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SCATTERED COMPACTIFICATION FOR NU {p)

M. JAYACHANDRAN AND M. RAJAGOPALAN

In this paper, it is shown that the scattered space N U {p}
admits a scattered Hausdorff compactification for a large
class of points p in SN — N. This gives a partial solution to
the following problem raised by Z. Semadeni in 1959; “Is
there a scattered Hausdorff compactification for the space
NU{p} where p is any point of SN — N?°’ (See “Sur les
ensembles clairsemés,’”” Rozprawy Matematyczne, 19 (1959).)
The proofs are purely topological and the compactifications
are easy to visualize.

In 1970, C. Ryll-Nardzewski and R. Telgarsky [5], using deep
results from Boolean Algebras, have proved that N U {p} has a scat-
tered compactification if p is a P-point of SN — N. In the first
section of this paper, it is shown that the space YN constructed by
S. P. Franklin and M. Rajagopalan [1] serves as a scattered compac-
tification for N U {p} when p is a P-point of SN — N. In the second
section, a scattered Hausdorff compactification for N U {p} is provided,
when p is a P-point of order 2 for SN — N (definition follows). In
this case, it is also shown that the compactification of N U {p} is a
space Y such that ¥ — N is a homeomorph of [1, 2] X YN.

DEFINITION 1.1. A P-point of SN — N is said to be P-point of
order 1 for BN — N. Suppose that for ne N, we have defined a P-
point of order n. Then we define a P-point of order » + 1 to be
a P-point of the derived set of a countable set of P-points each being
of order » in BN — N.

We will now proceed to get a scattered compactification for N U
{p} where p is a P-point of order 1 for SN — N, by constructing a
suitable quotient space of BN which is scattered and Hausdorff and
which contains N U {p} as a dense subspace. The following two
lemmas are easy to prove and their proofs are omitted.

LEMMA 1.2. Let p be a P-point of order 1 for SN — N. Then
using continuum hypothesis BN — N — {p} can be written as the
unton of a collection {F}er,00 0f clopen sets im BN — N such that
F,C F; for oll a, ge[l, Q) such that a < B.

LEMMA 1.3. Let @ be a partition of BN — N such that the
quotient space (BN — N)/r is Hausdorff in its quotient topology.
Let % be the partition of BN where each member of N is a member
of & and each member of w is also a member of . ThenY = BN|T
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is compact and Hausdorff and the image of N in Y is an open
discrete dense subspace of Y.

Further, if (BN — N)/m is scattered im quotient topology, Y 1is
also scattered im quotient topology.

LEMMA 1.4. Let pe BN — N. Let & be a partition of BN — N
such that {p}ex and (BN — N)/m is Hausdorff. Let T be the par-
tition of BN as described in Lemma 1.8. Let §: BN— BN/T =Y be
the canonical map. Then § is a homeomorphism when restricted to
NU {p}.

Proof. Clearly q|(N U {p}): NU {p} — N U {p} is continuous, one-
to-one and onto. Also §: BN — BN/Z is continuous, SN is compact
and by Lemma 1.8, Y is T,. Therefore § is a closed map and hence
upper semi-continuous. Let O C N U {p} be open relative to N U {p}.
Then O = (NU{p})N U where U is open in BN. Let W be the union
of all partition classes with respect to # within U. Then, by the
upper semicontinuity of §, W is open in SN. Since W is also saturated
under %, (W) is open in BN/Z. Also WN (N U {p}) = O and hence
AW)NFN U {p} = §(0). Therefore, §(O) is open relative to F(IV U {p}).
Thus, §|(N U {p}) is an open map. Therefore, §|(IN U{p}) is a
homeomorphism.

LEMMA 1.5. Let p be a P-point of BN — N. Then there ewists
a partition © for BN — N such that (i) {p}erm and (ii) the induced
quotient space X = (BN — N)/m is homeomorphic to [1, 2].

Proof. By Lemma 1.2, BN — N — {p} can be written as U,er,0) Fla
such that F, is clopen in BN — N for each a and F,C Fyve, Be]l, Q)
such that « < 8. Put H, = F, and for each « such that 1 < a < 2,
put H,= F, — U.<r<« Fy, and put H, = {p}. Then the collection {H,},c1,. n
forms a partition 7 of BN — N by closed sets in SN — N. Let ¢:
BN — N— (BN — N)/x be the induced quotient map. Let q(H,) = b,
for all ac[l, 2]. Let 7, be the usual order topology induced on
{b.]1 £ @ £ 2} by the bijection b, — a from {b,|1 < a < 2} onto [1, 2]
and let 7, be the quotient topology on {b,|]1 < @ < £} induced on it
by the partition 7 of SN — N. Then the topologies 7, and 7, on
{b.]1 < a < 2} are both compact and Hausdorff and comparable and
hence they are homeomorphic.

THEOREM 1.6. Let p be a P-point of order 1 for BN — N. Then
N U {p} has a scattered compactification.

Proof. Let 7 be the partition of BN — N obtained as in Lemma
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1.4. Then {p}ex and the quotient space (8N — N)/x = X is homeo-
morphic to [1, 2]. Hence X is a compact, scattered and Hausdorff
space. Let # be the partition of AN as in Lemma 1.3. Then, by
Lemma 4, SN/% contains a homeomorphic copy of N U {p}. Since N
is dense in BN, N U {p} is dense in AN/%. Thus, SN/7 is a scattered,
Hausdorff compactification for N U {p}.

REMARK 1.6a. The above scattered Hausdorff compactification
of NU {p} is a space X such that the remainder X — N is homeo-
morphic to [1, 2]. This compact Hausdorff space X is called YN by
by S. P. Franklin and M. Rajagopalan in [1].

2. Scattered Hausdorff compactification for N U {p} where p is
P-point of order 2 in BN — N:

NoTATIONS. Let pe BN — N. Let p be a P-point of order 2
in BN — N. Then there exists a countable set {p, D, ***Ds ***}
of distinet P-points in SN — N such that P is a P-point of the
set

B = clyy_y {0y, sy Dsy =+ =+ *y Doy *=*} — {01y D2y * Dy -

LEMMA 2.7. There exists a countable collection {0,},.y of clopen
sets in BN — N such that (i) 0,N0,, = @ for n, m e N such that v+ m
and (i) p,€0,vn=1,2,3, --.

Proof. Using the zero dimensionality of SN — N and the fact
that p,, is a P-point for SN — N, we can get a clopen set O, in
BN — N containing p, and disjoint with {p,, s *-+, D, -~} U{D}.
Since, p, is a P-point of BN — N, we get a clopen set F,in BN — N
containing p, and disjoint with p,, D5, Dy +++, Du, +++, . Put O, =
F, — 0,. Proceeding like this, by induction, for each ne N, we can
get a clopen set O, in BN — N satisfying the conditions (i) and (ii)
of the Lemma 2.7.

LemmA 2.8. Let O be any o-compact subset of . BN — N. Then
cloy_y = BO.

Proof. This follows from the fact that O is a dense subset of
the compact set cl;y_y (O) and any continuous function f:0 — |0, 1]
admits a continuous extension to SN.

COROLLARY 2.9. Let the collection {0,},.y be as in Lemma 2.7.
Let clyy_x (Un=10,) =M. Then U,-,0. is a o-compact subset of
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BN — N and M = B(U,-,0.,).

COROLLARY 2.10. Let {p, Doy +++, D, +++} be a countable collec-
tion of P-points of BN — N. Let B = Clyy_y{Di, Doy ++ =y Dy *++} —

{Dyy Doy + =y Duys++}. Then BU{Dy, Doy vy Duyeeo} = BUDy =+ *) Dy +++)}e

NoTE 2.11. Let X be any Tychonoff space. Let AC X be clopen
in X. Then cl;x A is clopen in BX.

Proof. The function f: X— [0, 1] given by

f(@®) =0, for all xe A
=1, forallzeX — A

is continuous on X. Therefore, f admits a continuous extension f:
@X —[0,1]. Then, it is clear that f(x) =0 for all xecl;y A and
f(®) =1 for all xe 8X — cl,xA. Hence, the result follows.

LEMMA 2.12. Let the collection {O,},.y be as in Lemma 2.7.
Let B be as in Corollary 2.10. Let clyy_y (U,.=10,) = M. Let M —
U.-.0,. = K. Then, there exists an increasing collection {A.},en, 0
of clopen sets relative to K such that Uzen,o A = K — B.

Proof. For each ne N, p, is a P-point of BN — N and p,€O,.
Hence, p, is a P-point of O, for all » =1,2,8, ---. Therefore, as
in Lemma 1.2, using continuum hypothesis, for each n€ N, O, — {p,}
can be expressed as the union of an increasing collection {A,,}er1,0 Of
clopen sets relative to O, (and hence relative to SN — N also). For
each ne N, put 4, = [cly_y (U= 4..)] N K. Then, by Corollary 2.9
and Note 2.11 above, A4, is clopen relative to K for all aec[l, Q).
Since 4,,C A4;, for a < B, a, Be[l, Q), it follows that A, C 4; for all
a, B€[1, Q) such that a < g.

Now it remains to show that U,e;,0 4. = K — B. Clearly 4, N
B = ¢ for all «€|[l, 2) and hence U, A, K — B. To get the other
inclusion, let x,€ K — B. Now, K — B is open relative to K and K
is zero-dimensional. Therefore, there exists a clopen set V relative
to K such that z,¢ Vo K — B. Since Vc K is clopen in K and
BN — N is zero dimensional, there exists a clopen set W in SN — N
such that V=WnK. Pt Wno,=W, forall n=12,8,... We
note that p, can belong to W, for at most a finite number of =’s.
Therefore, 3k,€ N such that p,¢ W,¥vn > k,. Hence, for each n >k,
there exists a countable ordinal «, such that A,,>W,. Let the
supremum of «, for n >k, be v. Then A4,,DW,Vn >k, Therefore,
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Hence,

Also 2,¢ V. Therefore, Uuerr,00 4. = K — B.

LEMMA 2.13. Let B be as defined in Corollary 2.10 and let K
be as in Lemma 2.12. Then, there exists a collection {X }eer,o0 Of
clopen sets relative to K such that X,C X,Va, Be(l, 2) such that
a< B and [Use,0X] N B= B — {p}.

Proof. Now, p is a P-point of B and hence, using continuum
hypothesis, B — {p} can be written as the union of an ascending
collection {B,}.cr1,0) of clopen sets relative to B. Since, by Corollary
2.10, BU{Dyy Dy =+ *y Duy, -} = B0y -+ +, s, -++}), each B, gives a
subset N, = {p,%, -+, D.2, +++} of {p,, D, -+, D,, -} such that

CIﬂN—N(Na) NB,=B.

Since B,C B; for @ < B, we have N, is almost contained in N, for
a < B. Put [cpy y(Ui- 0,91 N K = X, Vae]l, 2]. Then X, is clopen
in K Vaell, Q), X,c X; for a < 8, X,NB= BYac]l, 2) and also
(U X)NB=U.(X.NB)=U.B, = B — {p}.

LEMMA 2.14. Let the collection {O,},cx, M and K be as in Lemma
212, Let BN— N—M=T. Let {C,} ac[l, 2) be an ascending
collection of clopen sets relative to K. Then, there exists an ascending
collection {I}ser,00 Of subsets of T U K such that each I, is clopen
m T,UK, I,NK=CNac|l, 2 and U.IL,— U.C,=T.

Proof. Using the fact that BN — N is zero-dimensional and is
of weight ¢ and also using the fact that the clopen sets of SN — N
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satisfy the Dubois-Reymond separability condition, we can write T
as the union of an ascending collection {G,},cr.00 Of clopen sets in
BN — N such that G, N M = ¢Vae|l, Q).

Now, C, is clopen in K. Since SN — N is zero-dimensional, 3 a
clopen set J, in BN — N such that JJ N K = C,. Put[/,N(TU K)]uU
G, =1I,. Then I, is clopen in TU K and I,N K = C,. Suppose that
we have constructed clopen sets I, I,, ---, I, in TU K for n € N such
that [cLc...cI, and [ NK=C; for j=1,2,-.-,n. Then we
construct I,,, as follows: Since C,,, is clopen in K and BN — N is
zero-dimensional, there exists a clopen set J,., in BN — N such that
JonNK=Cop. Put L, =[x N(TUK)UIL UG, Then I, is
clopen in TUK,I,.,o1I, and I,.,,N K = C,,,. Having constructed
LLcLc...cl,c..- we now proceed to construct I, First, we
claim that cly_y (U L)N(K — C,) = @. For, let x,e k — C,, which
is clopen in K. Since BN — N is zero-dimensional, there exists a
clopen set H, in BN — N such that H,NK = K — C,. Let H,NI, =
H,V,=1238,--.-. Then H,, is closed in SN — N. We will now
prove that H,, is also open in BN — N. Since, I, is clopen in TUK
and BN — N is zero dimensional, there exists a clopen set ', in BN — N
such that ', N (TUK)=1I,. Then ', N[(TUK)NK]=I,NK = C,.
Now

H,,=H,NIL)=H,N[.N(TU K)]
=HN[.NnT)u T, N K)]
=H,NT,NTHUHNT,NK)
=HNTL,NTHUNK —-CyNT,]
=H,NT,NTUIKN(EK - C)NT,]
=H,NT,NTUC, N (K - C)]
= H,NI,N T which is open in SN — N.

Therefore, H,, is clopen in @GN — N. Also BN - N—-0,, BN — N —
(0, UO0,), --+ form a decreasing countable collection of clopen sets in
BN — N such that (6N — N — U,0,) D H,,.ym,n =1,2,3, --- The-
refore, by Dubois-Reymond separability condition, there exists a clopen
set H in BN — N such that Hc T and HD Uy H,.. Therefore,
(BN—N—H)N H, is a clopen set in BN—N and z,€ (,N—N—H)N H,.
Also [BN—-N—-H)NnH,JN (U= I.)= 2. Therefore ,¢ clay_xy (Un=1 L,)-
Hence, (K - C,) N (Ng-. L.) = @. Now C,Uclyy_x(Ur=.1,) and K — C,
are disjoint closed sets in BN — N which is normal. Threfore, there
exist disjoint open sets D, D, in BN — N such that

D, 5 Cy U clyy_y (G I,,) and D,>K-—C,.

n=1
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Now BN — N is zero dimensional, C, U clsy_y (U3 I,) is a compact
subset of BN — N and D, is an open set in SN — N containing C, U
cliy_y (U7-1 I,). Hence, there exists a clopen set J, in BN — N such
that D, > J,2C, U clay-r (U~ I.). Now, J,ND, = @ and hence (K —
C)NnJ, = @. Therefore, J,N K = C,. Take I, = [J,N(T U K)]U H,.
Then I, is clopen in TU K, I, U>-. I, and I, N K = C,. Continuing
this process, we get an increasing collection {I,},c[.,0, of clopen sets
in TU K such that I, N K = C,Vae][l, 2). It can also be seen that

UaIa - Ua an = T.

COROLLARY 2.15. Let the collection {Au}eciey be as in Lemma
2.12. Then, there exists a collection {S,}.cr,00 0f clopen sets in TUK
such that S,cSpVa, gell, 2) such that a < B, S, NK=ANac][l, Q)
a'nd UaSa - UaAa =T

COROLLARY 2.16. Let the collection {%,}.cr,00 be as in Lemma
2.13. Then, there exists an increasing collection {L,}eer,o0 Of clopen
sets in TU K such that L,Nx = X ,Vae[l, D and U, L, — U. X, = T.

DEFINITION 2.17. Let o, and o0, be two partitions of a nonempty
set X. Then we define 0,N 0, to be the partition of X given by
the collection {AN B|Aeco, Beo,y, AN B +# @} of nonempty subsets
of X.

LEMMA 2.18. Let X be a compact Hausdorff space. Let o, 0,
be two Hausdorf partitions for X. Then 0,00, is also a Hausdorff
partition for X.

Proof. Let X/o, =Y, and X/o,=Y,. Letq:X—Y, and ¢;: X—7Y,
be the corresponding quotient maps. Define (g, ¢,): X—Y, XY, by
(q,, 22)(x) = (q.(x), q.(x))Yx € X. This is a continuous function form X
into Y, x Y,. Now Y, XY, is Hausdorff. Consider (g, ¢,) as 2 map
from X onto (g, ¢,)(X). Let the partition induced on X by this map
be 0. Then ¢ = 0, N 0g,. Let ¢: X — X/o be the corresponding quotient
map. Let g: X/o— (q,, ¢.)(X) be the natural fill-up map making the
following diagram commutative.

Cont, onto __ (g,, g,)(X)

(91, g2) Compact, T
. Onto
continuous ¢ \ /" 9 one-to-one
Onto X/ continuous
o

Compact
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Now X/o is compact, (¢, ¢.)(X) is Hausdorff and g is one-to-one, onto
and continuous. Hence ¢ is a homeomorphism. Since (g, ¢.)(X) is
Hausdorff, it follows that X/o is Hausdorff. Therefore o,N g, is a
Hausdorff partition for X.

In the above proof, we also note that the quotient space induced
by o, N g, is homeomorphic to the range of the function (g, ¢;) in
Y, XY,

LemMMA 2.19. Let T and K be as in Lemma 2.14. Let B and
p be as in Lemma 2.13. Then, there exists a Hausdorff partition
for TU K with {p} as a separate partition class.

Proof. Let the collection {S,}.cr,2» be as in Corollary 2.15 and
let the collection {L,}.cr,00 be as in Corollary 2.16. Put H, = S, and
for each a€ 2, 2), H,= S, — Uisy<«S; and H,=K — J. A, = B.
Also, let M, = L;; for each a€e[2, 2), M, = L, — U.sr<« L, and M, =
K — Usen,o X, Then, the collection {H,},c11,0) gives a partition 7z, for
T U K such that the quotient space (T'U K)/x, is homeomorphic to [1, 2].
Therefore, 7, is a Hausdorff partition for T U K. Similarly, the
collection {M,},er, o1 gives a Hausdorff partition 7, for TU K. Let
7, N7, = wy. Then, by Lemma 2.18, 7, is a Hausdorff partition for
TU K. Also

HgﬂM:):Bﬂ<K—UXa>
=B—La](BﬂXa)
:B_'LajBa:{p}'

LEMMA 2.20. Let X be a topological space. Let A, and A, be
closed in X. Let A, UA,=X. Let ACX be such that AN A, s
open relative to A, and AN A, is open relative to A, Then A is
open in X.

Proof. This follows from the fact that
A= (Ol_Az)U(Oz"‘Aq)U(Oanz)-

LEMMA 2.21. Let m; be the partition of TU K as obtained in
the proof of Lemma 2.19. Let the collection of sets {Ay}acr00 be as
keN

obtained im the proof of Lemma 2.12. Let {p,, 0, ++, Dn, -} be as

in Corollary 2.10. For each ke N, let D,, = A,, — Uisr<a 47,. Then

the collection of sets {D,,k}az[,_g) and {p,},.r together with the members
eN

of @, form a Hausdorff partition m, for BN — N.
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Proof. Clearly x, is a partition for BN — N. We will now prove
that (8N — N)/z, is Hausdorff. Given any two partition classes C,
and C, of SN — N with respect to 7#,, we must prove that there
exists a clopen set Y, in BN — N containing C,, disjoint with C, and
saturated under m,. The cases where either C, or C, is a D,, or a
P, are easy to handle and we consider the following cases:

Case 1. Let C,= H,N M; and C, = H, N M, where «, B, Y€ [1, Q]
and @ # 7. Without loss of generality, we can assume that g < 7.
Now, by definition X; = clzy_x(Us-: 0"5) N K where clzy_y ({p,,f, cee,
Paty + ‘DN B = B; (see the proof of Lemma 2.13). Also L,NK = X,
where L; is clopen in TU K (see Corollary 2.16). Now, Y, = LU
cliy_y (U1 0,s) is closed in BN — N and using Lemma 2.20, we can
see that it is also open in BN — N. Further Y,DC,and Y,NC, = &.
Also, Y, is saturated under =,.

Case 2. Let C,= H,NM; and C,= H, N M, where a,,7,0¢€
[1, 2] and a == 7. Without loss of generality, we can assume that
« < 7. In this case, using Lemma 2.20, we can verify that the set
Y, = clpy_y (Ur=1 A.,) U S, is clopen in BN — N. Further, ¥, D C, and
Y.NC,= @. Also Y, is saturated under w,. Therefore, r, is a Haus-
dorff partition for BN — N.

LEMMA 2.22. Let «, be the Hausdorff partition of BN — N as
given wn Lemma 2.21. Let m, be the partition of M given by w5 =
T, M={XNMXern,}). Then w, ts a Hausdorff partition for M.

Proof. Let D,,, ., B and O, be as in above lemmas. Let E, = A4,
and E, = A, — Nisr<a 4;, Y €[2, 2). Then, it is easy to see that the
partition 7, of M given by the collection {D,}a€]l, 2]kc N, [p.}acy,
{E,}ser,ey and B is a Hausdorff partition for M. Let K, = X, and
K,=X, — U« X;Vae[l, 2). Also, let Ko= K — Uyerr, X, Then,
the partition 7, of M given by the collection {0,},.»y and {K,}.ci, 0 is
also a Hausdorff partition for M. Further 7w, = 75N 7,. Hence, by
Lemma 2.18, 7, is a Hausdorff partition for M.

LEMMA 2.23. Let M, m, and w; be as in previous lemmas. Then
M|z, is homeomorphic to (BN — N)/z,.

Proof. Let (BN — N)/z, =Y and let q,: BN — N—Y be the quo-
tient map induced by the partition 7, of SN — N. Then, by Lemma
2.21, Y is Hausdorff. Now, the map ¢,/M: M—Y is a continuous
function from M onto Y where M is compact and Y is Hausdorff.
Hence, the topology of Y is the quotient topology of M induced on
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it by the function ¢,/M. But ¢, induces the partition 7; on M.
Therefore, M/n; is homeomorphic to Y = (3N — N)/x..

LEMMA 2.24. Let all notations be as in previous lemmas. Then
My is homeomorphic to YN X [1, 2] where YN 1is the compacti-
fication of N constructed by S. P. Frankline and M. Rajagopalan
in [1]. (See also remark 1.6a).

Proof. Now m;=m,N 7, where 7, and 7, are Hausdorff partitions of
M as given in the proof of Lemma 2.22. Let q,: M — M/7s and q,: M —
Mz, be the corresponding quotient maps. Consider the function (g,
q:): M— M|mys X M/, given by (g, ¢-)(2) = (¢s(%), ¢:(x))Yx € M. Since
s N\ T, = 7y, it follows from Lemma 2.18 that M/z, is homeomorphic
to the range of the function (g, q;) from M into M/ms X M/m,. But
it can be seen that M/m, is homeomorphic to [1, 2] X [1, @] with its
usual product topology and M/z, is homeomorphic to YN and that
the range of the map (g, ¢;) is homeomorphiec to [1, 2] X YN. Hence,
M]/rs is homeomorphic to [1, 2] X YN.

THEOREM 2.25. N U {p} has a scattered Hausdorff compactifica-
tion, when p is a P-point of order 2 for BN — N.

"Proof. Consider the partition 7, of SN — N given in Lemma
2.21. Let %, be the partition of SN whose members are the members
of 7, and the singletons in N. Since, (8N — N)/zx, is Hausdorff, by
Lemma 1.3, it follows that BN/7, is Hausdorff. Since 8N is compact,
we have @N/#, is compact. Since (BN — N)/z, is homeomorphic to
[1, 2] X YN which is scattered, we have that QN/7, is also scaterted.
Since N is dense in BN and N U {p} maps homeomorphically onto
itself under the quotient map from EGN onto GN/Z (Lemma 1.4), it
follows that N U {p} is dense in GN/#, Thus, BN/Z, is a scattered
Hausdorff compactification for N U {p}. Hence the theorem.
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