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A RATIO LIMIT THEOREM FOR A STRONGLY
SUBADDITIVE SET FUNCTION IN A
LOCALLY COMPACT AMENABLE
GROUP

J. C. KIEFFER

It is the purpose of this paper to prove that the following
property holds: Given a locally compact, amenable, unimo-
dular group G, if S is a strongly subadditive, nonpositive,
right invariant set function defined on the class 2 of rela-
tively compact Borel subsets of G, and if {4,} is a net in %~
satisfying an appropriate growth condition, then

lim, 2(A2)7*S(Aq)

exists independently of {4,}, where 1 is Haar measure on G.

Let G be a locally compact group. Let A be right Haar outer
measure defined on the subsets of G. Let .2 be the class of rela-
tively compact Borel subsets of G. If A is a subset of G and Ke .57,
let [A]lx = {9€ A: Kg C A} = Niexuw k' A, where 1 is the identity of
G. In this paper, we call a locally compact, amenable, unimodular
group a lecaw group.

DEeFINITION 1. Following [1], we define a net {4,} in %" to be
a regular net in the locally compact group G if

(D.1.1) N(A,) > 0 for each «a;

(D.1.2) lim, MKA,) " MAlz) =1, Ke 2%, K +# ¢.
(Even though KA, and [A4,]x may not be Borel measurable, (D.1.2)
makes sense because we required \ to be right Haar outer measure,
which is defined for all subsets of G.)

LeEMMA 1. A locally compact group G possesses a regular met
iof and only if G is a lcaw group.

Proof. A locally compact group G is amenable if and only if
for any ¢ >0, and for any nonempty compact subset K of G,
there exists a compact subset U of G, of positive measure, such
that MV (U)™M(KU) <1 + ¢, where A\* is left Haar measure. (See
[2].) We call this necessary and sufficient condition for amenability
of G condition (A).

Now suppose G possesses a regular net {4,}. Then (D. 1.2) implies
that
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(1) lim MEA) " MA) =1, Ke % K+ 6.

Taking K = {g}, where g is any element of G, we see that 4(g) = 1.
Thus G is unimodular. It then follows that (1) implies condition
(A), and thus G is also amenable.

Conversely, suppose now G is leau. Given ¢ > 0 and a nonempty
compact subset K of G, we may find by condition (A) a compact set
U ="Uk., of positive measure, such that M(U)"MK*U) <1 +e¢e. We
direct the set W = {(X, ¢): K a nonempty compact set in G, ¢ > 0}
as follows: (K, &) > (K, &) if and only if K, DK, and ¢, <¢&,. Then
{(Vig.o: (K, €)e W} is a regular net of compact subsets of G, where
Vigo = KUg,o-

DEFINITION 2. Let G be a regular group. Throughout this paper,
we consider a set function S: 9" — R, the set of real numbers, which
satisfies the following properties:

(D.2.1) S($) = 0.

(D. 2.2) S is strongly subadditive; that is, S(AN B) + S(AU B) <
S(A) + S(B), 4, Be .

(D.2.3) S(A) =<0, Ae oz

(D.2.4) S(Ag) = S(4), Ae 54,9 G.

The main result we will prove in this note is the following
theorem.

THEOREM 1. Let G be a lcau group. Let S: 9% — R satisfy
Definition 2. Then there is an extended real number r* such that
lim, MA,)7IS(4,) = r* for every regular net {A,} in Z.

A special case of this theorem, for vector groups, was proved in
[7] in order to define entropy in statistical mechanics for classical
continuous systems. The theorem can be used to define the entropy
of a measurable partition relative to a discrete amenable group of
measure-preserving transformations on a probability space, thereby
enabling one to generalize the concept of the Kolmogorov-Sinai invar-
iant [5].

One may construct a set function S satisfying Definition 2 as
follows: Let (2, .#) be a measurable space. For each element g of
the regular group G, let 7% be a measurable transformation from
2 to 2. We suppose that T79.7T% = T9us, g g,€G. Let & be a
fixed sub-sigmafield of _# If E is a nonempty subset of G, let .,
be the smallest sub-sigmafield of _# containing U,z (7%).%#. Define
F, = {¢, 2}. Let P, Q be probability measures on .#; such that P
is stationary with respect to {T7: g € G} and the fields {(T?)" % : g€ G}
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are independent with respect to Q. For each Ee¢ .97, let S(E) be the
negative of the entropy of P with respect to @ over .&#;, which we
agssume finite. The function S: 9% — R defined in this way can be
shown to satisfy Definition 2 in a manner analogous to that employed
in [7] for vector groups.

LEMMA 2. If Theorem holds for all sigma-compact lcau groups
it holds for all lecau groups.

Proof. Let d be a complete metric on R*, the set of extended
real numbers, which induces the usual topology on R*. Let {4.}
be a regular net for a non-sigmacompact lcau group G. Suppose
lim, M(4,)7*S(4,) does not exist. Then for some ¢ > 0, we may find
a sequence {F,} of elements of {4,} and a sequence {£,} in .5  such
that

(a) F,is any A4, and E, is an open symmetric neighborhood of
the identity.

() AOM(F)S(F )y MF,_)'S(F,-)) > &, m = 1.

© MEF)MFls,)>1—nn21.

(d) E, is an open symmetric set containing the closure of
[E...UF,Pn =1

Let G =U, E,. It is easily seen that G’ is an open, sigma-
compact subgroup of G.

If we restrict v to G, we get right Haar measure on G'. Thus
{F,} is a regular sequence for G, and G is a lcau group. Assuming
Theorem 1 holds for sigma-compact lcaw groups, lim, MF,)'S(F)
would have to exist, a contradiction of b). Thus lim, M(4,)S(4.)
exists. Let {B;} be another regular netin G. Let s, = lim, M (4,)'S(4.),
s, = lim M(B,;)"*S(B;). We show that s, = s,. Define sequences {C,}7,
{D,}?, {E,}7 in 2% such that ,

(a) E, is an open symmetric neighborhood of the identity, {C,} <
{A.), {D.} < {Bs}.

(b) d(M(C)S(CL), 81) < 7 AMD,)S(D,), 82) < n7h, m = 1.

© MEC) MGz, ) 21 — 17 MEu D) M(D,ls, ) =1 —
nt,n = 1.

(d) E, is open, symmetric and contains the closure of [E,_, U
C.UD,J,n=1.

It follows that G’ = U, E, is an open, sigma-compact, lcaw sub-
group of G and that {C,} and {D,} are regular sequences for G'.
Therefore, lim, \(C,)"*S(C,) = lim, M(D,)*S(D,), and so s, = s, by b).

DEFINITION 3. If G is a locally compact group, if S: % — R
satisfies Definition 2, and if A, Be 22" with AN B = ¢, define S(4|B) =
S(A U B) — S(B).
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LeMMA 3. Let G be a locally compact group, and let S: %% — R
satisfy Definition 2. Then S obeys the following laws:

(L.3.1) S(A) =S(B) if ADB, A, Be ¢

(L.8.2) If A, A, +-+, A, are elements of 9% which partition
A, then S(A) = Xk, S(A4, | Uizl 4;), where an empty union is the null
set.

(L.3.3) S(E|\D)=<= S(E|D,), D,oD, END, = ¢, E, D, D,e >

(L.3.4) S(E|\D)=SE)=<0,E De 2 END=¢.

Proof. (L.3.2) follows easily from Definition 2. The strong
subadditivity of S is equivalent to saying S(A\B|B) < S(A\B|A N B),
A, Be 2. Letting A= EU D, and B = D,, where E, D, D, satisfy
D NE=¢ and D,DD, we have AN B = D, and A\B = E, whence
(L. 8.3) follows. In (L. 3.3) if we take D, = 4, (L. 3.4) follows because
S(E|¢) = S(E). If ADB, where A4, Be .2, then S(4) = S(B) +
S(A\B|B) < S(B), and thus (L. 3.1) follows.

DEFINITION 4. We define a locally compact group G to be a P-
group if there exists for some positive integer » a triple (X, {G.}?, {H.}?)
such that:

(D.4.1) K is a nonempty relatively compact Borel set in G.

(D. 4.2) {G.}r and {H}r are sequences of closed subgroups of G
satisfying G,c H,c G,Cc H,c -.-C G,C H,.

(D. 4.3) The index of G, in H, is countable, 1 =1,2, -+, n.

(D.4.4) If E; is any set of coset representatives of the right
cosets {G,h: he H} of G, in H;,1=1,2,...,n, then each ge G has
a unique factorization in the form g = kee,:---¢, k€ K, e;,€ E;,t =
1,2,---,n. Also, KIIizi E)G, = K(I1:=1E;),1=1,2,-++,n, Where an
empty product is the identity in G.

In order to prove Theorem 1 for sigma-compact lcau groups,
we need to show that such groups are P-groups. This we now do,
by means of several lemmas. To see how the following lemma may
be proved, see [2], page 379.

LEMMA 4. Let G be a closed normal subgroup of a connected
Lie group G. Let ¢: G— G/G be the canonical homomorphism.
Then there exists a map 7: G/G — G such that

(L. 4.1) 7 s a cross-section; that s, ¢-T 1s the identity map on
G/G.

(L. 4.2) If U is a relatively compact subset of G|/G’, then t(U)
18 a relatively compact subset of G.

(L. 4.3) If U is a Borel set in G/G' and V is & Borel set in
G, then ©(U)V is a Borel set in G.
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LEMMA 5. Let G be a connected Lie group and G’ a closed normal
subgroup of G such that G/G is either a wector group or compact.
Then if G is a P-group, so is G.

Proof. Let 7: G/G'— G be the cross-section map provided by
Lemma 4. Since G/G is a vector group or compact, it is easy to
see that there exists a closed countable subgroup G” of G/G and a
relatively compact Borel set K’ in G/G’ such that {K’g:ge G"} par-
titions G/G’. If G’ is a P-group with respect to the triple (K, {G.}%,
{H.}7), then G is a P-group with respect to the triple (z(K")K, {G.}r*,
{H}1*"), where G,., = G’ and H,,, = ¢7(G").

LEMMA 6. If G is a sigma-compact locally compact group and
G’ is an open subgroup of G which is a P-group, then G is a P-group.

Proof. Let G' be a P-group with respect to the triple (K,
{G.}r, {H;}7). Then G is a P-group with respect to the triple (X, {G.}I*,
{Hi}?ﬂ)’ where G'n+1 = G” Hn+1 = G.

LEMMA 7. If G is a locally compact group and G s a compact
normal subgroup of G such that G/G is a P-group, then G is a P-
group.

Proof. Suppose G/G is a P-group with respect to the triple
(K, {G.}r, {H}?). Let ¢: G— G/G be the canonical homomorphism.
Then G is a P-group with respect to the triple (¢ %K), {¢ (G.)}7,
{o~(H)R).

THEOREM 2. FEwery sigma-compact locally compact amenable
group s a P-group.

Proof. Every connected amenable Lie group G possesses a series
of closed subgroups G,C G,c G, --- C G, = G, where G, is the iden-
tity, G, is normal in G,,,, and G,,,/G; is either a vector group or
compact, ©=0,1, ---,» —1. (See [3], Theorem 8.3.2, and [4],
Lemma 3.3.) Now G, is clearly a P-group, so by using Lemma 5
repeatedly we conclude every connected amenable Lie group is a P-
group. Applying Lemma 6, every sigma-compact amenable Lie group
is a P-group. For every locally compact group G there exists an
open subgroup G’ of G and a compact normal subgroup K of G’ such
that G'/K is a Lie group. (See [6], page 153.) Assuming G in addition
is sigma-compact and amenable, so is G'/K. Thus G'/K is a P-group
and then so is G’ by Lemma 7. Then G is a P-group by Lemma 6.
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We fix G to be a sigma-compact lcau group for the rest of the
paper. We need to show Theorem 1 holds for G. This we accomplish
by means of some lemmas and Theorem 3.

Let (K, {G,}r, {H,}?) be a triple with respect to which G is a P-
group. Let E, be a set of coset representatives of the right cosets
of G, in H, such that 1eE,,t=1,2, ..., n, where 1 is the identity
of G. For each i, let H, be the collection of right cosets of G, in
H,. (Since G, is not necessarily normal in H,, H, need not be a group.)
For each 4, let ¢,: H,— H, be the map such that ¢,(h) = G;h, he H;
let z;: H,— E; be the unique map such that ¢z, is the identity
map on H,. By a total order < on a set W, we mean a transitive
relation such that for x, ye W exactly one of the following hold:
r<y,x=19y, or y<x. For each i, let <® be a total order on E;
if he H,, let <! be the total order on E, such that if ¢, ¢' € E, then
e<<je if and only if 7,-¢,(eh) <'7;-8,(¢’h). If he H,, let Pile) =
{eE:e<<.¢). Let E=EUF,-.--E, Let H be the locally compact
amenable group H = H, X H, X «++- X H,. If h = (hy hyy -+, h,) € H,
let <, be the lexicographical order on E defined as follows: if ¢ =
€6, ---¢, and ¢ = el¢] --- e, are elements of E, where ¢,, ¢;c E,, then
e <, ¢ if and only if there exists an integer &k, n = k = 1, such that
6, <i.e. and for n=j7>Fk e;=c¢;. If heH ecE, let Pye) =
{feR.e << e}, If Aec 5%, ec EH, let ¢%: H— R be the function such
that ¢5(h) = S(Ke|KP,(e) N Ae) = S(K|KP,(e)e™* N A), he H.

LEMMA 8. If Ae % and ec E, then ¢%¢c L>(H), the space of
bounded Borel-measurable real-valued functions with domain H.

Proof. Fix Ae 9,¢c E. By (L. 3.4), 45 < 0. To achieve a lower
bound, let E' = {¢’c E: K&’ N Ae + ¢}. Since KE'C KK 'Ae, E' is
finite. Let F = {¢}j U E’. By (L.38.2), S(KF) = X;er S(Kf | KP,(f) N
KF). By (L.8.3) and (L.3.4), S(KF)< S(Ke|KP,(e)N KF) =
S(Ke|KF,(e) N Ae)=¢%(h), where the fact that KF'D Ae was used. Thus
#% is a bounded function. We now show that it is a Borel measurable
function. It is easily seen that ¢ is a simple function with possible
values S(Ke|KF' N Ae), F' C F. If F'C F, then ¢, = S(Ke| KF' N Ae)
on the set {he H: Py(¢e)NF = F'}, which is equal to the intersection of
the sets Nyer {h: f € Pi(e)} and Nyemp {h: f € Pi(e)}. Thus ¢35 is Borel
measurable if for each f e F, {he H: f € P,(e)} is a Borel set. If f =e,
this set is empty. Thus, fix feF,f #e Let f=fifs---f. and
e=ee, -6, where ¢, f,c E, for each 7. Let j=max{i:f;, # ¢}.
Then {he H: f € Py(e)} = {he H: f;€ Pj (¢;)}, where h;€ H; is the j=
component of e H. This is a Borel set in H if {hec H;: f; € Pj(e;)}
is a Borel set in H;. Now this latter set is the union of the sets
{he H;: G;f;h = Gy9,, Giesh = G,g,} where (g,, g,) ranges over all ordered
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pairs such that g, g.€ E; and g, </ ¢,. Since the union is a countable
union of closed subsets of H;, Borel measurability follows.

LEMMA 9. Let p be a left invartant mean on L>(H). Then
1(9%) = t(ps), Ae % ec E.

Proof. Fix Aec 5¢,ec E. We observe that
KPy(e)o = [ ( )P,, (€)00s - - - e,,]e“
U [ (1:[ >G P (e)e 62—161_'1} ,

by (D. 4.4), where h = (h, h,, -++, h,)e H and ¢ =¢,¢,---¢,. It is
routine to show that G.P;(e,) = G Pi(z,-¢.(e;h;))hi*. Also, since ¢; € G,
for j <14, we have ¢,(e;h;) = o,(e.6;, +--¢;h;). Thus, KP,(e)e™* =
U, [K(H;;} E;)P{(z, pie, -+ ehy))e, -+ e;h;)'] = KP,,(1), where m =
(my, my, - - -, m,) € H satisfies m; = [[i_.e;, ©=1,2,.--,n. Thus ¢5(h) =
#4(mh), he H, from which the lemma follows.

THEOREM 3. Let {A,} be a regular net in the sigmacompact leau
group G. Then lim, M(A,)'S(4,) = infze o MEK) 7 Uph).

Proof. Fix the regular net {4,}. Now KE,c A,c KE,, where
E,={cE:KeNA,+ ¢}, El, ={ec E: Kec A,}. Thus by (L.3.1),
S(KE,) < S(4,) < S(KE!). We show that lim sup, M4.)*S(KE)) < L
and lim inf, M(4,)*S(KE,) = L, where L = infy. » MK)'4(gs). Now
S(KE,) = Sue5, S(Ke|KP,(e) N KE,) Z Sez, ¢5,, Where B, = U.ex,
KE.,e™. Applying ¢ to the inequality and using Lemma 9, S(KE,) =
| E,|($35,) = | E,|MK)L = M(KE,)L, where | E,| denotes the cardinality
of E,. Since KE,cC KKA, we have lim, M4,)'MKE,) =1, by the
regularity of {A4,}. Thus liminf, M(4,)*S(KE,) = L. Fix Be . %.
We suppose that BD K. Now S(KE,) = 3,5, S(Ke| KP,(e) N KE,) <
Seer, 93 Where F, = {ec E;: KEjeo*D B}). Applying g, S(KE;) =
MEFIMK) "t(¢5). We could conclude that lim sup, M(4,)'S(KE;) < L,
provided lim, M(4,)"MKF,) = 1. This limit is one by the regularity
of {A,}, since [A,lxx—1zx— C KF,. To see this, let x€[A.]gx—15x-1.
By definition, KK 'BK ‘x c A,. Now x¢€ Ke for some ¢c E. We
have Kec KK 'x c KK 'BK'x c A,. Thus ec E/,. It will follow that
x€ KF, if Bec KE],. To see this, let ye Be. Then y e K¢’ for some
¢eE. Now K¢cKK'yc KK'Bec KK'BK'xc A,. Thus ¢c E,
and ye KE..
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