ON THE LATTICE OF NORMAL SUBGROUPS OF A DIRECT PRODUCT

Michael D. Miller

Suzuki has determined that if G is a direct product $G=\Pi_{i=1}^{k} G_{i}$ of groups $G_{i} \neq 1$, then the lattice $L(G)$ of subgroups of G is the direct product of the lattices $L\left(G_{i}\right)$ if and only if the order of any element in G_{i} is finite and relatively prime to the order of any element in $G_{i}(i \neq j)$. An exercise in Zassenhaus' The Theory of Groups asks the reader to prove an analogous result for the lattice of normal subgroups. In §1, we derive this result for the case of the direct product of two groups. (The generalization to the direct product of any finite number of groups is straightforward.) In §2, we use results obtained in §1 to study in detail the normal subgroup lattice of the direct product of finitely many symmetric groups.

1. The lattice of normal subgroups. If G_{1} and G_{2} are groups, we denote elements of the direct product $G_{1} \times G_{2}$ by ordered pairs $(a, b), a \in G_{1}, b \in G_{2}$. If A and B are subgroups of a group G, we define $[A, B]=\left\langle a b a^{-1} b^{-1} \mid a \in A, b \in B\right\rangle$, and note that if $A \triangleleft G$, then $[A, B] \triangleleft A$. We let ρ_{1} and ρ_{2} denote the first and second projection maps on $G_{1} \times G_{2}$, and finally, we denote by $o(g)$ the order of the element g.

If N is a subgroup of $G_{1} \times G_{2}$, we put $N_{1}=\rho_{1}(N)$ and $N_{2}=$ $\rho_{2}(N)$. Thus N_{i} is a subgroup of G_{i}, called the i th projection of N. Furthermore, if $N \triangleleft G_{1} \times G_{2}$, then $N_{i} \triangleleft G_{i}$.

Lemma 1. If $N \triangleleft G_{1} \times G_{2}$, then $N \supseteq\left[G_{1}, N_{1}\right] \times\left[G_{2}, N_{2}\right]$.
Proof. Let $a \in N_{1}$. Then there exists $y \in N_{2}$ such that $(a, y) \in$ N. Thus $\left(a^{-1}, y^{-1}\right) \in N$, and since $N \triangleleft G_{1} \times G_{2},(g, 1)(a, y)\left(g^{-1}, 1\right)=$ $\left(\mathrm{gag}^{-1}, y\right) \in N$. It follows that $\left(\mathrm{gag}^{-1}, y\right)\left(a^{-1}, y^{-1}\right)=\left(\mathrm{gag}^{-1} a^{-1}, 1\right) \in N$, so $N \supseteq\left[G_{1}, N_{1}\right] \times\{1\} . \quad$ Similarly, $N \supseteq\{1\} \times\left[G_{2}, N_{2}\right]$, completing the proof.

The following lemma, whose proof is immediate, will be used in the discussion that follows.

Lemma 2. Let G be a group, $H \triangleleft G$. Then any subgroup L of G such that $[G, H] \subseteq L \subseteq H$ is normal in G.

Since $\left[G_{1} \times G_{2}, A \times B\right]=\left[G_{1}, A\right] \times\left[G_{2}, B\right]$ whenever $A \subseteq G_{1}, B \subseteq$ G_{2}, if $N \triangleleft G_{1} \times G_{2}$ with projections N_{1} and N_{2}, then any subgroup of $G_{1} \times G_{2}$ lying between $\left[G_{1}, N_{1}\right] \times\left[G_{2}, N_{2}\right]$ and $N_{1} \times N_{2}$ is normal in
$G_{1} \times G_{2} . \quad$ Moreover, as $\left[N_{i}, N_{i}\right] \subseteq\left[G_{i}, N_{i}\right]$, we see that $C_{i}=N_{i} /\left[G_{i}, N_{i}\right]$ is abelian, as is $C_{1} \times C_{2}=\left(N_{1} \times N_{2}\right) /\left[G_{1}, N_{1}\right] \times\left[G_{2}, N_{2}\right]$. There is thus a 1-1 correspondence ϕ between subgroups of $C_{1} \times C_{2}$ and subgroups of $G_{1} \times G_{2}$ lying between $\left[G_{1}, N_{1}\right] \times\left[G_{2}, N_{2}\right]$ and $N_{1} \times N_{2}$.

Definition. A normal subgroup S of $G_{1} \times G_{2}$ is called $G_{1}-G_{2}$ decomposable if $S=S_{1} \times S_{2}, S_{1} \triangleleft G_{1}, S_{2} \triangleleft G_{2}$.

It is easy to see that a subgroup H of $C_{1} \times C_{2}$ is $C_{1}-C_{2}$ decomposable if and only if $\phi(H)$ is $G_{1}-G_{2}$ decomposable. Furthermore, if $B \subseteq C_{1} \times C_{2}$, then the i th projection of B is C_{i} if and only if the i th projection of $\phi(B)$ is N_{i}.

Assuming we can determine the subgroup lattice structure of arbitrary abelian groups, we now have a systematic way of describing the normal subgroups of $G_{1} \times G_{2}$ in terms of those of G_{1} and G_{2}. Namely, choose $S_{1} \triangleleft G_{1}, S_{2} \triangleleft G_{2}$ and consider the subgroups M of the abelian group $S_{1} /\left[G_{1}, S_{1}\right] \times S_{2} /\left[G_{2}, S_{2}\right]$ with the property that $M_{i}=$ $S_{t} /\left[G_{i}, S_{i}\right]$. To each such M, there corresponds a normal subgroup N of $G_{1} \times G_{2}$ with $\left[G_{1}, S_{1}\right] \times\left[G_{2}, S_{2}\right] \subseteq N \subseteq S_{1} \times S_{2}$ and $N_{i}=S_{i}$. As S_{1} and S_{2} run through the normal subgroups of G_{1} and G_{2} respectively, we obtain each normal subgroup of $G_{1} \times G_{2}$ exactly once.

It is, of course, not always easy to determine all subgroups of a given abelian group. For finite groups, however, Suzuki's result shows that it suffices to consider the case of abelian p-groups.

Example. Let $G_{1}=S_{3}$ (symmetric group on 3 letters) $G_{2}=\mathbf{Z}_{2}$ (cyclic group of order 2)
We calculate the following:

S_{1}	S_{2}	$\left[G_{1}, S_{1}\right]$	$\left[G_{2}, S_{2}\right]$	C_{1}	C_{2}	ν
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1
$\mathbf{1}$	\mathbf{Z}_{2}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	\mathbf{Z}_{2}	1
\mathbf{Z}_{3}	$\mathbf{1}$	\mathbf{Z}_{3}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1
\mathbf{Z}_{3}	\mathbf{Z}_{2}	\mathbf{Z}_{3}	$\mathbf{1}$	$\mathbf{1}$	\mathbf{Z}_{2}	1
$\mathrm{~S}_{3}$	$\mathbf{1}$	\mathbf{Z}_{3}	$\mathbf{1}$	\mathbf{Z}_{2}	$\mathbf{1}$	1
$\mathrm{~S}_{3}$	\mathbf{Z}_{2}	\mathbf{Z}_{3}	$\mathbf{1}$	\mathbf{Z}_{2}	\mathbf{Z}_{2}	2

Here $C_{i}=S_{i} /\left[G_{i}, S_{i}\right]$, and ν denotes the number of subgroups $M \subseteq$ $C_{1} \times C_{2}$ with $M_{t}=C_{i}$.

From this, we see that $S_{3} \times \mathbf{Z}_{2}$ has seven normal subgroups, all of which are $S_{3}-\mathbf{Z}_{2}$ decomposable, except for one of order six.

We now determine the condition for every normal subgroup of $G_{1} \times G_{2}$ to be $G_{1}-G_{2}$ decomposable. Recall that a group G is called perfect if $G=G^{\prime}$. We will say that G is super-perfect if $[G, H]=H$ for all $H \triangleleft G$.

Theorem 1. Let G_{1} and G_{2} be groups. Then every normal subgroup of $G_{1} \times G_{2}$ is $G_{1}-G_{2}$ decomposable if and only if either (i) at least one of G_{1} and G_{2} is super-perfect, or (ii) for all $S_{1} \triangleleft G_{1}, S_{2} \triangleleft G_{2}$, the elements of $S_{1} /\left[G_{1}, S_{1}\right]$ have orders relatively prime to those of $S_{2} /\left[G_{2}, S_{2}\right]$. (In particular, these orders must be finite.)

Proof. $\quad(\Leftarrow)$ Suppose $N \triangleleft G_{1} \times G_{2}$ is not $G_{1}-G_{2}$ decomposable. Then the subgroup $\phi(N)$ of $N_{1} /\left[G_{1}, N_{1}\right] \times N_{2} /\left[G_{2}, N_{2}\right]=C_{1} \times C_{2}$ is not $C_{1}-C_{2}$ decomposable. If G_{i} is super-perfect, then $C_{i}=1$, a contradiction. Otherwise (ii) holds, and we have a contradiction to Suzuki's result [2]. (\Rightarrow) Let $S_{i} \triangleleft G_{i}$. By hypothesis, every normal subgroup $N \subseteq G_{1} \times G_{2}$ with $\left[G_{1}, S_{1}\right] \times\left[G_{2}, S_{2}\right] \subseteq N \subseteq S_{1} \times S_{2}$ is $G_{1}-G_{2}$ decomposable, and therefore all subgroups of $S_{1} /\left[G_{1}, S_{1}\right] \times S_{2} /\left[G_{2}, S_{2}\right]=$ $C_{1} \times C_{2}$ are $C_{1}-C_{2}$ decomposable. If C_{1} has elements of infinite order, then G_{2} must be super-perfect. For if not, there is a normal subgroup H of G_{2} such that $D=H /\left[G_{2}, H\right] \neq 1$. By Suzuki's result, $C_{1} \times D$ contains a subgroup which is not $C_{1}-D$ decomposable, a contradiction. Simililarly, if G_{1} is not super-perfect, then C_{2} must be a torsion group.

Finally, if neither G_{1} nor G_{2} is super-perfect, then the order of any element in C_{1} must be relatively prime to the order of any element in C_{2}, for if not, by Suzuki's result, there would be a subgroup of $C_{1} \times C_{2}$ which is not $C_{1}-C_{2}$ decomposable.

Corollary 1. Every normal subgroup of $G \times G$ is $G-G$ decomposable if and only if G is super-perfect.

COROLLARy 2. If G_{1} and G_{2} are torsion groups, and the order of any element in G_{1} is relatively prime to the order of any element in G_{2}, then every normal subgroup of $G_{1} \times G_{2}$ is $G_{1}-G_{2}$ decomposable.

Definition. A torsion group G is called quasi-nilpotent if for every prime p with $p=o(a)$ for some $a \in G$, there exists $H \triangleleft G$ such that $H /[G, H]$ has an element of order p.

It is easy to see that every nilpotent torsion group is quasinilpotent. The first example of a quasi-nilpotent group which is not nilpotent is the group $S_{3} \times \mathbf{Z}_{3}$, of order 18 . The first indecomposable example is $\operatorname{SL}(2,3)$ of order 24.

We now state a partial converse to Corollary 2:
Corollary 3. If G_{1} and G_{2} are quasi-nilpotent groups such that every normal subgroup of $G_{1} \times G_{2}$ is $G_{1}-G_{2}$ decomposable, then the order of any element in G_{1} is relatively prime to the order of any element in G_{2}.

Theorem 1 can be easily generalized to yield the following:
Theorem. 2. Let $G=\prod_{i=1}^{k} G_{i}$. Then every normal subgroup N of G is a direct product $N=\Pi_{i=1}^{k} N_{i}$ of normal subgroups N_{i} of G_{i} if and only if either (i) at most one of the G_{i} is not super-perfect, or (ii) whenever $H_{t} \triangleleft G_{i}$ and $H_{j} \triangleleft G_{j}(i \neq j)$, the order of any element in $H_{i} /\left[G_{i}, H_{i}\right]$ is relatively prime to the order of any element in $H_{i} /\left[G_{i}, H_{j}\right]$. (In particular, these orders must be finite.)

The proof is identical in nature to that of Theorem 1 , and will therefore be omitted.

Instead of studying the lattice of normal subgroups, one can look at other systems of subgroups which form a lattice. For example, one could ask when every characteristic (resp. fully invariant) subgroup of $\prod_{i=1}^{k} G_{i}$ is a direct product of characteristic (resp. fully invariant) subgroups of the individual G_{i}. These problems appear to be substantially more difficult than the one treated in this section.
2. Direct products of symmetric groups. We begin with two definitions. If G is a group and H is any subgroup containing G^{\prime}, then H is called a $C C$-subgroup of G. All $C C$-subgroups are therefore normal. Secondly, if $G=\prod_{i=1}^{k} G_{i}$ and ρ_{i} is the projection on the i th factor, then an automorphism ϕ of G is called rigid if $\phi\left(\rho_{i}(G)\right)=$ $\rho_{t}(G)$ for all i. The group of rigid automorphisms of G is thus isomorphic to $\prod_{i=1}^{k} \operatorname{Aut}\left(G_{i}\right)$.

Now let $\left(S_{n}\right)^{k}$ be the direct product of k copies of the symmetric group S_{n}, where $n>4$. (The results of this section are not in general true for $n \leqq 4$, although analogous results may be obtained by treating each case separately.)

We wish to determine all normal subgroups of $\left(S_{n}\right)^{k}$. For $k=1$, there are exactly three: $1, A_{n}$, and S_{n}. Suppose the normal subgroups of $\left(S_{n}\right)^{r}$ for $r<k$ have been determined. Then if $N \triangleleft\left(S_{n}\right)^{k}$, we may assume that N is not contained in a product of fewer than k copies of S_{n}. By the simplicity of $A_{n}, N \supseteq\left(A_{n}\right)^{k}$ and so N is a $C C$-subgroup.

Now $\left(S_{n}\right)^{k} /\left(A_{n}\right)^{k}$ is an elementary abelian 2-group, which may be considered as the vector space P (over \mathbf{Z}_{2}) of subsets of the set $K=\{1,2, \cdots, k\}$, where addition is defined by symmetric difference. There is therefore a $1-1$ correspondence σ between $C C$ -
subgroups of $\left(S_{n}\right)^{k}$ and subspaces of P. We proceed to show that this correspondence can be made canonical.

If N is a $C C$-subgroup of $\left(S_{n}\right)^{k}$, let $\sigma(N)$ be the subspace of P spanned by the set of all $U \subseteq K$ such that $\Pi_{i \in U} x_{i} \in A_{n}$ for all $\left(x_{1}, \cdots, x_{k}\right) \in N$. Conversely, if S is a subspace of P, let N be that $C C$ subgroup of $\left(S_{n}\right)^{k}$ consisting of all elements $\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ such that $\Pi_{i \in R} x_{i} \in A_{n}$ for all $R \in S$. It is easily verified that $\sigma(N)=S$, and that σ is a Galois correspondence, i.e., it is $1-1$ and reverses inclusion.

For example, $\left(S_{n}\right)^{2} /\left(A_{n}\right)^{2}$ is isomorphic to the Klein group $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$, which has 5 subgroups (subspaces). There are therefore $5 C C$ subgroups of $\left(S_{n}\right)^{2}$ viz., $\left(A_{n}\right)^{2}, A_{n} \times S_{n}, S_{n} \times A_{n},\left\{\left(x_{1}, x_{2}\right) \mid x_{1} x_{2} \in A_{n}\right\}$, and $\left(S_{n}\right)^{2}$. If we add to these the subgroups $1 \times 1,1 \times A_{n}, A_{n} \times 1,1 \times S_{n}$, and $S_{n} \times 1$, we find that there is a total of 10 normal subgroups in $\left(S_{n}\right)^{2}$.

Now $e_{1}, e_{2}, \cdots, e_{k}$ where $e_{i}=\{i\}$ form a basis of P. Under σ, e_{i} corresponds to the subgroup of all $\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in\left(S_{n}\right)^{k}$ such that x_{i} is even. We define a coordinate plane to be a subspace of P spanned by some collection of the e_{i}, and call it proper if it has dimension $<k$. It is not hard to see that a $C C$-subgroup N of $\left(S_{n}\right)^{k}$ is a nontrivial direct product of two normal subgroups of $\left(S_{n}\right)^{k}$ if and only if $\sigma(N)$ is the direct sum of two subspaces of P, contained respectively in complementary proper coordinate planes.

We now recall the following well-known facts:
(i) For $n>4, n \neq 6$, Aut $S_{n} \cong$ Aut $A_{n} \cong S_{n}$. Moreover, Aut $S_{6} \cong$ Aut A_{6} and [Aut $S_{6}: \operatorname{Inn} S_{6}$] $=2$.
(ii) (Mathewson [1]) For $n>4, \quad \operatorname{Aut}\left(S_{n}\right)^{k} \cong \operatorname{Aut}\left(A_{n}\right)^{k} \cong$ (Aut $\left.S_{n}\right)^{k} x_{s} S_{k}$.

In words, every automorphism of $S_{n}(n>4, n \neq 6)$ is inner, while every automorphism of $\left(S_{n}\right)^{k}(n>4, n \neq 6)$ is the product of an inner automorphism and an automorphism which permutes the k factors. For $n>4$, the automorphism group of $A_{n}\left(\operatorname{resp} .\left(A_{n}\right)^{k}\right)$ is the same as that of $S_{n}\left(\operatorname{resp} .\left(S_{n}\right)^{k}\right)$.

Theorem 3. Let N be a CC-subgroup of $\left(S_{n}\right)^{k}$. Then every automorphism of N is induced by an automorphism of $\left(S_{n}\right)^{k}$.

Proof. Let $\theta \in$ Aut N. By the above, the action of θ on $\left(A_{n}\right)^{k}$ is that of the product of a rigid automorphism of $\left(A_{n}\right)^{k}$ and an automorphism which permutes the k factors of $\left(A_{n}\right)^{k}$. Multiplying θ by a rigid automorphism of $\left(S_{n}\right)^{k}$ (itself an automorphism of N), we may assume that the action of θ on $\left(A_{n}\right)^{k}$ is simply a permutation π of the k factors.

Let $x \in N$ with $\theta(x)=y$ and $e \in\left(A_{n}\right)^{k}$ with $\theta(e)=e^{\pi}$. Since $x^{-1} e x \in\left(A_{n}\right)^{k}$, we have $\theta\left(x^{-1} e x\right)=x^{-\pi} e^{\pi} x^{\pi}$. But also $\theta\left(x^{-1} e x\right)=$ $y^{-1} e^{\pi} y$. As e is arbitrary in $\left(A_{n}\right)^{k}, x^{\pi} y^{-1}$ is in the centralizer of $\left(A_{n}\right)^{k}$, which is trivial, so $y=x^{\pi}$. Thus every automorphism of N is the
product of a rigid automorphism of $\left(S_{n}\right)^{k}$ and an automorphism which permutes the k factors. The theorem follows.

In general, not all automorphisms of $\left(S_{n}\right)^{k}$ actually restrict to automorphisms of a given $C C$ - subgroup N, since not all permutations of the k factors leave N invariant. If $S=\sigma(N)$ is the corresponding subspace of P, let Γ denote the group of permutation matrices (with respect to the basis $e_{1}, e_{2}, \cdots, e_{k}$) which leave S invariant. Then Aut $N \cong\left(\text { Aut } S_{n}\right)^{k} x_{s} \Gamma$.

Theorem 4. The characteristic subgroups of $\left(S_{n}\right)^{k}$ are:
1, $\left(S_{n}\right)^{k},\left(A_{n}\right)^{k}, T_{1}$, and T_{2}, where $T_{1}=\left\{\left(x_{1}, x_{2}, \cdots, x_{k}\right) \mid \Pi_{i=1}^{k} x_{i} \in A_{n}\right\}$, and $T_{2}=\left\{\left(x_{1}, x_{2}, \cdots, x_{k}\right) \mid \Pi_{i<1} x_{i} x_{j} \in A_{n}\right.$ for all $\left.i, j\right\}$. (Note that $T_{1}=T_{2}$ in case $k=2$.)

Proof. It is clear that except for 1 , any characteristic subgroup of $\left(S_{n}\right)^{k}$ contains $\left(A_{n}\right)^{k}$, for otherwise it would be contained in a direct product of fewer than k copies of S_{n}, and hence not be characteristic. In terms of P, we must show that the only subspaces S invariant under all permutations of the coordinates are \varnothing, P, the 1 -dimensional subspace V_{1} spanned by $e_{1}+e_{2}+\cdots+e_{k}$, and the $(k-1)$-dimensional subspace V_{2} spanned by all $e_{1}+e_{r}$.

That these are all invariant is immediate. Assume now that S is invariant, and suppose that $a_{1} e_{1}+\cdots+a_{r} e_{r}+\cdots+a_{s} e_{s}+\cdots+a_{k} e_{k} \in S$, where $a_{r}+a_{s} \neq 0$ for some choice of r and s (otherwise $S=\varnothing$ or $S=V_{1}$). By invariance, $a_{1} e_{1}+\cdots+a_{r} e_{s}+\cdots+a_{s} e_{r}+\cdots+a_{k} e_{k} \in S$, and adding gives $\left(a_{r}+a_{s}\right) e_{r}+\left(a_{r}+a_{s}\right) e_{s} \in S$, so that $e_{r}+e_{s} \in S$. Again by invariance, we conclude that $e_{i}+e_{j} \in S$ for all i, j, so either $S=P$ or $S=V_{2}$.

The question of determining exactly which groups can arise as the group Γ of "admissible" permutation matrices for a given $C C$-subgroup N will be dealt with in a future paper.

References

[^0]Received September 3, 1974, and in revised form October 14, 1974.

[^0]: 1. L. C. Mathewson, Theorems on the groups of isomorphisms of certain groups, Amer. J. Math., $\mathbf{3 8}$ (1916), 19-44.
 2. M. Suzuki, Structure of a Group and the Structure of its Lattice of Subgroups, Springer-Verlag, 1967.
 3. H. Zassenhaus, The Theory of Groups, Chelsea, 1958.
