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ON THE EXISTENCE OF GLOBAL CLASSICAL
SOLUTION OF INITIAL-BOUNDARY VALUE

PROBLEM FOR D u - u3 = f

YUKIYOSHI EBIHARA, MITSUHIRO NAKAO AND TOKUMORI NANBU

In this paper we shall give a sufficient condition under which
an initial-boundary value problem f o r D w - u 3 = / has a global
classical solution.

1. Introduct ion. Let ΩC/? 3 be an open bounded domain
with sufficiently smooth boundary dΩ. In this note we are concerned
with the existence of a global solution of the initial-boundary value
problem:

d2

—2 u -Δw + γw3 = /(x, t) for x E Ω, ί > 0 ,
at

(*) u(x, 0) = uo(x), -£ u(x, 0) = «,(*), x e Ω,

σt

and

u(x,t)\dn = 0 for ί ^ O ,

where Δ is the Laplacian in R3 and γ = - 1.
For the equation (*) with γ = + 1 instead of - 1, as is well known,

the existence of a global classical solution was proved by J. Sather
[4]. His method, however, depends largely on the monotonically in-
creasingness of the term w3, and is not applicable to our problem in its
original form.

On the other hand D. H. Sattinger [5] introduced the concept of
potential well (stable set) to show the existence of global but generalized
solutions of the initial-boundary problems of hyperbolic equations with
non-monotonic nonlinear terms, though in the case f(x, t) = 0. The
method of potential well is useful also for nonlinear partial differential
equations of other types (Lions [2], Tsutsumi [6]).

Now, a local existence of a classical solution for (*) is known
(Ebihara [1]), but that of a global one seems to be unknown and the aim
of this note is to give it by combining the method of Sather's with the one
of Sattinger's.

Roughly speaking our result is: Let {w0, wj belong to the stable set
and be sufficiently smooth, and moreover let / have small norm and be
smooth. Then (*) admits a global classical solution.
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Though we treat only a typical equation with also typical nonlinear
term, our method should be applicable to more general ones.

2. Pre l iminar ies . Throughout this paper the functions consi-
dered are all real valued and the notations are as usual (e.g. Lions [2],
Mizohata [3]). In this section we offer some lemmas which will be used
later.

LEMMA 1 (Sobolev). (i) // 1 g q g 6, we have

|| u II L<(Ω) ^ C0(q, Ω) || u || H.(Ω) for u G H\ίl).

(ii) // k is a nonnegative integer, we have

I ii I fc - < C (k O\ II u II 2+fc f o r u ί= R 2 + k f f M
I ^ I C (Ω) = ^ l V ^ ? **7 II ^ II H (Ω) 7 ^ ' ^ —̂ ** V1**̂ /*

For brevity we use the notations | |, || ||, | | q for || || L2(Ω), || V || L2(Ω),
I * |L"(Ω)> respectively.

We define 'kinetic' and 'potential' energies associated with our
equation by the functionals

K(u)= ί h\ut{x,t)\2dx=\\ut{t)\2

JΩ

and

J(u)= (2\Vu(x, t)\2-\u*)dx =ϊ\\u(t)\\2-\\u(t)\t7
JΩ

and according to [5] we put

d = inf J(λλu),

where λx = λt(w) ( ^ 0) is the first value of A ^ 0 at which /(λw) begins to
decrease. Then with the aid of Lemma 1, we have (see also Tsutsumi
[6]):

LEMMA 2. The number d satisfies
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Now the potential well W is defined as

W=JLuEHι(ίl)\O^J(λu)<d for O^λ^l}.

Then we have:

LEMMA 3 (Sattinger). The set W is bounded in Hι(Ω).

For convenience we say the initial data {w0, wj belongs to the stable
set if

UvE.W and K(uι) + J(u0)< d.

Here we state our hypotheses on the initial values uθ9 uu and in-
homogeneous term /. For this, let us consider the eigenfunctions {ψk}
for the Laplacian Δ with zero boundary condition:

φk G H\Ω) and Aψk = μkψk in Ω (k = 1,2, •),

where μk is the eigenvalue for φκ.
With respect to the regularity of ψKy it is well knwon that {ψκ} is

involved in H6(fl) (recall <9Ω is sufficiently smooth).
We introduce the spaces of the admissible initial data as follows:

Vj Ξ {closed linear extension of the eigenfunctions {ψκ} in H6"2 '},

/ = 0,1,

and assume

At. uo<ΞVQnW and M , G V , .

Regarding the energy source function it is required that

A2. / G C4([0, oo); L2) n C4~k ([0, oo); Hk Π Hk%
k = \

Finally we assume / G L\[0, &); V) and

j (|o |/(ί)| dtf Jj/(O| dt < d,

where

Eo = K(uι) + J(u0) (total energy of the initial data).
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Note that A! and A3 imply {«0, MJ belongs to the stable set.

3. Theorem. In this section we prove:

THEOREM. Under the assumption Au A2, and A3, the problem (*)
has a classical solution u(x, t) E C2(Ω x [0, °o)).

Proof. The Galerkin's method is employed. Let {uOm} and {ulm}
be sequences such that

«om = Σ a™Ψ< ~* "o in H 6 Π H\

(1) and

m

Ulm = Σ βim^i —> M! 1Π H4.

This is possible by the assumption Aj. By A l9 A3, and the continuity of
K(u) and J{u) with respect to ίΓ-topology, we may assume

(2) uOm G W

and

(3) K(ulm) + J(uOm) + 2 Jκ(ulm) + J(uOm)+ f Γ | / | Λ V ί \f\dt<d.
v \Jo I Jo

Let us consider the approximate solutions:

(4) Um(t) = um( , 0 = 2 λT(ί)^k (fe = 1,2, , m)

which are determined by the following system of ordinary differential
equations:

(5) (D2

tum(t), φκ) + {{um{t\ φκ))-(u*m(t), φκ)

with initial values

(φ (um(0)=u0m

[ D / w m ( 0 ) = M1 M,

where ( , ) denotes ίΛinnerproduct and ( ( * , * ) ) denotes (V , V ).
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Clearly um{t) exists in some interval, say, in [0, tm], tm > 0. Multiplying (5)
by λ ΐ = Dt λ ™ and summing over k from 1 to m, we obtain

(7) K(u^(t)) + J(um(t)) = K(ulm) + J(uOm)+ f (/(r), u'm{τ))dτ
Jo

for rε[θ,f m ],

where ' denotes Dt.
By use of this equation we verify:

(8) um(t)EW for V ί 6 [ 0 , ί m ] .

Indeed, suppose that (8) is false and let t* be the smallest time for that
wm(ί*)^ W. Then in virtue of the continuity of um{t) we see um(t*)E dW
and hence we have ([2], [5], [6])

(9) J(um(t*))=d.

On the other hand, setting M = suρfe[0,f ]|M «(*)!> (7) implies

\M2 ^ X(iιm) + /(iιOm) + M Γ | / (0 | Λ.
Jo

Here we have used the fact that J(u) g 0 if u G W. From this we have

M ^ 2

Hence,

f (/(r), iι;(τ))dτ
Jo

< d (by A3),

which is a contradiction to (9). Thus (8) is valid.
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By (8) and Lemma 3, | M ^ | and ||Mm||/γi are in fact majorized by a

constant independent of m and we conclude that um(t) exists in [0, <») and

the inequality

(10) l A M O M l M O l M C o for t G [0, oo)

holds.
This is the key estimate for our arguments and the estimations of

higher derivatives of um are carried out on the basis of (10). For the
problem (*) with γ = 1, we note, this is easily derived from the monotone
increasingness of w\

Now we proceed to consideration of higher derivatives of wm, which
is the same as Sather's [4] and sketched briefly.

For arbitrarily fixed T > 0, the estimations

(li) |Df+IM

for k = 1,2,3,4 ί G / = [0, Γ],

hold, where CK(T) are constants depending on T but independent of
m. Indeed by the linearity of (5) with respect to φk we obtain

(12) (D?+ IMO, Ό^um{t)) + {{D\um{t\ Dfxum(t))

- (D[ul D\+i um) = (D{/, D{+1 um).

(12) with / = 1 implies

^ c o n s t . (\um\t\Dtum\l+\D2

tum\2)

here we used Holder's inequality, Lemma 1 and (10). Applying the
GronwalΓs lemma we get

(13)

{ | | | | | | J } e — < τ for

where (D*«m)n denotes the value of Dκ, um(x, t) at ί = 0.



ON THE EXISTENCE OF GLOBAL CLASSICAL SOLUTION 69

\\(D,um)o\\ is obviously uniformly bounded in m. For the bound of

\\(D2,um)0\\, set ί = 0 i n (5) to get

((D]um)0-(Aum)o-(u3

m)0-(f)o,φκ) = 0, l^k^m,

and hence

where Pm is the orthogonal projection onto the m-dimensional subspace
of U with basis {ψu ψ2, - , ψm}. This implies, with the aid of Lemma 1,
the uniformly boundedness of \(D] um)0\.

Combining these uniform estimates of initial values with (13), we
obtain (11) for k = 1.

The succession of similar procedure gives (11) for k =2,3,4.
Now by the standard arguments of the approximate solutions we

conclude, after the extraction of suitable subsequence if necessary, the
following:

Dk

tum^Dk

tu in L2(ίlxl) for 0gfcg4,

Dk

tum(t)-*Dku(t) in L2(Ω) uniformly for ίE/,0gfcg3,

D^Umiή^D^) weakly in L2, 0=gy, fc^3, t G /,

where D. denotes —- ,
σXj

Dk,u(t)EHu 0^k^3,

Dk,um(t)->D*u(t) weakly in L\ t E I,

\D*,u(t)-D*,u(τ)\ ^ c o n s t . | f - τ | ,

\D,Dk,u(t)-DlDΪ(r)\ S const. | / - τ | , 0^/, fc^3,

|DίuB(x, 01 = const. 0^ίc^3, (jc,f)GftxJ,

and

Dk,ui{t)^Dku\t) in L2 uniformly in t E I, 0gfc^2.

The limit-function u satisfies of course:

for VvEH\ V i e / , 0s iVy^2.
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Moreover applying the well-known regularity results concerning weak
solution of elliptic equation, we obtain finally

4

u e C\I, Ho) Π C*k(I, Hk Π H1).
k=\

Since Π Lo Ck (I, HAk (Ω)) C C2(Ω x /) holds (c.f. Lemma 1, (ii)), we
conclude that u belongs to the class C2(fl x /) and is the classical solution
on Ωx / of the problem (*).

From the arbitrariness of T and the uniqueness of the classical
solution on [0, T] (it is obvious) we can construct, as is usual, the classical
solution M o n Ω x [0, oo). The proof of theorem is now completed.
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