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A FRACTIONAL LEIBNIZ 4-FORMULA

W. A. AL-SALAM AND A. VERMA

In this note we give a discrete analogue, the so called
g-analogue, of the well known fractional version of Leibniz
formula, i.e., the formula which expresses the fractional integral
of the product of two functions in terms of the derivatives and
fractional integrals of each. Our discrete analogue is naturally
suited to be applied to basic or Heine series. We give three such
applications.

By the Leibniz formula we mean

(1.1) D"{f(x)g(x)} = £ (£) /(t)(x)g(1"*>(*) (D = dldx).

This formula has been generalized [7] to arbitrary complex values of n to

(1.2) I°{f(x)g(x)}=l(~k

a)Dk

where

(1.3) /"{/(*)}=—

is the familiar Riemann-Liouville fractional integral. For other exten-
sions based on (1.3) see [8, 9].

The q -difference operator is defined by means of

(1-4) DΛf{x)}

(note that if / is differentiate then \\mq^Dqf(x) = f'{x)).
For the g-difference operator we can define two inverse operations,

the so called q -integrals,

(1.5) Iqf(χ)= ίX

JO
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and

(1.6) Kqf(x) = Γ f(t)d(t; q) = x(ί-q)Σ q
Jx k=l

both of which reduce, for certain classes of functions, to the correspond-

ing Riemann integrals f(t)dt and f(t)dt when q—>1.
Jθ Jx

Many algebraic as well as function theoretic q -analogues have been
considered (see e.g. [3, 4, 5]). We shall require in this work the
g-binomial coefficient

M = i \x] (1-<?

| θ j , X' U J , (1
and q -factorial notation

[a\n = [aU={\- α ) ( l - aq){\- aq2)-- - ( 1 - aq"1) .

[aj^ia], [n]! = [l][2] [n], [0]! = 1.

If there is no danger of confusion we shall write [1 - a]n or equivalently
[l~α]n,q to mean the quantity defined above, i.e., [a]n.

Two g-analogues of the exponential function are in use.

f *?")"1 k l < i, Σrτf ?
n=0 iq \n,q n=0

The infinite product converges for all x provided that | q \ < 1 and

Σ
n=0

which is an entire function of x.
It is easy to see that lim^i eq (x (1 - q)) = lim^j Eq (x (q - 1)) = ex.
We shall also make use of the function

~ q Γ α definedfor a/ 0, - 1, -2,

This is a q -analogue of the gamma function and satisfies the functional
equation Γ,(α + 1) = ((1 - q")l(l - q))Tq{a)

Furthermore we write
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(1.7) [χ-y]β = χβΣ(-if
k=0

as a generalization for the finite product [JC - y]π = (x — y)
(x-ay)--(x -qn~ιy) It is easy to see that when β = n formula (1.7)
reduces to a well known formula of Euler. On the other hand if β is not
a positive integer and if | < J | < 1 then the series in (1.7) converges
absolutely to the value

xβ

— JL sjβ+n

The Heine series referred to above are series of the form

[ Oί-u Oίl , ' ' ' , OLr \ Ί ° O Γ 1 Γ Ί Γ Ί

X = X l^lln WAn '"Wλn χn

O O . O . n=θ[q]n[βl]n ' '[βs]n
PU P2, ', Ps, J

Now corresponding to (1.1) we have [4] the ^-Leibniz formula

(1.8) D q{f(x)g{x)}= ± \?} Dk

qf(xq"-k)g(x)

valid for n =0,1,2,-••.

Hence our goal here is to extend (1.8) to "fractional" values of
n. We need therefore a concept of fractional q -integral. This has been
done in [1, 2], by means of

(1.9) J°{/(ί); x} = jr^j f* [x - qt]a.xf{t)d{t; q)

and

(1.10) = x*(l-q)aq-^a+1) Σ (- l)k ί ~.α

k=0 L £
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When there is no danger of confusion we shall simply write I°f(x)
and K-af(x) for (1.9) and (1.10).

We also remark that I°J(x) = K°J(x) = f(x).
The operators I* a,pd K~a are closely related. In fact one can see

from (1.9) and (1.10) that if we put pq = 1 then

(1.11) l;{f(t); x} = <̂ <«+1> ̂ ^ K- {f(tql)\ x}.

In view of this we shall confine our discussion to only one of the two
operators, say, to Iq.

Note that the operators (1.9) and (1.10) reduce, for integral values of
α, to

J;N{/(*)} = (-l)NK»q{f(x)} = D»q{f{x)}9

whereas I"{f(x)} and Kq

N{f(x)} are the N repeated operators (1.5) and
(1.6) respectively.

If U(x) = Σcnx
n is a power series whose radius of convergence is R

then we have from (1.9)

which for | q \ < 1 has the same radius of convergence as that of U.
It is cjear that (1.9) is absolutely convergent if U(x)= O(xλ~ι) as

x —>0 for Re(λ)>0 so that (1.9) is absolutely convergent for the cases
U(x) = xλl Eq(x). Similar remark holds when we shall take U(x) =

or U(x) = xλ+n+ι.

2. q -Newton Series. Such a series were given by Jackson [6]
in the form

(2.1) f{x)=ZD2Lal [χ_

However we shall require such a formula in a slightly different form
which we state as

(2.2) f(x)=Σ (~ \)»q-«*-w> Dψ"ΓΛ) (i-qγ[a-χ]n
n=0 [qln

To verify the validity (at least formally) of (2.2) we put
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(2.3) f(x)=Σcn[a-x)n

But

D?[a-χ]n =(~rlT{q]n q'm{m-ι)[a-xqm]n-m,
Yq\n-m

so that if we q-difference (2.3) m times and put x = aq~m we get the right
value of cm.

We shall require (2.2) when x is replaced by xqn and a by xq~a. It
becomes after some simplification

(2.4) U(xqn)= Σ (-l)kq-^k-»-°kij^ xk{Dk

qU(xq-a-k)}.
k=o [q\k

If U is a polynomial then the right hand side of (2.4) is a finite sum
and no question of convergence arises. The formula can also be seen to
be valid if U(x) has a convergent power series expansion and at the same
time U(xq~a~k) has a power series expansion for all k. In case |q \ < 1 it
is then sufficient to assume that U(x) is entire. In all these cases (2.4) is
absolutely convergent.

3. Fractional q -Leibniz Formula. We now have from
(1.9) that

(3.1) I"q{U(x)V(x)}= x"(l-q)° Σ ^ q»U(xqn)V(xqn).
n=0 [q\n

Replacing in (3.1) for U(xqn) its value obtained in (2.4) we get

(3.2) i;{u(χ)v(x)} = x°(i-qyΣ Σ (-i)m K^K" 1 "
n=0 m=0 l<? \n\_H\m

•q"xmq •*»<—»>-«• V(xq" )D m

q U(xq ~a-m )

xmDm

qU(xq"•-") Σ
n=0

Here we have used the fact that

[q"Uqa+n]m =[q"]n+m =[qa
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If we now evaluate the inside sum by means of (1.9) we get

(3.3) I q{U(x)V(x)}= Σ

In case a = — N9 a negative integer, we obtain the well-known
formula (1.5).

In case V(x) = 1 we have

γα+fc
Ta+kcΛ \ _ Λ

and hence (3.3) yields

(3.4) /jt/(x) - Σ

which can also be written as

-\n(n-l)-an

(3.5) ί ; l , ( l ) -J^-J 2 (- V f- i - - ^ . D

If <gr —*• 1 formulas (3.3) and (3.5) reduce to the following formulas (Davis

[3]).

r[u(x)v(x)] = Σ(~k

v

and

where /" is the î th fractional integral of Liouville (1.3).
Although the derivation of formula (3.3) given above was only

formal, it is easy to see that (3.3) is valid whenever the functions U{x)
and V(x) are such that the series in (1.9), (2.4), and (3.1) are absolutely
convergent. For example if U(x) is a polynomial then (2.4) is only a
finite sum and the interchange of summation in (3.2) is justified. In all
the applications that we give in the next section all the functions [/, V are
chosen so that (3.3) is valid.

4. Applications. Our first application is to take U(x) =
[ 1 - J C ] N and V(JC) = JCA-1 where N is a positive integer and Re(λ)>
0. By easy calculation we have
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and by virtue of (1.9)

i f V 1 } = *α+*+'(i - q )a+k Σ ^ - T ^ qiλ

^• -̂(l-̂ r'Π W
s s = o I 1 <J J

Replacing these values in (3.3) we get, for x φ q"~' (j = 0,l,2, • ,N - 1)

-x—o-,r

On the other hand we can calculate the left-hand side of (4.1) directly by
means of (1.9). We get

( 4 . 2 ) I $ x " [ l - x]N} = x ' + * - \ l - q)« Σ q k λ - ^ [1 - x q k ] N

= x a + λ - \ l - q)a[l - x]N 2Φ1 [
q"> Xq

χ

N;.

Comparing (4.1) and (4.2) we get (putting x = qc) the transformation
formula

[ na nN+C Ί oo CΛ _ a + k+jΛ \nc-aΛ

provided \q \ < 1, Re(λ)>0 and N is a positive integer.



W. A. AL-SALAM AND A. VERMA

For our next application let us consider the fractional q -integral
Iq{xk~ιEq(x)} and evaluate it in two different ways. By using the
definition (1.9) we get, for \q \ < 1, and Re(λ)>0,

(4.4) I«{x^Eq(x)} = Eq(x)χ "-\l-qr1Φι | J . ; q\ .

On the other hand if we apply our Leibniz formula (3.3) with U(x) =
Eq(x), V(x) = x λ l w e g e t , f o r \ x q - ° \ < l ,

Comparing (4.4) and (4.5) we get the transformation formula (putting

provided |<j | < 1, Re(λ) > 0, Re(c - a) > 0. Note that c and λ in the
left hand side interchanged positions in the right hand side.

For our third and final application we consider mxH+λ'1Eq(x)} where
n is a positive integer. We apply our Leibniz formula in two different
ways. Once we let U(x) = xn, V(x)xλ~Έq(x). We then put U(x) =
Eq(x) and V(x) = xn+λ~\ Equating the results of these two calculations
we obtain

°+k ; _ _ . - * !

provided that | < J | < 1 , | J C | < 1 , Re(λ - α ) > 0 .
As a corollary of this we obtain, putting n = 1, the contiguous

relation
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