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BROWNIAN MOTION AND SETS OF MULTIPLICITY

ROBERT KAUFMAN

X(t) is Brownian motion on the axis - °° < t < «, with
paths in Rn, n^2. X(t) leads to composed mappings /°X,
where / is a real-valued function of class Λα (R n), whose gradient
never vanishes. To define the class Aa(Rn), when a > 1, take
the integer p in the interval α - 1 ̂  p < a and require that /
have continuous partial derivatives of orders 1, ,p and these
fulfill a Lipschitz condition in exponent a - p on each compact
set; to specify further that grad fφ 0 throughout Rn, write
Λϊ. Then a closed set T is a set of "Λα-multiplicity" if every
transform fWQR'ifeAϊ) is a set of strict multiplicity—
an Mo-set (see'below). Henceforth we define b = α" 1 and take 5
to be a closed linear set.

THEOREM 1. In order that X(S) be almost surely a set of Λ°-
multiplicity, it is sufficient that the Hausdorff dimension of S exceed b. It
is not sufficient that dim S = b.

An Mo-set in JR is one carrying a measure μ ^ 0 whose Fourier-
Stieltjes transform vanishes at infinity; the theory of M0-sets is pro-
pounded in [1, p. 57] and [8, pp. 344, 348, 383] and Hausdorff dimension
is treated in [1, II—III]. Theorem 1 reveals a difference between
multi-dimensional Brownian motion and the linear process; for linear
paths the critical point is dim S =\b [5]. Theorem 2 below contains a
sharper form of the sufficiency condition.

THEOREM 2. Let S be a compact set, carrying a probability measure
μ for which

h(u) = supμ(x, x + u)= o(ub)- (log u I"1.

Then X{S) is almost surely a set of A01-multiplicity.

1. (Proof of Theorem 2) We can assume that 5 is mapped by X
entirely within some fixed ball B in Rn and that all elements / appearing
below are bounded in Λα-norm over B (defined in analogy with the
norms in Banach spaces of Lipschitz functions). Moreover we can
assume that all gradients fulfill an inequality || V || ^ δ > 0 on all of B, and
even on all of Rn.
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(a) There is a function ξ(u)> 0 of u so that lim u~xξ(u) = + » and
h(ξ(u)) = o(ub) |log M I"1 as w-»0 + . In proving that all sets f°X(S)
are M0-sets, we study integrals fexp-2πiyf°X(s) μ(ds), since these
are the Fourier-Stieltjes transforms of probability measures carried by
/© X(S). Our plan is to estimate the probability of an event j /1 > η for
an individual / and y, and then combine a large enough number of these
inequalities to obtain a bound for all functions / in question. The
individual estimations are obtained as in [5, pp. 60-61], using the
independence of increments of X. To obtain a uniform estimate on the
expected values, similar to that in [5], we divide S into intervals of length
rather larger than y~2. The expected values are then integral involving
the normal density in JR n, and these are handled by integration first along
straight lines approximately parallel to V/. For each η > 0 we find

where A(η)>0 and ^(y)—> + 0 0 with y.
(b) To each large y and η > 0 we shall find a determinate set L (y)

in Λ+, with this property: there is a random number y0, almost surely
finite, and a random set S # of μ -measure 1 - η to each function / in Λ;
there is a function fλ in L(y), such that | / - / i | ^ ηy"1 on X(SΦ)—all this
for y > y0. Moreover L(y) contains at most exp A'(η)y2b logy ele-
ments fu When L(y) has been secured, we let y tend to 4- oo along the
sequence 1,V2, , fc1/2, for example, and use the Borel-Cantelli
Lemma to estimate the integrals involving fλ E L(y). The properties of
L(y) allow us to extend our almost-sure inequalities to all of ΛJ.

At the corresponding stage in the treatment of linear Brownian
motion, Kolmogorov's estimates of entropy in the space Λ α [- 1,1] are
exploited; an interesting aspect of the argument below is the minor role
of the dimension n. Compare [6, Ch. 9-10].

(c) In carrying out the program of (b) we let y increase through the
sequence 2ka(k = 1,2,3, •) and observe that the sets L(2ka) will serve
for 2(fc"1)α g y ^ 2ka. To each η > 0 we can find a constant Cx so large
that the inequality | |X(f) | |^ Cu O g ί ^ l , is valid with P>l-\η. We
divide the f-axis into adjacent intervals I of length 4~k and write μ* for
the total μ -measure of those ί-intervals on which X(t) oscillates more
than 2Ci 2~k. By the scaling of X, and by independence of increments,
we find upper bounds for the mean and variance of μ*, namely
£ ( μ * ) < i η and σ2(μ*k)^0(l)h(4~k). By Chebyshev's inequality,
P{μt>η}^0(l)h(4~k\ and from Σh(4~k)< +oo we conclude that
μ*<η for large k, almost surely. The complementary intervals now
form S#, so that X(SΦ) is contained in 0(4*) subsets of i?n, of diameter
Cχ-2ι~k. (By our standing assumptions, | |X(5#) | | = B). Let τ)λ be a
small constant, depending on η and the Lipschitz constants of the
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functions /, and let us cover the ball || X || ^ B with a grid of rectangles of
side y\(Σ~k for large n the grid contains < 2(n+1)k cells. Moreover X(SΦ)
is contained in C24

k of these cells, and these cells can be chosen in at most
expC3fc4* different ways. For each set To, composed of C24* cells, we
construct a "matching set" L(y, T0)CA+ of the proper cardinality. As
the sets To are not too numerous, the join of all sets L(y, To) in Λ? will be
our set L(y).

On each cell we replace each / by its Taylor expansion about the
center, up to derivatives of order p if Ύ]Λ is sufficiently small, the Taylor
expansion deviates from / by at most 1/8 η 2~ka, and the totality of
functions so constructed has dimension ^ (p + l)v C24\ At points
common to two or more cells in T, we replace the Taylor expansion by
0. Now we have a finite dimensional subspace of the Banach space of
bounded functions on T — and by the inequality between "widths and
entropy" [6, p. 164] the totality of approximating functions is contained
in exp C4k4k sets of diameter 1/8 η2~ka. From elementary inequalities
in metric spaces, we can cover all the functions / by the same number of
balls, of radius \ V ' 2~ka in the uniform norm on T, centered at functions
/. Now k4k = 0(1)y2 b log y so the set L(y) is small enough to complete
the proof of Theorem 2.

2. (Proof of Theorem 1). First we find a set S of Hausdorff
dimension bu arbitrarily close to b, such that X(S) is not a set of
Λα-multiplicity.

Let oίi and c be chosen so that b~ι

1> aλ> a and Kc<
a'lau Then let M be a sequence of positive integers m such that each
set {m E M, m ^ k} has at least b^ elements; then the set S = 5M of all
sums Σ ± 2 ~ m has Hausdorff dimension at least bγ. In addition, we
assume that M contains infinitely many pairs of consecutive elements
q,qx such that qγ> axq. Sequences M exist because aιbι<l. Each
number q of this type determines a division of S into at most 2q subsets
Sp, based on the coordinates for m S q: each Sp has diameter < 4 2~q\
and the sets Sp have mutual distances ^ 2~q~\

For large enough q, the sets X(SP) are dispersed in a sense to be
made precise in a moment. Taking an integer s > 1 + (c — I)"1 we
investigate the event that s distinct sets Sp are mapped within d = 2~qcl2 of
each other. By a famous inequality of Paul Levy, the sets X(SP) have
diameters o(qι2~qt/2) = o(d) for large q, so we can simplify the calculation
by taking tp G Sp and bounding the probability that s numbers tp are
mapped within 2d of each other. We use the scaling property and
independence of increments, with the observation that n = 2 is the least
favorable case. An s-tuple leads to an event of probability
0(1) ΐld2\ iι/+1 - u} I"1. We sum this for all s-tuples chosen from the
numbers tp and recall that uλ takes at most 2q values. Each factor
d2\ M/+i- W/l'1 adds a factor 2qq - d2 to the sum. From the formula
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d = 2~qc/2 and the inequality (5 - l)c - (s - 1)> 1, we find that the sum
has magnitude 2'^ for some δ > 0. The Borel-Cantelli Lemma then
shows that the dispersion property holds for large q, with probability 1.

Now X(S) is a union of sets of diameter < dx = q{Γqm and at most
5 - 1 sets X(SP) have mutual distances < d. Moreover d > d\ for some
β < a'1 because c < a'ιax. It is proved in{2, 5, p. 66] that f°X(S) is not
an Mo-set (nor even an M-set) for all / in Λα except a set of first
category. Of course A+ is an open subset of Λα so the same is true of Λ?.

To finish the proof of the negative statement in Theorem 1, we let b1

increase to b along a sequence and choose a union of sets SM, wherein M
depends on bλ. As the union is countable, the union of the meager sets
obtained for each SM is again meager, and it is classical that, for measures
μ such that μ (0°) = 0, the entire space L\μ) inherits this
property. This completes the proof of the second assertion in Theorem
1.

The positive assertion is a consequence of Theorem 2: by a theorem
of Frostman [1, II—III] any closed set of Hausdorff dimension > b carries
a measure μ fulfilling the inequalities of Theorem 2.

A problem that appears much more difficult is the behavior of sets 5
with "strong dimension" b: S is not the union of a sequence ί/Sm,
dim 5m < b. These sets can be characterized in the theory of Hausdorff
measures [7]. Some of the analysis is done in [3,4].
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