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ON LOCAL UNIFORM MEAN CONVERGENCE
FOR MARKOV OPERATORS

ROBERT S I N E

The center of a stable Markov operator on C(X) is studied
to obtain necessary and sufficient conditions for uniform con-
vergence of the Cesaro means of the iterates on the center of the
process. The relation between these results and previous local
convergence theorems is also examined.

We denote by C(X) the J3- space of all real valued continuous
functions on a compact Hausdorff space. The w *- compact convex set
of all Baire Probabilities on X is denoted by &{X). A (stable) Markov
operator T is a bounded linear operator on C(X) which is positive and
which satisfies Γl = 1. For each JC in X and each Baire set E in X we
should point out that T*δ(x)E can be interpreted as the probability of
hitting the set E at time n = 1 having started at the point x at time
n = 0. However we will make no appeal to probabilitistic interpreta-
tions or methods here. This note continues the theme that much of the
asymptotic behavior of T is intimately connected with the Banach
space geometry of the invariant structures of Γ. We will denote the
invariant function manifold for T in C(X) by M = M(T) = {/: Tf = /}
and denote the compact convex set of invariant probabilities in

In L2 ergodic theory the strong operator convergence of the Cesaro
means of the iterates of a contraction is free (v. Neumann's ergodic
theorem). For Markov operators on C(X) this convergence is not free
or even true. Thus we have the following definition; T is uniformly
mean stable (u. m. s.) on C(X) if

An(T)f = l/(n + 1)(/ + Γ + + 7")/

is uniformly convergent for all / in C(X). This condition has been
studied by Jamison [4], Lloyd [5], Rosenblatt [8] and Sine [9]. We will
make strong use of the following separation property from
[9,p. 161]. A Markov operator T is u.m.s. on C(X) iff Jί(T) separates
%(T). We will say a closed set D is invariant if T*δ(x) D = 1 for all x
in D.

Consider the following very simple example. We take the unit
interval [0,1] as X and define Tf(x) = f(x2). Then Tnf will converge
pointwise so An(T)f will converge pointwise to the same
limit. However this limit function will be continuous iff /(0) = /(I) so T
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is not u.m.s. But the doubleton set M = {0,1} is invariant and the
restricted operator Γ|M is u.m.s. on M. (Indeed T\M is the identity
operator.) It is this sort of local u.m.s. we will characterize.

2. We define the center of a Markov operator T by

M = closure U {supp(λ):λ in X(T)}.

This definition is suggested by the center of attraction in dynamic
systems (see Nemytskii and Stepanov [6, p, 367]). We can obtain M in
another way. Let / be defined by

/ = {/: An(Dl/I -*0 [pointwise]}.

Then firstly the convergence is uniform by Dunford's mean ergodic
theorem [2, p. 661]. Secondly it is easy to show that / is a norm closed
ideal in C(X) which is T invariant as a set of functions. Thus the zero
set of the ideal is a closed T invariant set in X. Finally it is easy to
show that this zero set is the center M. Thus it can be shown that if /
vanishes on M we have An(T)f uniformly convergent to zero. (See
(See [11] for details)

The definition of M is unchanged if the probabilities, λ, are only
taken from the extreme points of 3ίf(Γ). This is an easy consequence
of the Krein-Milman theorem; we leave the details to the reader. It is
perhaps more surprising that in the case that X is metrizable the
definition is unchanged with the omission of the closure operation.

THEOREM 1. Let Kbe a sequentially closed convex subset of@*(T)
with X compact Hausdorff. Then M = U{supρ(λ):λεK} is sequen-
tially closed.

Proof. Suppose {xn} is a sequence of points in M and
xn -» y. Then there exists a sequence {λrt} in K with xn in suρp(λn). If
we set μ =Σ(2~n)λπ then μ is in K. If W is any neighborhood of y
then {xn} is ultimately in W so λn (W) > 0 ultimately. Hence μ (W) > 0
so y is in supp(μ). This finishes the argument.

We will consider properties which are too weak or too strong
before our main result. We introduced in [9] the concept of a topologi-
cal ergodic decomposition for Γ. This property was shown to imply
u.m.s. on a superset of the center but it is much too strong a
condition. It required (among other things) a sufficiently rich family of
invariant functions to separate the extreme points of 3ίf(Γ). But our
example above has only constants for invariant functions while it is
u.m.s. on its center.
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We next look at a condition which is too weak. We will say T is
scattered if each pair of distinct extreme invariant probabilities in 3Γ(Γ)
have disjoint supports.

THEOREM 2. If D is minimal invariant set for a scattered Markov
operator T the T\D is u.m.s.

Proof It is clear that D supports exactly one extreme invariant
probability. It follows from Krein-Milman that T\D is uniquely ergodic
and it is well known that uniquely ergodic implies u.m.s. (see Oxtoby
[7, p. 124]).

REMARK. It follows from the above theorem that An(T)f con-
verges pointwise on the union of the minimal invariant sets if T is
scattered. Note that each extreme invariant probability is supported on
a minimal set if T is scattered. If the union of the minimal sets is
closed and if the minimal invariant sets form an upper semi-continuous
decomposition as well then the scattered Markov operator is u.m.s. on
its center. But neither of these topological conditions for a scattered
Markov operator need hold. First an example of a scattered operator
with union of the minimal sets not closed. We take X = [0,1] x [0,1]
and define the operator by

Tf(x, y) = y/(0, y) + (1 - y )J/(s, y )ds.

It is straightforward to show that the minimal sets are each uniquely
ergodic and consist of the horizontal fibers I(y) = {(JC, y): 0 ^ x § 1} for
O^y < 1 together with the singleton point (0, 1).

For an example with the union closed but not an upper semi-
continuous decomposition take on the same space X

Tf(x, y) = y/(x, y) + (1 - y)jf(s9 y)ds.

The minimal invariant sets consist of the fibers I(y) with 0 ^ y < 1 again
together with the singleton points {(JC, 1)} for O ^ J C ^ I . Finally we
remark that these topological conditions are too strong as a u.m.s.
operator need not have the union of its minimal invariant sets closed.

We will say T is continuously scattered if there is a family of
continuous functions each constant on the support of each extreme
invariant probability and sufficient to separate the extreme invariant
probabilities.

THEOREM 3. A Markov operator is continuously scattered iff it is
u.m.s. on its center.
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Proof. If T is u.m.s. on its center then the invariant functions for
T\M when extended to all of X in any continuous way satisfy the
requirements. Conversely suppose there is such a family of
functions. We have Tf = f on each minimal invariant set and thus on
the union. By continuity T/ = / on M. But in the same way we have
Tg = g on M for each function in the norm closed algebra si generated
by the separating family. Let Y be the quotient space M/sd. We can
drop T to a Markov operator on C(Y); it is, in fact, the identity operator
on C(Y). It follows that for each y in Y that the pre-image of y under
the quotient map is a closed invariant set of M which supports exactly
one invariant probability. Thus T is u.m.s. (by unique ergodicity) on
that pre-image. Now let A i and λ2 be any invariant probabilities. Let /
be any function with (/,Aj)-^(/,λ2). Now f = \imAnf exists as a
pointwise limit on M. This function separates λ, and λ2 and it can be
regarded as a Baire function on Y. But then there must be a continu-
ous function on Y separating A, and λ2. Finally any function of C(Y)
is T\M invariant when regarded as a function on M. Thus the invariant
functions of T\M separate 3ίf(Γ) so T is u.m.s. on its center.

The following condition was given by Attala [1]. Let j£0 be the
norm closed subspace of C{X) defined by

2o = {f: An (T)f -* 0 [uniformly]}.

Suppose there is a Markov projection P with the null space of P equal
to «2*0. Then T is u.m.s. on its center. We will give a converse to this
result in the metric case thus further justifying the hypothesis. We will
also give an apparent strengthening of the forward theorem in such a
way that it is clear that for T to be u.m.s. on M depends only on 3ΐ(T)
and its orientation in 3P(X).

THEOREM 4. Let T be a Markov operator on X with center
M. Suppose there is a u.m.s. Markov operator S on C(X) with
K(S) = K(T). Then T is u.m.s. on M.

Proof. First we note that if R is any stable Markov operator and λ
is in 3£(R) then supρ(λ) is an R-invariant set (see [9,p. 156]). It
follows that M is both T and S invariant and we can restrict the
processes to M. If λ is an extreme point of % = 5ίf(S) = 3ίf(Γ) then
D = suρp(λ) is both S and T invariant. Moreover since 5 is uniquely
ergodic on D so is T. Now each 5 invariant function is constant on
D. Let / be an S invariant function. Then Tf = f on the support of
each extreme since / is constant on each such set. Then by continuity
Tf -f on M since as pointed out before M is the closure of the union of
the supports of the extremes. Now each S invariant function is Γ
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invariant and each T invariant probability is 5 invariant. Since S is
u.m.s. the S invariant functions separate the extremes of 3ίf(S) =
3ίf. Also the T invariant functions separate the extremes of 3ίf =
3C(T). We conclude T is u.m.s. on M.

REMARK. If T is a Markov operator on C(X) and T is u.m.s. on M
then clearly there is a u.m.s. Markov operator S on C(X) with
%(S) = X{T\M). For we just take 5 = Γ|M. Now in the above
theorem we only need S u.m.s. on M and 5 need not even be defined on
all of X. To that extent the conditions of Theorem 4 (and of Attala's
result as well) are necessary and sufficient. But if we ask that S be
globally defined we are able to obtain a full converse only in the metric
case.

THEOREM 5. Let T be a Markov operator on C(X) where X is
compact metric. Then T is u.m.s. on its center M iff there is a u.m.s.
Markov operator S on C(X) with X{S) = X(T).

We will have need of the following.

LEMMA. (Borsuk-Tietze). Let X be a compact metric space and D
a closed nonempty subset. Then there is a Markov projection P with

Borsuk's linear Tietze extension result has far greater generality
than this lemma. For the lemma as stated a geometric proof is
available based on the strictly convex metrics of Bonsall and Herve for
the w* topology [10].

Proof of Theorem 5. There is a Markov projection R with
%(R) = ̂ ( M ) by the lemma. Let P be the projection on C(X) defined
as the limit of Λn(Γ|M). For each x in X we have P*2? *δ(x) defined as
a point in 3ίΓ(Γ). If λ is in X(T) then P*R *λ = λ. Thus S = RP is a
Markov projection with X(S) = X(T) and satisfies the requirements.
For / in C(X) we let P act on the restriction to M. Let g be any
extension of Pf to all of X. Then RPf = Rg is independent of that
extension.
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