BROWNIAN MOTION AND SETS OF MULTIPLICITY

Robert Kaufman

$X(t)$ is Brownian motion on the axis $-\infty<t<\infty$, with paths in $R^{n}, n \geqq 2$. $\quad X(t)$ leads to composed mappings $f \circ X$, where f is a real-valued function of class $\Lambda^{\alpha}\left(R^{n}\right)$, whose gradient never vanishes. To define the class $\Lambda^{\alpha}\left(R^{n}\right)$, when $\alpha>1$, take the integer p in the interval $\alpha-1 \leqq p<\alpha$ and require that f have continuous partial derivatives of orders $1, \cdots, p$ and these fulfill a Lipschitz condition in exponent $\alpha-p$ on each compact set; to specify further that grad $f \neq 0$ throughout R^{n}, write Λ_{+}^{α}. Then a closed set T is a set of " Λ^{α}-multiplicity" if every transform $f(T) \subseteq R^{1}\left(f \in \Lambda_{+}^{a}\right)$ is a set of strict multiplicity an M_{0}-set (see below). Henceforth we define $b=\alpha^{-1}$ and take S to be a closed linear set.

Theorem 1. In order that $X(S)$ be almost surely a set of Λ^{α} multiplicity, it is sufficient that the Hausdorff dimension of S exceed b. It is not sufficient that $\operatorname{dim} S=b$.

An M_{0}-set in R is one carrying a measure $\mu \neq 0$ whose FourierStieltjes transform vanishes at infinity; the theory of M_{0}-sets is propounded in [1, p. 57] and [8, pp. 344, 348, 383] and Hausdorff dimension is treated in [1, II-III]. Theorem 1 reveals a difference between multi-dimensional Brownian motion and the linear process; for linear paths the critical point is $\operatorname{dim} S=\frac{1}{2} b$ [5]. Theorem 2 below contains a sharper form of the sufficiency condition.

Theorem 2. Let S be a compact set, carrying a probability measure μ for which

$$
h(u) \equiv \sup \mu(x, x+u)=o\left(u^{b}\right) \cdot|\log u|^{-1}
$$

Then $X(S)$ is almost surely a set of Λ^{α}-multiplicity.

1. (Proof of Theorem 2) We can assume that S is mapped by X entirely within some fixed ball B in R^{n} and that all elements f appearing below are bounded in Λ^{α}-norm over B (defined in analogy with the norms in Banach spaces of Lipschitz functions). Moreover we can assume that all gradients fulfill an inequality $\|\nabla\| \geqq \delta>0$ on all of B, and even on all of R^{n}.
(a) There is a function $\xi(u)>0$ of u so that $\lim u^{-1} \xi(u)=+\infty$ and $h(\xi(u))=o\left(u^{b}\right)|\log u|^{-1}$ as $u \rightarrow 0+$. In proving that all sets $f \circ X(S)$ are M_{0}-sets, we study integrals $\int \exp -2 \pi i y f \circ X(s) \cdot \mu(d s)$, since these are the Fourier-Stieltjes transforms of probability measures carried by $f \circ X(S)$. Our plan is to estimate the probability of an event $\left|\int\right|>\eta$ for an individual f and y, and then combine a large enough number of these inequalities to obtain a bound for all functions f in question. The individual estimations are obtained as in [5, pp. 60-61], using the independence of increments of X. To obtain a uniform estimate on the expected values, similar to that in [5], we divide S into intervals of length rather larger than y^{-2}. The expected values are then integral involving the normal density in R^{n}, and these are handled by integration first along straight lines approximately parallel to ∇f. For each $\eta>0$ we find

$$
P\left\{\left|\int \exp -2 \pi i y f \circ X(s) \mu(d s)\right|>\eta\right\}<\exp -A(\eta) \psi(y) \log y \cdot y^{2 b}
$$

where $A(\eta)>0$ and $\psi(y) \rightarrow+\infty$ with y.
(b) To each large y and $\eta>0$ we shall find a determinate set $L(y)$ in Λ_{+}^{α}, with this property: there is a random number y_{0}, almost surely finite, and a random set S^{*} of μ-measure $1-\eta$; to each function f in Λ_{+}^{α} there is a function f_{1} in $L(y)$, such that $\left|f-f_{1}\right| \leqq \eta y^{-1}$ on $X\left(S^{*}\right)$ - all this for $y>y_{0}$. Moreover $L(y)$ contains at most $\exp A^{\prime}(\eta) y^{2 b} \log y$ elements f_{1}. When $L(y)$ has been secured, we let y tend to $+\infty$ along the sequence $1, \sqrt{2}, \cdots, k^{1 / 2}, \cdots$ for example, and use the Borel-Cantelli Lemma to estimate the integrals involving $f_{1} \in L(y)$. The properties of $L(y)$ allow us to extend our almost-sure inequalities to all of Λ_{+}^{α}.

At the corresponding stage in the treatment of linear Brownian motion, Kolmogorov's estimates of entropy in the space $\Lambda^{\alpha}[-1,1]$ are exploited; an interesting aspect of the argument below is the minor role of the dimension n. Compare [6, Ch. 9-10].
(c) In carrying out the program of (b) we let y increase through the sequence $2^{k \alpha}(k=1,2,3, \cdots)$ and observe that the sets $L\left(2^{k \alpha}\right)$ will serve for $2^{(k-1) \alpha} \leqq y \leqq 2^{k \alpha}$. To each $\eta>0$ we can find a constant C_{1} so large that the inequality $\|X(t)\| \leqq C_{1}, 0 \leqq t \leqq 1$, is valid with $P>1-\frac{1}{2} \eta$. We divide the t-axis into adjacent intervals I of length 4^{-k} and write μ_{k}^{*} for the total μ-measure of those t-intervals on which $X(t)$ oscillates more than $2 C_{1} \cdot 2^{-k}$. By the scaling of X, and by independence of increments, we find upper bounds for the mean and variance of μ_{k}^{*}, namely $E\left(\mu_{k}^{*}\right)<\frac{1}{2} \eta$ and $\sigma^{2}\left(\mu_{k}^{*}\right) \leqq 0(1) h\left(4^{-k}\right)$. By Chebyshev's inequality, $P\left\{\mu_{k}^{*}>\eta\right\} \leqq 0(1) h\left(4^{-k}\right)$, and from $\sum h\left(4^{-k}\right)<+\infty$ we conclude that $\mu_{k}^{*}<\eta$ for large k, almost surely. The complementary intervals now form S^{*}, so that $X\left(S^{*}\right)$ is contained in $0\left(4^{k}\right)$ subsets of R^{n}, of diameter $C_{1} \cdot 2^{1-k}$. (By our standing assumptions, $\left\|X\left(S^{*}\right)\right\| \leqq B$). Let η_{1} be a small constant, depending on η and the Lipschitz constants of the
functions f, and let us cover the ball $\|X\| \leqq B$ with a grid of rectangles of side $\eta_{1} 2^{-k}$; for large n the grid contains $<2^{(n+1) k}$ cells. Moreover $X\left(S^{*}\right)$ is contained in $C_{2} 4^{k}$ of these cells, and these cells can be chosen in at most $\exp C_{3} k 4^{k}$ different ways. For each set T_{0}, composed of $C_{2} 4^{k}$ cells, we construct a "matching set" $L\left(y, T_{0}\right) \subseteq \Lambda_{+}^{\alpha}$ of the proper cardinality. As the sets T_{0} are not too numerous, the join of all sets $L\left(y, T_{0}\right)$ in Λ_{+}^{α} will be our set $L(y)$.

On each cell we replace each f by its Taylor expansion about the center, up to derivatives of order p; if η_{1} is sufficiently small, the Taylor expansion deviates from f by at most $1 / 8 \eta \cdot 2^{-k \alpha}$, and the totality of functions so constructed has dimension $\leqq(p+1)^{\eta} \cdot C_{2} 4^{k}$. At points common to two or more cells in T, we replace the Taylor expansion by 0 . Now we have a finite dimensional subspace of the Banach space of bounded functions on T-and by the inequality between "widths and entropy" [6, p. 164] the totality of approximating functions is contained in $\exp C_{4} k 4^{k}$ sets of diameter $1 / 8 \eta 2^{-k \alpha}$. From elementary inequalities in metric spaces, we can cover all the functions f by the same number of balls, of radius $\frac{1}{2} \eta \cdot 2^{-k \alpha}$ in the uniform norm on T, centered at functions f. Now $k 4^{k}=0(1) y^{2 b} \log y$ so the set $L(y)$ is small enough to complete the proof of Theorem 2.
2. (Proof of Theorem 1). First we find a set S of Hausdorff dimension b_{1}, arbitrarily close to b, such that $X(S)$ is not a set of Λ^{α}-multiplicity.

Let α_{1} and c be chosen so that $b_{1}^{-1}>\alpha_{1}>\alpha$ and $1<c<$ $\alpha^{-1} \alpha_{1}$. Then let M be a sequence of positive integers m such that each set $\{m \in M, m \leqq k\}$ has at least $b_{1} k$ elements; then the set $S=S_{M}$ of all sums $\Sigma \pm 2^{-m}$ has Hausdorff dimension at least b_{1}. In addition, we assume that M contains infinitely many pairs of consecutive elements q, q_{1} such that $q_{1}>\alpha_{1} q$. Sequences M exist because $\alpha_{1} b_{1}<1$. Each number q of this type determines a division of S into at most 2^{q} subsets S_{p}, based on the coordinates for $m \leqq q$: each S_{p} has diameter $<4 \cdot 2^{-q_{1}}$, and the sets S_{p} have mutual distances $\geqq 2^{-q-1}$.

For large enough q, the sets $X\left(S_{p}\right)$ are dispersed in a sense to be made precise in a moment. Taking an integer $s>1+(c-1)^{-1}$ we investigate the event that s distinct sets S_{p} are mapped within $d=2^{-q c / 2}$ of each other. By a famous inequality of Paul Lévy, the sets $X\left(S_{p}\right)$ have diameters $o\left(q_{1} 2^{-q_{1} / 2}\right)=o(d)$ for large q, so we can simplify the calculation by taking $t_{p} \in S_{p}$ and bounding the probability that s numbers t_{p} are mapped within $2 d$ of each other. We use the scaling property and independence of increments, with the observation that $n=2$ is the least favorable case. An s-tuple leads to an event of probability $0(1) \cdot \Pi d^{2}\left|u_{j+1}-u_{j}\right|^{-1}$. We sum this for all s-tuples chosen from the numbers t_{p} and recall that u_{1} takes at most 2^{q} values. Each factor $d^{2}\left|u_{j+1}-u_{j}\right|^{-1}$ adds a factor $2^{q} q \cdot d^{2}$ to the sum. From the formula
$d=2^{-q c / 2}$ and the inequality $(s-1) c-(s-1)>1$, we find that the sum has magnitude $2^{-\delta q}$ for some $\delta>0$. The Borel-Cantelli Lemma then shows that the dispersion property holds for large q, with probability 1 .

Now $X(S)$ is a union of sets of diameter $<d_{1}=q_{1} 2^{-q_{1,2}}$ and at most $s-1$ sets $X\left(S_{p}\right)$ have mutual distances $<d$. Moreover $d>d_{1}^{\beta}$ for some $\beta<\alpha^{-1}$ because $c<\alpha^{-1} \alpha_{1}$. It is proved in $\{2,5, \mathrm{p} .66]$ that $f \circ X(S)$ is not an M_{0}-set (nor even an M-set) for all f in Λ^{α} except a set of first category. Of course Λ_{+}^{α} is an open subset of Λ^{α} so the same is true of Λ_{+}^{α}.

To finish the proof of the negative statement in Theorem 1, we let b_{1} increase to b along a sequence and choose a union of sets S_{M}, wherein M depends on b_{1}. As the union is countable, the union of the meager sets obtained for each S_{M} is again meager, and it is classical that, for measures μ such that $\hat{\mu}(\infty)=0$, the entire space $L^{1}(\mu)$ inherits this property. This completes the proof of the second assertion in Theorem 1.

The positive assertion is a consequence of Theorem 2: by a theorem of Frostman [1, II-III] any closed set of Hausdorff dimension $>b$ carries a measure μ fulfilling the inequalities of Theorem 2 .

A problem that appears much more difficult is the behavior of sets S with "strong dimension" $b: S$ is not the union of a sequence $U S_{m}$, $\operatorname{dim} S_{m}<b$. These sets can be characterized in the theory of Hausdorff measures [7]. Some of the analysis is done in [3,4].

References

1. J.-P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963.
2. R. Kaufman, A functional method for linear sets, Israel J. Math. 5 (1967), 785-787.
3. R. Kaufman, Une propriété métrique du mouvement brownien, C.R. Acad. Sci. Paris 268 A (1969), 727-728.
4. R. Kaufman, Brownian motion and dimension of perfect sets, Canad. J. Math. 22 (1970), 674-680.
5. R. Kaufman, Brownian motion, approximation of functions, and Fourier analysis, Studia Math. (to appear).
6. G. G. Lorentz, Approximation of Functions, Holt, New York, 1966.
7. C. A. Rogers, Sets non- σ-finite for Hausdorff measures, Mathematika 9 (1962), 95-103.
8. A. Zygmund, Trigonometric Series I. Cambridge, 1959 and 1966.

Received December 11, 1973 and in revised form March 15, 1974. Alfred P. Sloan Fellow.

