A RATIO LIMIT THEOREM FOR A STRONGLY SUBADDITIVE SET FUNCTION IN A LOCALLY COMPACT AMENABLE GROUP

J. C. KIEFFER

It is the purpose of this paper to prove that the following property holds: Given a locally compact, amenable, unimodular group G, if S is a strongly subadditive, nonpositive, right invariant set function defined on the class $\mathcal K$ of relatively compact Borel subsets of G, and if $\{A_{\alpha}\}$ is a net in $\mathcal K$ satisfying an appropriate growth condition, then

$$\lim_{\alpha} \lambda(A_{\alpha})^{-1} S(A_{\alpha})$$

exists independently of $\{A_{\alpha}\}$, where λ is Haar measure on G.

Let G be a locally compact group. Let λ be right Haar outer measure defined on the subsets of G. Let \mathscr{K} be the class of relatively compact Borel subsets of G. If A is a subset of G and $K \in \mathscr{K}$, let $[A]_K = \{g \in A : Kg \subset A\} = \bigcap_{k \in K \cup \{1\}} k^{-1} A$, where 1 is the identity of G. In this paper, we call a locally compact, amenable, unimodular group a lcau group.

DEFINITION 1. Following [1], we define a net $\{A_{\alpha}\}$ in \mathscr{K} to be a regular net in the locally compact group G if

- (D. 1.1) $\lambda(A_{\alpha}) > 0$ for each α ;
- (D. 1.2) $\lim_{\alpha} \lambda(KA_{\alpha})^{-1}\lambda([A_{\alpha}]_{K}) = 1$, $K \in \mathcal{K}$, $K \neq \phi$. (Even though KA_{α} and $[A_{\alpha}]_{K}$ may not be Borel measurable, (D. 1.2) makes sense because we required λ to be right Haar outer measure, which is defined for *all* subsets of G.)

LEMMA 1. A locally compact group G possesses a regular net if and only if G is a leav group.

Proof. A locally compact group G is amenable if and only if for any $\varepsilon > 0$, and for any nonempty compact subset K of G, there exists a compact subset U of G, of positive measure, such that $\lambda^*(U)^{-1}\lambda^*(KU) < 1 + \varepsilon$, where λ^* is left Haar measure. (See [2].) We call this necessary and sufficient condition for amenability of G condition (A).

Now suppose G possesses a regular net $\{A_{\alpha}\}$. Then (D. 1.2) implies that

(1)
$$\lim \lambda(KA_{\alpha})^{-1}\lambda(A_{\alpha}) = 1, K \in \mathscr{K}, K \neq \phi.$$

Taking $K = \{g\}$, where g is any element of G, we see that $\Delta(g) = 1$. Thus G is unimodular. It then follows that (1) implies condition (A), and thus G is also amenable.

Conversely, suppose now G is lcau. Given $\varepsilon > 0$ and a nonempty compact subset K of G, we may find by condition (A) a compact set $U = U_{(K,\varepsilon)}$, of positive measure, such that $\lambda(U)^{-1}\lambda(K^2U) < 1 + \varepsilon$. We direct the set $W = \{(K,\varepsilon)\colon K \text{ a nonempty compact set in } G,\varepsilon>0\}$ as follows: $(K_1,\varepsilon_1) > (K_2,\varepsilon_2)$ if and only if $K_1 \supset K_2$ and $\varepsilon_1 < \varepsilon_2$. Then $\{V_{(K,\varepsilon)}\colon (K,\varepsilon)\in W\}$ is a regular net of compact subsets of G, where $V_{(K,\varepsilon)} = KU_{(K,\varepsilon)}$.

DEFINITION 2. Let G be a regular group. Throughout this paper, we consider a set function $S: \mathcal{K} \to R$, the set of real numbers, which satisfies the following properties:

- (D. 2.1) $S(\phi) = 0$.
- (D. 2.2) S is strongly subadditive; that is, $S(A \cap B) + S(A \cup B) \le S(A) + S(B)$, A, $B \in \mathcal{K}$.
 - (D. 2.3) $S(A) \leq 0$, $A \in \mathcal{K}$.
 - (D. 2.4) $S(Ag) = S(A), A \in \mathcal{K}, g \in G.$

The main result we will prove in this note is the following theorem.

THEOREM 1. Let G be a leav group. Let $S: \mathcal{K} \to R$ satisfy Definition 2. Then there is an extended real number r^* such that $\lim_{\alpha} \lambda(A_{\alpha})^{-1}S(A_{\alpha}) = r^*$ for every regular net $\{A_{\alpha}\}$ in \mathcal{K} .

A special case of this theorem, for vector groups, was proved in [7] in order to define entropy in statistical mechanics for classical continuous systems. The theorem can be used to define the entropy of a measurable partition relative to a discrete amenable group of measure-preserving transformations on a probability space, thereby enabling one to generalize the concept of the Kolmogorov-Sinai invariant [5].

One may construct a set function S satisfying Definition 2 as follows: Let (Ω, \mathscr{M}) be a measurable space. For each element g of the regular group G, let T^g be a measurable transformation from Ω to Ω . We suppose that $T^{g_1} \cdot T^{g_2} = T^{g_1g_2}$, g_1 , $g_2 \in G$. Let \mathscr{F} be a fixed sub-sigmafield of \mathscr{M} . If E is a nonempty subset of G, let \mathscr{F}_E be the smallest sub-sigmafield of \mathscr{M} containing $\bigcup_{g \in E} (T^g)^{-1} \mathscr{F}$. Define $\mathscr{F}_{\phi} = \{\phi, \Omega\}$. Let P, Q be probability measures on \mathscr{M} , such that P is stationary with respect to $\{T^g \colon g \in G\}$ and the fields $\{(T^g)^{-1}\mathscr{F} \colon g \in G\}$

are independent with respect to Q. For each $E \in \mathcal{K}$, let S(E) be the negative of the entropy of P with respect to Q over \mathcal{F}_E , which we assume finite. The function $S: \mathcal{K} \to R$ defined in this way can be shown to satisfy Definition 2 in a manner analogous to that employed in [7] for vector groups.

LEMMA 2. If Theorem holds for all sigma-compact leau groups it holds for all leau groups.

Proof. Let d be a complete metric on R^* , the set of extended real numbers, which induces the usual topology on R^* . Let $\{A_{\alpha}\}$ be a regular net for a non-sigmacompact lcau group G. Suppose $\lim_{\alpha} \lambda(A_{\alpha})^{-1}S(A_{\alpha})$ does not exist. Then for some $\varepsilon > 0$, we may find a sequence $\{F_n\}_0^{\infty}$ of elements of $\{A_{\alpha}\}$ and a sequence $\{E_n\}_0^{\infty}$ in $\mathscr K$ such that

- (a) F_0 is any A_{α} and E_0 is an open symmetric neighborhood of the identity.
 - (b) $d(\lambda(F_n)^{-1}S(F_n), \lambda(F_{n-1})^{-1}S(F_{n-1})) > \varepsilon, n \ge 1.$
 - (c) $\lambda(E_{n-1}F_n)^{-1}\lambda([F_n]_{E_{n-1}}) > 1 n^{-1}, n \ge 1.$
- (d) E_n is an open symmetric set containing the closure of $[E_{n-1} \cup F_n]^2$, $n \ge 1$.

Let $G' = \bigcup_n E_n$. It is easily seen that G' is an open, sigma-compact subgroup of G.

If we restrict λ to G', we get right Haar measure on G'. Thus $\{F_n\}$ is a regular sequence for G', and G' is a lcau group. Assuming Theorem 1 holds for sigma-compact lcau groups, $\lim_n \lambda(F_n)^{-1}S(F_n)$ would have to exist, a contradiction of b). Thus $\lim_\alpha \lambda(A_\alpha)^{-1}S(A_\alpha)$ exists. Let $\{B_\beta\}$ be another regular net in G. Let $s_1 = \lim_\alpha \lambda(A_\alpha)^{-1}S(A_\alpha)$, $s_2 = \lim_\alpha \lambda(B_\beta)^{-1}S(B_\beta)$. We show that $s_1 = s_2$. Define sequences $\{C_n\}_1^\infty$, $\{D_n\}_1^\infty$, $\{E_n\}_0^\infty$ in $\mathscr K$ such that

- (a) E_0 is an open symmetric neighborhood of the identity, $\{C_n\} \subset \{A_n\}$, $\{D_n\} \subset \{B_\beta\}$.
 - (b) $d(\lambda(C_n)^{-1}S(C_n), s_1) < n^{-1}, d(\lambda(D_n)^{-1}S(D_n), s_2) < n^{-1}, n \ge 1.$
- (c) $\lambda(E_{n-1}C_n)^{-1}\lambda([C_n]_{E_{n-1}}) \geq 1-n^{-1}, \ \lambda(E_{n-1}D_n)^{-1}\lambda([D_n]_{E_{n-1}}) \geq 1-n^{-1}, \ n \geq 1.$
- (d) E_n is open, symmetric and contains the closure of $[E_{n-1} \cup C_n \cup D_n]^2$, $n \ge 1$.

It follows that $G' = \bigcup_n E_n$ is an open, sigma-compact, *lcau* subgroup of G and that $\{C_n\}$ and $\{D_n\}$ are regular sequences for G'. Therefore, $\lim_n \lambda(C_n)^{-1}S(C_n) = \lim_n \lambda(D_n)^{-1}S(D_n)$, and so $s_1 = s_2$ by b).

DEFINITION 3. If G is a locally compact group, if $S: \mathcal{K} \to R$ satisfies Definition 2, and if $A, B \in \mathcal{K}$ with $A \cap B = \phi$, define $S(A \mid B) = S(A \cup B) - S(B)$.

- LEMMA 3. Let G be a locally compact group, and let $S: \mathcal{K} \to R$ satisfy Definition 2. Then S obeys the following laws:
 - (L. 3.1) $S(A) \leq S(B)$ if $A \supset B$, $A, B \in \mathcal{K}$.
- (L. 3.2) If A_1, A_2, \dots, A_k are elements of \mathcal{K} which partition A, then $S(A) = \sum_{i=1}^k S(A_i \mid \bigcup_{j=1}^{i-1} A_j)$, where an empty union is the null set.
 - (L. 3.3) $S(E|D_1) \leq S(E|D_2), D_1 \supset D_2, E \cap D_1 = \emptyset, E, D_1, D_2 \in \mathcal{K}.$
 - (L. 3.4) $S(E|D) \leq S(E) \leq 0$, E, $D \in \mathcal{K}$, $E \cap D = \phi$.

Proof. (L. 3.2) follows easily from Definition 2. The strong subadditivity of S is equivalent to saying $S(A \setminus B \mid B) \leq S(A \setminus B \mid A \cap B)$, $A, B \in \mathcal{K}$. Letting $A = E \cup D_2$ and $B = D_1$, where E, D_1, D_2 satisfy $D_1 \cap E = \phi$ and $D_1 \supset D_2$, we have $A \cap B = D_2$ and $A \setminus B = E$, whence (L. 3.3) follows. In (L. 3.3) if we take $D_2 = \phi$, (L. 3.4) follows because $S(E \mid \phi) = S(E)$. If $A \supset B$, where $A, B \in \mathcal{K}$, then $S(A) = S(B) + S(A \setminus B \mid B) \leq S(B)$, and thus (L. 3.1) follows.

DEFINITION 4. We define a locally compact group G to be a P-group if there exists for some positive integer n a triple $(K, \{G_i\}_1^n, \{H_i\}_1^n)$ such that:

- (D. 4.1) K is a nonempty relatively compact Borel set in G.
- (D. 4.2) $\{G_i\}_1^n$ and $\{H_i\}_1^n$ are sequences of closed subgroups of G satisfying $G_1 \subset H_1 \subset G_2 \subset H_2 \subset \cdots \subset G_n \subset H_n$.
 - (D. 4.3) The index of G_i in H_i is countable, $i = 1, 2, \dots, n$.
- (D. 4.4) If E_i is any set of coset representatives of the right cosets $\{G_ih: h \in H_i\}$ of G_i in H_i , $i=1,2,\cdots,n$, then each $g \in G$ has a unique factorization in the form $g=ke_1e_2\cdots e_n, k \in K, e_i \in E_i, i=1,2,\cdots,n$. Also, $K(\prod_{j=1}^{i-1}E_j)G_i=K(\prod_{j=1}^{i-1}E_j), i=1,2,\cdots,n$, where an empty product is the identity in G.

In order to prove Theorem 1 for sigma-compact *leau* groups, we need to show that such groups are *P*-groups. This we now do, by means of several lemmas. To see how the following lemma may be proved, see [2], page 379.

- LEMMA 4. Let G' be a closed normal subgroup of a connected Lie group G. Let $\phi \colon G \to G/G'$ be the canonical homomorphism. Then there exists a map $\tau \colon G/G' \to G$ such that
- (L. 4.1) τ is a cross-section; that is, $\phi \cdot \tau$ is the identity map on G/G'.
- (L. 4.2) If U is a relatively compact subset of G/G', then $\tau(U)$ is a relatively compact subset of G.
- (L. 4.3) If U is a Borel set in G/G' and V is a Borel set in G', then $\tau(U)V$ is a Borel set in G.

- LEMMA 5. Let G be a connected Lie group and G' a closed normal subgroup of G such that G/G' is either a vector group or compact. Then if G' is a P-group, so is G.
- *Proof.* Let $\tau \colon G/G' \to G$ be the cross-section map provided by Lemma 4. Since G/G' is a vector group or compact, it is easy to see that there exists a closed countable subgroup G'' of G/G' and a relatively compact Borel set K' in G/G' such that $\{K'g\colon g\in G''\}$ partitions G/G'. If G' is a P-group with respect to the triple $(K, \{G_i\}_{i=1}^n, \{H_i\}_{i=1}^n)$, then G is a P-group with respect to the triple $(\tau(K')K, \{G_i\}_{i=1}^n, \{H_i\}_{i=1}^n)$, where $G_{n+1} = G'$ and $H_{n+1} = \phi^{-1}(G'')$.
- LEMMA 6. If G is a sigma-compact locally compact group and G' is an open subgroup of G which is a P-group, then G is a P-group.
- *Proof.* Let G' be a P-group with respect to the triple $(K, \{G_i\}_1^n, \{H_i\}_1^n)$. Then G is a P-group with respect to the triple $(K, \{G_i\}_1^{n+1}, \{H_i\}_1^{n+1})$, where $G_{n+1} = G'$, $H_{n+1} = G$.
- LEMMA 7. If G is a locally compact group and G' is a compact normal subgroup of G such that G/G' is a P-group, then G is a P-group.
- *Proof.* Suppose G/G' is a P-group with respect to the triple $(K, \{G_i\}_1^n, \{H_i\}_1^n)$. Let $\phi \colon G \to G/G'$ be the canonical homomorphism. Then G is a P-group with respect to the triple $(\phi^{-1}(K), \{\phi^{-1}(G_i)\}_1^n, \{\phi^{-1}(H_i)\}_1^n)$.
- THEOREM 2. Every sigma-compact locally compact amenable group is a P-group.
- Proof. Every connected amenable Lie group G possesses a series of closed subgroups $G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_n = G$, where G_0 is the identity, G_i is normal in G_{i+1} , and G_{i+1}/G_i is either a vector group or compact, $i=0,1,\cdots,n-1$. (See [3], Theorem 3.3.2, and [4], Lemma 3.3.) Now G_0 is clearly a P-group, so by using Lemma 5 repeatedly we conclude every connected amenable Lie group is a P-group. Applying Lemma 6, every sigma-compact amenable Lie group is a P-group. For every locally compact group G there exists an open subgroup G' of G and a compact normal subgroup G' of G' such that G'/K is a Lie group. (See [6], page 153.) Assuming G in addition is sigma-compact and amenable, so is G'/K. Thus G'/K is a P-group and then so is G' by Lemma 7. Then G is a G'-group by Lemma 6.

We fix G to be a sigma-compact lcau group for the rest of the paper. We need to show Theorem 1 holds for G. This we accomplish by means of some lemmas and Theorem 3.

Let $(K, \{G_i\}_{i=1}^n, \{H_i\}_{i=1}^n)$ be a triple with respect to which G is a Pgroup. Let E_i be a set of coset representatives of the right cosets of G_i in H_i such that $1 \in E_i$, $i = 1, 2, \dots, n$, where 1 is the identity of G. For each i, let \overline{H}_i be the collection of right cosets of G_i in H_i . (Since G_i is not necessarily normal in H_i , \bar{H}_i need not be a group.) For each i, let $\phi_i: H_i \to \overline{H}_i$ be the map such that $\phi_i(h) = G_i h$, $h \in H_i$; let $\tau_i : \overline{H}_i \to E_i$ be the unique map such that $\phi_i \cdot \tau_i$ is the identity map on H_i . By a total order < on a set W, we mean a transitive relation such that for $x, y \in W$ exactly one of the following hold: x < y, x = y, or y < x. For each i, let < be a total order on E_i ; if $h \in H_i$, let \lt_h^i be the total order on E_i such that if $e, e' \in E_i$ then $e \stackrel{i}{\triangleleft} e'$ if and only if $\tau_i \cdot \phi_i(eh) \stackrel{i}{\triangleleft} \tau_i \cdot \phi_i(e'h)$. If $h \in H_i$, let $P_h^i(e) = e'$ $\{e' \in E_i : e' <_h^i e\}$. Let $E = E_1 E_2 \cdots E_n$. Let H be the locally compact amenable group $H = H_1 \times H_2 \times \cdots \times H_n$. If $h = (h_1, h_2, \cdots, h_n) \in H$, let $<_h$ be the lexicographical order on E defined as follows: if e = $e_1e_2\cdots e_n$ and $e'=e'_1e'_2\cdots e'_n$ are elements of E, where $e_i,\,e'_i\in E_i$, then $e \lt_h e'$ if and only if there exists an integer $k, n \ge k \ge 1$, such that $e_k
egin{align*}
egin{alig$ $\{e' \in E: e' <_h e\}$. If $A \in \mathcal{H}$, $e \in E$, let $\phi_A^e: H \to R$ be the function such that $\phi_A^e(h) = S(Ke | KP_h(e) \cap Ae) = S(K | KP_h(e)e^{-1} \cap A), h \in H.$

LEMMA 8. If $A \in \mathcal{K}$ and $e \in E$, then $\phi_A^e \in L^{\infty}(H)$, the space of bounded Borel-measurable real-valued functions with domain H.

Proof. Fix $A \in \mathcal{K}$, $e \in E$. By (L. 3.4), $\phi_A^e \leq 0$. To achieve a lower bound, let $E' = \{e' \in E : Ke' \cap Ae \neq \phi\}$. Since $KE' \subset KK^{-1}Ae$, E' is finite. Let $F = \{e\} \cup E'$. By (L. 3.2), $S(KF) = \sum_{f \in F} S(Kf \mid KP_h(f))$ By (L. 3.3) and (L. 3.4), $S(KF) \leq S(Ke \mid KP_h(e) \cap KF) \leq$ $S(Ke|KF_h(e) \cap Ae) = \phi_A^e(h)$, where the fact that $KF \supset Ae$ was used. Thus ϕ_A^e is a bounded function. We now show that it is a Borel measurable function. It is easily seen that ϕ_A^e is a simple function with possible values $S(Ke | KF' \cap Ae)$, $F' \subset F$. If $F' \subset F$, then $\phi_A^e = S(Ke | KF' \cap Ae)$ on the set $\{h \in H: P_h(e) \cap F = F'\}$, which is equal to the intersection of the sets $\bigcap_{f \in F'} \{h: f \in P_h(e)\}\$ and $\bigcap_{f \in F \setminus F'} \{h: f \notin P_h(e)\}\$. Thus ϕ_A^e is Borel measurable if for each $f \in F$, $\{h \in H: f \in P_h(e)\}$ is a Borel set. If f = e, this set is empty. Thus, fix $f \in F$, $f \neq e$. Let $f = f_1 f_2 \cdots f_n$, and $e=e_1e_2\cdots e_n$, where $e_i,f_i\in E_i$ for each i. Let $j=\max{\{i:f_i\neq e_i\}}$. Then $\{h \in H: f \in P_h(e)\} = \{h \in H: f_j \in P_{h_j}^j(e_j)\}$, where $h_j \in H_j$ is the j^{th} component of $h \in H$. This is a Borel set in H if $\{h \in H_j : f_j \in P_h^j(e_j)\}$ is a Borel set in H_i . Now this latter set is the union of the sets $\{h \in H_j: G_j f_j h = G_j g_1, G_j e_j h = G_j g_2\}$ where (g_1, g_2) ranges over all ordered

pairs such that $g_1, g_2 \in E_j$ and $g_1 < g_2$. Since the union is a countable union of closed subsets of H_j , Borel measurability follows.

LEMMA 9. Let μ be a left invariant mean on $L^{\infty}(H)$. Then $\mu(\phi_A^e) = \mu(\phi_A^i)$, $A \in \mathcal{H}$, $e \in E$.

Proof. Fix $A \in \mathcal{K}$, $e \in E$. We observe that

$$egin{aligned} KP_{h}(e)e^{-1} &= igg[igcup_{i=1}^{u}K\Big(\prod\limits_{j=1}^{i-1}E_{j}\Big)P_{h_{i}}^{i}(e_{i})e_{i+1}\,\cdots\,e_{n}igg]e^{-1} \ &= igcup_{i=1}^{n}igg[K\Big(\prod\limits_{j=1}^{i-1}E_{j}\Big)G_{i}P_{h_{i}}^{i}(e_{i})e_{i}^{-1}\,\cdots\,e_{2}^{-1}e_{1}^{-1}igg] \,, \end{aligned}$$

by (D. 4.4), where $h = (h_1, h_2, \dots, h_n) \in H$ and $e = e_1 e_2 \dots e_n$. It is routine to show that $G_i P_{h_i}^i(e_i) = G_i P_1^i(\tau_i \cdot \phi_i(e_i h_i)) h_i^{-1}$. Also, since $e_j \in G_i$ for j < i, we have $\phi_i(e_i h_i) = \phi_i(e_1 e_2 \dots e_i h_i)$. Thus, $KP_h(e) e^{-1} = \bigcup_{i=1}^n [K(\prod_{j=1}^{i-1} E_j) P_1^i(\tau_i \cdot \phi_i(e_1 \dots e_i h_i)) (e_1 \dots e_i h_i)^{-1}] = KP_{mh}(1)$, where $m = (m_1, m_2, \dots, m_n) \in H$ satisfies $m_i = \prod_{j=1}^i e_j, \ i = 1, 2, \dots, n$. Thus $\phi_A^e(h) = \phi_A^e(mh), h \in H$, from which the lemma follows.

THEOREM 3. Let $\{A_{\alpha}\}$ be a regular net in the sigmacompact leau group G. Then $\lim_{\alpha} \lambda(A_{\alpha})^{-1} S(A_{\alpha}) = \inf_{B \in \mathcal{X}} \lambda(K)^{-1} \mu(\phi_B^1)$.

Fix the regular net $\{A_{\alpha}\}$. Now $KE'_{\alpha} \subset A_{\alpha} \subset KE_{\alpha}$, where $E_{\alpha} = \{e \in E \colon Ke \cap A_{\alpha} \neq \phi\}, \ E'_{\alpha} = \{e \in E \colon Ke \subset A_{\alpha}\}.$ Thus by (L.3.1), $S(KE_{\alpha}) \leq S(A_{\alpha}) \leq S(KE'_{\alpha})$. We show that $\limsup_{\alpha} \lambda(A_{\alpha})^{-1}S(KE'_{\alpha}) \leq L$ and $\liminf_{\alpha} \lambda(A_{\alpha})^{-1} S(KE_{\alpha}) \geq L$, where $L = \inf_{B \in \mathscr{K}} \lambda(K)^{-1} \mu(\phi_B^1)$. Now $S(KE_{\alpha}) = \sum_{e \in E_{\alpha}} S(Ke \mid KP_{h}(e) \cap KE_{\alpha}) \ge \sum_{e \in E_{\alpha}} \phi_{B_{\alpha}}^{e}$, where $B_{\alpha} = \bigcup_{e \in E_{\alpha}}$ $KE_{\alpha}e^{-1}$. Applying μ to the inequality and using Lemma 9, $S(KE_{\alpha}) \geq$ $|E_{\alpha}|\mu(\phi_{B_{\alpha}}^{1}) \geq |E_{\alpha}|\lambda(K)L = \lambda(KE_{\alpha})L$, where $|E_{\alpha}|$ denotes the cardinality of E_{α} . Since $KE_{\alpha} \subset KK^{-1}A_{\alpha}$ we have $\lim_{\alpha} \lambda(A_{\alpha})^{-1}\lambda(KE_{\alpha}) = 1$, by the regularity of $\{A_{\alpha}\}$. Thus $\liminf_{\alpha} \lambda(A_{\alpha})^{-1} S(KE_{\alpha}) \geq L$. Fix $B \in \mathcal{K}$. We suppose that $B \supset K$. Now $S(KE'_{\alpha}) = \sum_{e \in E'_{\alpha}} S(Ke \mid KP_{h}(e) \cap KE'_{\alpha}) \le C$ $\sum_{e \in F_{\alpha}} \phi_B^e$ where $F_{\alpha} = \{e \in E_{\alpha}' : KE_{\alpha}'e^{-1} \supset B\}$. Applying μ , $S(KE_{\alpha}') \subseteq S(E_{\alpha}')$ $\lambda(KF_{\alpha})\lambda(K)^{-1}\mu(\phi_B^1)$. We could conclude that $\limsup_{\alpha}\lambda(A_{\alpha})^{-1}S(KE_{\alpha}') \leq L$, provided $\lim_{\alpha} \lambda(A_{\alpha})^{-1} \lambda(KF_{\alpha}) = 1$. This limit is one by the regularity of $\{A_{\alpha}\}$, since $[A_{\alpha}]_{KK^{-1}BK^{-1}} \subset KF_{\alpha}$. To see this, let $x \in [A_{\alpha}]_{KK^{-1}BK^{-1}}$. By definition, $KK^{-1}BK^{-1}x \subset A_{\alpha}$. Now $x \in Ke$ for some $e \in E$. have $Ke \subset KK^{-1}x \subset KK^{-1}BK^{-1}x \subset A_{\alpha}$. Thus $e \in E'_{\alpha}$. It will follow that $x \in KF_{\alpha}$ if $Be \subset KE'_{\alpha}$. To see this, let $y \in Be$. Then $y \in Ke'$ for some $e' \in E$. Now $Ke' \subset KK^{-1}y \subset KK^{-1}Be \subset KK^{-1}BK^{-1}x \subset A_{\alpha}$. Thus $e' \in E'_{\alpha}$ and $y \in KE'_{\alpha}$.

REFERENCES

- 1. M. F. Driscoll, J. N. McDonald, and N. A. Weiss, LLN for weakly stationary processes on locally compact abelian groups, Ann. of Prob., 2 (1974), 1168-1171.
- 2. W. R. Emerson and F. P. Greenleaf, Covering properties and Folner conditions for locally compact groups, Math. Zeitschr., 102 (1967), 370-384.
- 3. F. P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand, 1969.
- 4. K. Iwasawa, On some types of topological groups, Ann. of Math., 50 (1949), 507-558.
- 5. J. C. Kieffer, An entropy equidistribution property for a measurable partition under the action of an amenable group, Bull. Amer. Math. Soc., 81 (1975), 464-466.
- 6. D. Montgomery and L. Zippin, Topological transformation groups, Interscience, 1955.
- 7. D. W. Robinson and D. Ruelle, Mean entropy of states in classical statistical mechanics, Commun. Math. Phys., 5 (1967), 288-300.

Received May 15, 1975.

University of Missouri-Rolla