BROWNIAN MOTION AND SETS OF MULTIPLICITY

ROBERT KAUFMAN

X(t) is Brownian motion on the axis $-\infty < t < \infty$, with paths in \mathbb{R}^n , $n \ge 2$. X(t) leads to composed mappings $f \circ X$, where f is a real-valued function of class $\Lambda^{\alpha}(\mathbb{R}^n)$, whose gradient never vanishes. To define the class $\Lambda^{\alpha}(\mathbb{R}^n)$, when $\alpha > 1$, take the integer p in the interval $\alpha - 1 \le p < \alpha$ and require that f have continuous partial derivatives of orders $1, \dots, p$ and these fulfill a Lipschitz condition in exponent $\alpha - p$ on each compact set; to specify further that grad $f \ne 0$ throughout \mathbb{R}^n , write Λ^{α}_+ . Then a closed set T is a set of " Λ^{α} -multiplicity" if every transform $f(T) \subseteq \mathbb{R}^1(f \in \Lambda^{\alpha}_+)$ is a set of strict multiplicity an M_0 -set (see below). Henceforth we define $b = \alpha^{-1}$ and take S to be a closed linear set.

THEOREM 1. In order that X(S) be almost surely a set of Λ^{α} -multiplicity, it is sufficient that the Hausdorff dimension of S exceed b. It is not sufficient that dim S = b.

An M_0 -set in R is one carrying a measure $\mu \neq 0$ whose Fourier-Stieltjes transform vanishes at infinity; the theory of M_0 -sets is propounded in [1, p. 57] and [8, pp. 344, 348, 383] and Hausdorff dimension is treated in [1, II—III]. Theorem 1 reveals a difference between multi-dimensional Brownian motion and the linear process; for linear paths the critical point is dim $S = \frac{1}{2}b$ [5]. Theorem 2 below contains a sharper form of the sufficiency condition.

THEOREM 2. Let S be a compact set, carrying a probability measure μ for which

$$h(u) \equiv \sup \mu(x, x + u) = o(u^b) \cdot |\log u|^{-1}.$$

Then X(S) is almost surely a set of Λ^{α} -multiplicity.

1. (Proof of Theorem 2) We can assume that S is mapped by X entirely within some fixed ball B in \mathbb{R}^n and that all elements f appearing below are bounded in Λ^{α} -norm over B (defined in analogy with the norms in Banach spaces of Lipschitz functions). Moreover we can assume that all gradients fulfill an inequality $\|\nabla\| \ge \delta > 0$ on all of B, and even on all of \mathbb{R}^n .

(a) There is a function $\xi(u) > 0$ of u so that $\lim u^{-1}\xi(u) = +\infty$ and $h(\xi(u)) = o(u^b) |\log u|^{-1}$ as $u \to 0+$. In proving that all sets $f \circ X(S)$ are M_0 -sets, we study integrals $\int \exp -2\pi i y f \circ X(s) \cdot \mu(ds)$, since these are the Fourier-Stieltjes transforms of probability measures carried by $f \circ X(S)$. Our plan is to estimate the probability of an event $|f| > \eta$ for an individual f and y, and then combine a large enough number of these inequalities to obtain a bound for *all* functions f in question. The individual estimations are obtained as in [5, pp. 60-61], using the independence of increments of X. To obtain a uniform estimate on the expected values, similar to that in [5], we divide S into intervals of length rather larger than y^{-2} . The expected values are then integral involving the normal density in \mathbb{R}^n , and these are handled by integration first along straight lines approximately parallel to ∇f . For each $\eta > 0$ we find

$$P\{\left|\int \exp(-2\pi i y f \circ X(s) \mu(ds)\right| > \eta\} < \exp(-A(\eta)\psi(y)\log y \cdot y^{2b})$$

where $A(\eta) > 0$ and $\psi(y) \rightarrow +\infty$ with y.

(b) To each large y and $\eta > 0$ we shall find a determinate set L(y)in Λ_{+}^{α} , with this property: there is a random number y_0 , almost surely finite, and a random set S^* of μ -measure $1 - \eta$; to each function f in Λ_{+}^{α} there is a function f_1 in L(y), such that $|f - f_1| \leq \eta y^{-1}$ on $X(S^*)$ —all this for $y > y_0$. Moreover L(y) contains at most $\exp A'(\eta)y^{2b} \log y$ elements f_1 . When L(y) has been secured, we let y tend to $+\infty$ along the sequence $1, \sqrt{2}, \dots, k^{1/2}, \dots$ for example, and use the Borel-Cantelli Lemma to estimate the integrals involving $f_1 \in L(y)$. The properties of L(y) allow us to extend our almost-sure inequalities to all of Λ_{+}^{α} .

At the corresponding stage in the treatment of linear Brownian motion, Kolmogorov's estimates of entropy in the space $\Lambda^{\alpha}[-1,1]$ are exploited; an interesting aspect of the argument below is the minor role of the dimension *n*. Compare [6, Ch. 9–10].

(c) In carrying out the program of (b) we let y increase through the sequence $2^{k\alpha}(k = 1, 2, 3, \cdots)$ and observe that the sets $L(2^{k\alpha})$ will serve for $2^{(k-1)\alpha} \leq y \leq 2^{k\alpha}$. To each $\eta > 0$ we can find a constant C_1 so large that the inequality $||X(t)|| \leq C_1$, $0 \leq t \leq 1$, is valid with $P > 1 - \frac{1}{2}\eta$. We divide the t-axis into adjacent intervals I of length 4^{-k} and write μ_k^* for the total μ -measure of those t-intervals on which X(t) oscillates more than $2C_1 \cdot 2^{-k}$. By the scaling of X, and by independence of increments, we find upper bounds for the mean and variance of μ_k^* , namely $E(\mu_k^*) < \frac{1}{2}\eta$ and $\sigma^2(\mu_k^*) \leq 0(1)h(4^{-k})$. By Chebyshev's inequality, $P\{\mu_k^* > \eta\} \leq 0(1)h(4^{-k})$, and from $\Sigma h(4^{-k}) < +\infty$ we conclude that $\mu_k^* < \eta$ for large k, almost surely. The complementary intervals now form S^* , so that $X(S^*)$ is contained in $0(4^k)$ subsets of R^n , of diameter $C_1 \cdot 2^{1-k}$. (By our standing assumptions, $||X(S^*)|| \leq B$). Let η_1 be a small constant, depending on η and the Lipschitz constants of the

functions f, and let us cover the ball $||X|| \leq B$ with a grid of rectangles of side $\eta_1 2^{-k}$; for large n the grid contains $< 2^{(n+1)k}$ cells. Moreover $X(S^*)$ is contained in $C_2 4^k$ of these cells, and these cells can be chosen in at most exp $C_3 k 4^k$ different ways. For each set T_0 , composed of $C_2 4^k$ cells, we construct a "matching set" $L(y, T_0) \subseteq \Lambda^{\alpha}_+$ of the proper cardinality. As the sets T_0 are not too numerous, the join of all sets $L(y, T_0)$ in Λ^{α}_+ will be our set L(y).

On each cell we replace each f by its Taylor expansion about the center, up to derivatives of order p; if η_1 is sufficiently small, the Taylor expansion deviates from f by at most $1/8 \eta \cdot 2^{-k\alpha}$, and the totality of functions so constructed has dimension $\leq (p+1)^{\eta} \cdot C_2 4^k$. At points common to two or more cells in T, we replace the Taylor expansion by 0. Now we have a finite dimensional subspace of the Banach space of bounded functions on T—and by the inequality between "widths and entropy" [6, p. 164] the totality of approximating functions is contained in exp $C_4 k 4^k$ sets of diameter $1/8 \eta 2^{-k\alpha}$. From elementary inequalities in metric spaces, we can cover all the functions f by the same number of balls, of radius $\frac{1}{2} \eta \cdot 2^{-k\alpha}$ in the uniform norm on T, centered at functions f. Now $k 4^k = 0(1) y^{2b} \log y$ so the set L(y) is small enough to complete the proof of Theorem 2.

2. (Proof of Theorem 1). First we find a set S of Hausdorff dimension b_1 , arbitrarily close to b, such that X(S) is not a set of Λ^{α} -multiplicity.

Let α_1 and c be chosen so that $b_1^{-1} > \alpha_1 > \alpha$ and $1 < c < \alpha^{-1}\alpha_1$. Then let M be a sequence of positive integers m such that each set $\{m \in M, m \leq k\}$ has at least b_1k elements; then the set $S = S_M$ of all sums $\Sigma \pm 2^{-m}$ has Hausdorff dimension at least b_1 . In addition, we assume that M contains infinitely many pairs of consecutive elements q, q_1 such that $q_1 > \alpha_1 q$. Sequences M exist because $\alpha_1 b_1 < 1$. Each number q of this type determines a division of S into at most 2^q subsets S_p , based on the coordinates for $m \leq q$: each S_p has diameter $< 4 \cdot 2^{-q_1}$, and the sets S_p have mutual distances $\geq 2^{-q-1}$.

For large enough q, the sets $X(S_p)$ are dispersed in a sense to be made precise in a moment. Taking an integer $s > 1 + (c-1)^{-1}$ we investigate the event that s distinct sets S_p are mapped within $d = 2^{-qc/2}$ of each other. By a famous inequality of Paul Lévy, the sets $X(S_p)$ have diameters $o(q_1 2^{-q_1/2}) = o(d)$ for large q, so we can simplify the calculation by taking $t_p \in S_p$ and bounding the probability that s numbers t_p are mapped within 2d of each other. We use the scaling property and independence of increments, with the observation that n = 2 is the least favorable case. An s-tuple leads to an event of probability $0(1) \cdot \prod d^2 |u_{j+1} - u_j|^{-1}$. We sum this for all s-tuples chosen from the numbers t_p and recall that u_1 takes at most 2^q values. Each factor $d^2 |u_{j+1} - u_j|^{-1}$ adds a factor $2^q q \cdot d^2$ to the sum. From the formula $d = 2^{-qc/2}$ and the inequality (s-1)c - (s-1) > 1, we find that the sum has magnitude $2^{-\delta q}$ for some $\delta > 0$. The Borel-Cantelli Lemma then shows that the dispersion property holds for large q, with probability 1.

Now X(S) is a union of sets of diameter $\langle d_1 = q_1 2^{-q_{1/2}}$ and at most s - 1 sets $X(S_p)$ have mutual distances $\langle d$. Moreover $d > d_1^{\beta}$ for some $\beta < \alpha^{-1}$ because $c < \alpha^{-1}\alpha_1$. It is proved in [2, 5, p. 66] that $f \circ X(S)$ is not an M_0 -set (nor even an M-set) for all f in Λ^{α} except a set of first category. Of course Λ^{α}_+ is an open subset of Λ^{α} so the same is true of Λ^{α}_+ .

To finish the proof of the negative statement in Theorem 1, we let b_1 increase to b along a sequence and choose a union of sets S_M , wherein M depends on b_1 . As the union is countable, the union of the meager sets obtained for each S_M is again meager, and it is classical that, for measures μ such that $\hat{\mu}(\infty) = 0$, the entire space $L^1(\mu)$ inherits this property. This completes the proof of the second assertion in Theorem 1.

The positive assertion is a consequence of Theorem 2: by a theorem of Frostman [1, II–III] any closed set of Hausdorff dimension > b carries a measure μ fulfilling the inequalities of Theorem 2.

A problem that appears much more difficult is the behavior of sets S with "strong dimension" b: S is not the union of a sequence US_m , dim $S_m < b$. These sets can be characterized in the theory of Hausdorff measures [7]. Some of the analysis is done in [3,4].

References

1. J.-P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963.

2. R. Kaufman, A functional method for linear sets, Israel J. Math. 5 (1967), 785-787.

3. R. Kaufman, Une propriété métrique du mouvement brownien, C.R. Acad. Sci. Paris 268 A (1969), 727-728.

4. R. Kaufman, Brownian motion and dimension of perfect sets, Canad. J. Math. 22 (1970), 674-680.

5. R. Kaufman, Brownian motion, approximation of functions, and Fourier analysis, Studia Math. (to appear).

6. G. G. Lorentz, Approximation of Functions, Holt, New York, 1966.

7. C. A. Rogers, Sets non-o-finite for Hausdorff measures, Mathematika 9 (1962), 95-103.

8. A. Zygmund, Trigonometric Series I. Cambridge, 1959 and 1966.

Received December 11, 1973 and in revised form March 15, 1974. Alfred P. Sloan Fellow.

UNIVERSITY OF ILLINOIS