d\lambda_{G/H}(\dot{x})$$

$$= \int_{G/H} |\dot{f}(\dot{x})|^p d\lambda_{G/H}(\dot{x}),$$

that is,

(3.1)
$$||f||_p = ||\dot{f}||_p.$$

It is easily seen that

$$\dot{f}(\dot{x}) = \int_{H} f(x+y) d\lambda_{H}(y)$$

and, by [2], Chapter 4, 4.3 ((3.1) shows that $f \in L^{1}(G)$),

$$\hat{f}(\gamma) = f(\gamma)$$

for all $\gamma \in \Lambda$. Furthermore, since f is constant on cosets of H, Lemma 3.2 shows that $\operatorname{supp}(\hat{f}) \subset A(\Gamma, H) = \Lambda$. As $\operatorname{supp}(\hat{f})$ is assumed to be compact it follows from (3.2) that $\operatorname{supp}(\hat{f})$ is compact and hence (note that f is continuous) we see that $f \in C_0(G)$.

Now \hat{f} vanishes on $\Xi \cup \Lambda^c$ and, since by Theorem 1.4 (recall that Λ^c is open and closed) $\Xi \cup \Lambda^c$ is an S_p -set, there exists $g \in L^1 \cap C_0(G)$ such that \hat{g} has compact support disjoint from $\Xi \cup \Lambda^c$ and $\|f - g\|_p < \epsilon$. By Lemma 3.2 again g is constant on cosets of H and we have the existence of $\dot{g} \in L^1 \cap C_0(G/H)$ such that $g = \dot{g} \circ \pi_H(\dot{g} \in C_0(G/H))$ since, by [2], Chapter 3, 1.8 (vii), \dot{g} is continuous and by (3.2), \dot{g} has compact support). From (3.1) $\|\dot{f} - \dot{g}\|_p < \epsilon$, and (3.2) shows that \dot{g} vanishes on a

neighbourhood of Ξ . Hence Ξ is shown to be an S_p -set in Λ , contrary to assumption.

COROLLARY 3.4. Let G be a Hausdorff locally compact Abelian group, Γ its character group. If Γ contains an infinite compact open subgroup then there exists a closed subset of Γ which is not an S_p -set for any $p \in [1, 2)$.

Proof. Combine Theorem 3.1 and Lemma 3.3.

Before considering the case $\Gamma = R$ we need to extend the result in [3], Theorem 2.7.6.

THEOREM 3.5. Suppose $f \in l^1(Z)$, $\delta \in (0, \pi)$ and $\hat{f}(\exp(ix)) = 0$ for $x \in [\pi - \delta, \pi + \delta]$. Let u be defined on R by

$$u(x) = \begin{cases} \hat{f}(\exp(ix)) & (|x| \le \pi) \\ 0 & (|x| > \pi). \end{cases}$$

Then $u = \hat{g}$ for some $g \in L^1(R)$. Moreover, given $p \in [1, \infty]$, there exists a positive number $\kappa_p(=\kappa_p(\delta))$ such that

$$||f||_p \leq \kappa_p ||g||_p.$$

Proof. The first part of Theorem 3.5 is proved in [3], 2.7.6. Let $p \in [1, \infty]$. Consider the linear operator T from $L^1 \cap L^{\infty}(R)$ to $l^1(Z)$, defined by

(3.3)
$$(T(k))(n) = k * \hat{h}(n),$$

where $n \in \mathbb{Z}$, and $h \in L^1(\mathbb{R})$ is defined as in [3], 2.7.6. The argument at the end of the proof of [3], 2.7.6 shows that there is a constant $\kappa_1 = \kappa_1(\delta)$ such that $\|T(k)\|_1 \le \kappa_1 \|k\|_1$. It is clear from (3.3) that $\|T(k)\|_{\infty} \le \kappa_2 \|k\|_{\infty}$, where $\kappa_2 = \|\hat{h}\|_1$. By the Riesz-Thorin convexity theorem T is continuous as

$$(L^1 \cap L^{\infty}(R), \|\cdot\|_{p_{\alpha}}) \xrightarrow{T} (l^1(Z), \|\cdot\|_{p_{\alpha}})$$

(recall that $l^1(Z) \subset l^{\infty}(Z)$), where $\alpha \in (0, 1)$, $p_{\alpha} = (1 - \alpha)^{-1}$ and $||T||_{(\alpha)} \le \kappa_1^{1-\alpha} \kappa_2^{\alpha}$. In particular, choosing $\alpha \in [0, 1)$ such that $p_{\alpha} = p$ (and $\alpha = 1$ if $p = \infty$) and noting that $g \in L^1 \cap L^{\infty}(R)$ and (see [3], 2.7.6, (5)) $f(n) = g * \hat{h}(n)$ for all $n \in \mathbb{Z}$, we have

$$||f||_p \leq \kappa_1^{1-\alpha} \kappa_2^{\alpha} ||g||_p,$$

as required.

THEOREM 3.6. The real line R contains a closed set which is not an S_p -set for any $p \in [1, 2)$.

Proof. It appears from Theorem 3.1 that there exists a closed set $\Xi_1 \subset T$ (the circle group) which is not an S_p -set for any $p \in [1, 2)$. By translation if necessary we can assume that $-1 \not\in \Xi_1$ and that Ξ_1 is disjoint from Ξ_2 for some closed arc $\Xi_2 \subset T$ containing -1. Put

$$Y_1 = \{x \in (-\pi, \pi) : \exp(ix) \in \Xi_1\},$$

$$Y_2 = \{x \in (-\pi, \pi) : \exp(ix) \in \Xi_2\} \cup [\pi, \infty) \cup (-\infty, -\pi],$$

$$\Xi = \Xi_1 \cup \Xi_2 \text{ and } Y = Y_1 \cup Y_2.$$

Let $p \in [1, 2)$ and suppose Y_1 is an S_p -set. By Theorem 1.4, Y is an S_p -set. Given $f \in l^1(Z)$ with $\hat{f}(\Xi) = \{0\}$ define $g \in L^1 \cap C_0(R)$ by

$$\hat{g}(x) = \begin{cases} \hat{f}(\exp(ix)) & (|x| \le \pi) \\ 0 & (|x| > \pi) \end{cases}$$

(see Theorem 3.5). Clearly \hat{g} vanishes on Y and hence, since Y is an S_p -set, there exists a sequence $(g_n) \subset L^1 \cap C_0(R)$ such that each \hat{g}_n vanishes on a neighbourhood of Y and

If, for each $x \in (-\pi, \pi]$, we define $f_n \in l^1(Z)$ by

$$\hat{f}_n(\exp(ix)) = \hat{g}_n(x)$$

(see [3], Theorem 2.7.6) then Theorem 3.5 applied to (3.4) gives $||f-f_n||_p \to 0$ (note that each \hat{f}_n vanishes on a neighbourhood of Ξ). Hence Ξ and consequently (see Theorem 1.4) Ξ_1 would be an S_p -set, contradicting our choice of Ξ_1 . It follows that Y_1 is not an S_p -set for any $p \in [1, 2)$.

We require two lemmas before proving the main result of this section.

LEMMA 3.7. Let G, H be Hausdorff locally compact Abelian groups and suppose $k \in L^1 \cap C_0(G \times H)$ is such that $Y = \operatorname{supp}(\hat{k})$ is compact. Then the function $y \to k(x, y)(x \to k(x, y))$ is integrable over

H for every $x \in G$ (over G for every $y \in H$). Furthermore the functions

$$\phi_1: x \to \int_H k(x, y) d\lambda_H(y), \quad \phi_2: y \to \int_G k(x, y) d\lambda_G(x)$$

are continuous.

Proof. Since k is continuous the function $y \rightarrow k(x, y)$ is continuous, and hence measurable, for every $x \in G$.

Choose $k_1(k_2)$ in $L^1 \cap C_0(G)(L^1 \cap C_0(H))$ such that $\hat{k}_1 = 1$ ($\hat{k}_2 = 1$) on a neighbourhood $\nabla_1(\nabla_2)$ of $\Upsilon_G(\Upsilon_H)$, where Υ_G, Υ_H are the projections of Υ onto G, H respectively. If we define h on $G \times H$ by $h[(x, y)] = k_1(x)k_2(y)$ then [1], (31.7) (b) shows that $\hat{h} = 1$ on $\nabla_1 \times \nabla_2$, a neighbourhood of Υ . Thus h * k = k 1.a.e. and, since h * k and k are continuous,

$$(3.5) h * k = k.$$

Now the map ν_x on $H \times G \times H$, defined by

$$\nu_x[(y, s, t)] = h(x - s, y - t)k(s, t),$$

is continuous for every $x \in G$. Applying [1], (13.4) to $|\nu_x|$, considered as a function on $H \times (G \times H)$, it follows that ν_x is integrable and, using (3.5), that the function $y \to k(x, y)$ is integrable over H for every $x \in G$. Furthermore, since ν_x is integrable on $H \times (G \times H)$, we can use (3.5) and [1], (13.8) to deduce that

$$\phi_1(x) = \int_H k_2(y) d\lambda_H(y) \int_{G \times H} k_1(x-s) k(s,t) d\lambda_G \times \lambda_H(s,t).$$

As $k \in L^1(G \times H)$, $k_2 \in L^1(H)$ and k_1 is uniformly continuous it follows that ϕ_1 is continuous.

The other part of the lemma is proved similarly.

Lemma 3.8. Suppose G, H are Hausdorff locally compact Abelian groups, with character groups Γ , Λ respectively. If $p \in [1, 2)$ and the closed set $\Xi' \subset \Gamma$ is not an S_p -set, then $\Xi = \Xi' \times \Lambda$ is not an S_p -set in $\Gamma \times \Lambda$.

Proof. Suppose to the contrary that Ξ is an S_p -set in $\Gamma \times \Lambda$. Let $f \in L^1 \cap C_0(G)$ with supp (\hat{f}) compact and \hat{f} vanishing on Ξ , and choose $g \in L^1 \cap C_0(H)$ such that supp (\hat{g}) is compact and $|g(y)| \ge 1$ for all y in

some neighbourhood V of zero in H. Define h on $G \times H$ by h[(x, y)] = f(x)g(y). Then, by [1], (31.7) (b), supp(\hat{h}) is compact and

$$\hat{h}([\gamma_1, \gamma_2]) = \hat{f}(\gamma_1)\hat{g}(\gamma_2) = 0$$

for all $[\gamma_1, \gamma_2] \in \Xi$.

Let $\epsilon > 0$ be given. Since Ξ is assumed to be an S_p -set we can find $k \in L^1 \cap C_0(G \times H)$ such that supp (\hat{k}) is compact and disjoint from Ξ , and

$$||h-k||_{p} < \epsilon \lambda_{H}(V)^{1/p}.$$

Thus, for all γ_1 in some neighbourhood ∇ of Ξ' and for all $\gamma_2 \in \Lambda$, we have (see [1], (13.8))

$$\int_{H} \left\{ \int_{G} k(x, y) \bar{\gamma}_{1}(x) d\lambda_{G}(x) \right\} \bar{\gamma}_{2}(y) d\lambda_{H}(y)$$

$$= \int_{G \times H} k(x, y) ([\gamma_{1}, \gamma_{2}])^{-}(x, y) d\lambda_{G} \times \lambda_{H}(x, y)$$

$$= 0.$$

Since $\gamma_2 \in \Lambda$ was chosen arbitrarily

$$\int_G k(x, y) \bar{\gamma}_1(x) d\lambda_G(x) = 0 \qquad \lambda_H - \text{a.e.} .$$

Now

$$\psi: (x, y) \rightarrow k(x, y) \bar{\gamma}_1(x)$$

is continuous and integrable, and $supp(\hat{\psi})$ is compact. Hence, by Lemma 3.7, the function ϕ on H defined by

$$\phi(y) = \int_G \psi(x, y) d\lambda_G(x)$$

is continuous and so, for all $y \in H$ and $\gamma_1 \in \nabla$,

(3.7)
$$\int_G k(x, y) \bar{\gamma}_1(x) d\lambda_G(x) = 0.$$

Using (3.6) we see that

$$W = \left\{ y \in V : \int_{G} |h(x, y) - k(x, y)|^{p} d\lambda_{G}(x) < \epsilon^{p} \right\}$$

has the property that $\lambda_H(V \setminus W) < \lambda_H(V)$, that is, $\lambda_H(W) > 0$. Choose any $y_0 \in W$ (W is nonempty). Then

(3.8)
$$\int_{G} |f(x) - g(y_{0})^{-1}k(x, y_{0})|^{p} d\lambda_{G}(x) < \epsilon^{p} |g(y_{0})|^{-1} \leq \epsilon^{p}$$

and so, defining $f_1 \in L^1 \cap C_0(G)$ by $f_1(x) = g(y_0)^{-1}k(x, y_0)$, (3.7) shows that \hat{f}_1 vanishes on ∇ and, from (3.8), $||f - f_1||_p < \epsilon$; thus we have a contradiction of the assumption that Ξ' is not an S_p -set.

THEOREM 3.9. Let G be a Hausdorff noncompact locally compact Abelian group, Γ its character group. Then Γ contains a closed set which is not an S_p -set for any $p \in [1, 2)$.

Proof. By [1], (24.30), Γ is topologically isomorphic with $R^n \times \Gamma_0$, where Γ_0 is a Hausdorff locally compact Abelian group containing a compact open subgroup.

If $n \ge 1$ then Theorem 3.6 and Lemma 3.8 combine to show that $R^n \times \Gamma_0$ contains a closed set which is not an S_p -set for any $p \in [1, 2)$.

If n = 0 then Γ contains a compact open subgroup (with is infinite since Γ is nondiscrete) and the result follows from Corollary 3.4.

REFERENCES

- 1. Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis, vols. I, II, Die Grundlehren der mathematischen Wissenschaften, Bände 115, 152. Academic Press, New York; Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963, 1970.
- 2. Hans Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford at the Clarendon Press, 1968.
- 3. Walter Rudin, Fourier Analysis on Groups, Interscience Publishers, John Wiley and Sons, New York, London, 1962; 2nd printing, 1967.

Received September 11, 1974.

THE AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, ACT, AUSTRALIA

Present address: Murdoch University

Murdoch, Western Australia, Australia