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SCATTERED COMPACTIFICATION FOR Nu{p)

M. JAYACHANDRAN AND M. RAJAGOPALAN

In this paper, it is shown that the scattered space N U {p}
admits a scattered Hausdorff compactification for a large
class of points p in βN— N. This gives a partial solution to
the following problem raised by Z. Semadeni in 1959: "Is
there a scattered Hausdorff compactification for the space
N[J{p} where p is any point of βN—NV (See "Sur les
ensembles clairsemέs," Rozprawy Matematyczne, 19 (1959).)
The proofs are purely topological and the compactifications
are easy to visualize.

In 1970, G. Ryll-Nardzewski and R. Telgarsky [5], using deep
results from Boolean Algebras, have proved that N U {p} has a scat-
tered compactification if p is a P-point of βN — N. In the first
section of this paper, it is shown that the space ΎN constructed by
S. P. Franklin and M. Rajagopalan [1] serves as a scattered compac-
tification for N U {p} when p is a P-point of βN — N. In the second
section, a scattered Hausdorίf compactification for N U [p] is provided,
when p is a P-point of order 2 for βN — N (definition follows). In
this case, it is also shown that the compactification of Nl){p) is a
space Y such that Y — N is a homeomorph of [1, Ω] x ΎN.

DEFINITION 1.1. A P-point of βN — N is said to be P-point of
order 1 for βN — N. Suppose that for ne N, we have defined a P-
point of order n. Then we define a P-point of order n 4- 1 to be
a P-point of the derived set of a countable set of P-points each being
of order n in βN — N.

We will now proceed to get a scattered compactification for N U
{p} where p is a P-point of order 1 for βN — N, by constructing a
suitable quotient space of βN which is scattered and Hausdorff and
which contains N U {p} as a dense subspace. The following two
lemmas are easy to prove and their proofs are omitted.

LEMMA 1.2. Let p be a P-point of order 1 for βN — N. Then
using continuum hypothesis βN — N — {p} can be written as the
union of a collection {Fa}aeίίtΩ) of clopen sets in βN — N such that
Fa c Fβ for all a, β e [1, Ω) such that a < β.

LEMMA 1.3. Let π be a partition of βN — N such that the
quotient space (βN — N)/π is Hausdorff in its quotient topology.
Let ft be the partition of βN where each member of N is a member
of ft and each member of π is also a member of ft. Then Y = βN/ft
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is compact and Hausdorff and the image of N in Y is an open
discrete dense subspace of Y.

Further, if (βN — N)/π is scattered in quotient topology, Y is
also scattered in quotient topology.

LEMMA 1.4. Let p e βN — N. Let π be a partition of βN — N
such that {p} e π and (βN — N)/π is Hausdorff. Let π be the par-
tition of βN as described in Lemma 1.3. Let q: βN-+ βN/π — Y be
the canonical map. Then q is a homeomorphism when restricted to
NΌ{p}.

Proof. Clearly q\(N\J {p}): N[j {p}—>N{J {p} is continuous, one-
to-one and onto. Also q: βN—+ βN/π is continuous, βN is compact
and by Lemma 1.3, Y is T2. Therefore q is a closed map and hence
upper semi-continuous. Let O c JVU {p} be open relative to N{J {p}.
Then 0 = (N\J{p})Γ\ U where U is open in βN. Let W be the union
of all partition classes with respect to π within U Then, by the
upper semicontinuity of g, W is open in βN. Since W is also saturated
under π9 q(W) is open in βN/π. Also W Π (N\J {p}) — 0 and hence
q(W) Π q(N\J {p} = q(O). The refore, q{0) is open relative to q(N U b})
Thus, q\(N\J {p}) is an open map. Therefore, q \ (N U {p}) is a
homeomorphism.

LEMMA 1.5. Let p be a P-point of βN — N. Then there exists
a partition π for βN — N such that (i) {p} e π and (ii) the induced
quotient space X — (βN — N)/π is homeomorphic to [1, Ω].

Proof. By Lemma 1.2, βN — N — {p} can be written as \Jaeiif0) Fa

such that Fa is clopen in βN - N for each a and Fa c FβVa, β e [1, Ω)
such that a < β. Put Hj, = Fx and for each a such that 1 < a < Ω,
put Ha = Fa — Uusr<α Fγj and put HΩ = {p}. Then the collection {Ha}aeίl>Ω1

forms a partition π of βN — N by closed sets in βN — JV. Let g:
βN — JV—> (/SiV — ̂ /TΓ be the induced quotient map. Let q(Ha) = ba

for all ae[l,Ω]. Let τ1 be the usual order topology induced on
{ba11 ̂  a ^ β} by the bijection 6α->α from {ba\l<^a<, Ω} onto [1, β]
and let τ2 be the quotient topology on {ba\l ̂  a <^ Ω} induced on it
by the partition π of βN — N. Then the topologies τι and τ2 on
{ba 11 ̂  OL ^ β} are both compact and HausdorfE and comparable and
hence they are homeomorphic.

THEOREM 1.6. Let p be a P-point of order 1 for βN — N. Then
N U {p} has a scattered compactification.

Proof. Let π be the partition of βN — N obtained as in Lemma
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1.4. Then {p} e π and the quotient space (βN — N)/π = X is homeo-
morphic to [1, Ω]. Hence X is a compact, scattered and Hausdorff
space. Let π be the partition of βN as in Lemma 1.3. Then, by-
Lemma 4, βN/π contains a homeomorphic copy of N\J {p}. Since N
is dense in βN, N U {p} is dense in βN/π. Thus, /3JV/τr is a scattered,
Hausdorff compactification for N{J{p}

REMARK 1.6a. The above scattered Hausdorff compactification
of N U {p} is a space X such that the remainder X — N is homeo-
morphic to [1, Ω\. This compact Hausdorff space X is called ΎN by
by S. P. Franklin and M. Rajagopalan in [1].

2* Scattered Hausdorff compactification for N U {p} where p is
P-point of order 2 in βN — JV:

NOTATIONS. Let p e βN — N. Let p be a P-point of order 2
in βN — JV. Then there exists a countable set { ,̂ p2, •••?>•> •}
of distinct P-points in /3JV — N such that P is a P-point of the
set

B = cW_jy {Pi, p2, p3, , , P», •} - {Pi, Vzf •?>», •} •

LEMMA 2.7. There exists a countable collection {On}neN of clopen
sets in βN— Nsuch that (i) OnΠOm = 0 /or n, me Nsuch that nφm
and (ii) pΛ e OnVn = 1, 2, 3,

Proof. Using the zero dimensionality of βN — N and the fact
that pίf is a P-point for /3iV — N, we can get a clopen set Ox in
/3iV — N containing p1 and disjoint with {p2, p3, •••, pn, •• }U{p}.
Since, p2 is a P-point of /SiV — N, we get a clopen set F% in /3i\Γ — N
containing p2 and disjoint with pu pz, p±, , pM , p. Put O2 =
F2 — Oi Proceeding like this, by induction, for each ne JV, we can
get a clopen set Ow in βN — JV satisfying the conditions (i) and (ii)
of the Lemma 2.7.

LEMMA 2.8. Let 0 be any σ-compact subset of βN — N. Then

cWV 0 ) = βO.

Proof. This follows from the fact that 0 is a dense subset of
the compact set c l ^ . ^ (0) and any continuous function / : 0 —> [0, 1]
admits a continuous extension to βN.

COROLLARY 2.9. Let the collection {On}neN be as in Lemma 2.7.
Let £\βN-N (LL=i O») = M. Then \Jn=ι On is a σ-compact subset of
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βN- N and M= / 3 ( L U i 0 J .

C O R O L L A R Y 2 .10. Let {pu p 2 , •• ,ί> Λ > •••} δβ a countable collec-
tion of P-points of β N — N. Let B = c l ^ _ ^ {pu p29 , p n 9 } —
{Pif P*9 - ,Pn, •••}• Then Bl){pl9 p 2 , , P « , •} = β({Pif •••,?», •••)}•

NOTE 2.11. Let X be any Tychonoff space. Let A c X be clopen
in X. Then cl^x A is clopen in βX.

Proof. The function / : X—^[0, 1] given by

f(x) = 0, for all xe A

= 1, for all x 6 X — A

is continuous on X. Therefore, / admits a continuous extension / :
/3X->[0, 1]. Then, it is clear that /(#) = 0 for all xeelβzA and
f(x) = 1 for all a? e /5X — cl^A. Hence, the result follows.

LEMMA 2.12. Let the collection {On}neN be as in Lemma 2.7.
Let B be as in Corollary 2.10. Let cl^_^ ({Jn=1 On) = M. Let M —
\Jn=iOn = K. Then, there exists an increasing collection {Aa}aeίl>Ω)

of clopen sets relative to K such that U«e[i,β> Aa = K — B.

Proof. For each neN,pn is a P-point of βN - N and pn e On.
Hence, pn is a P-point of Ow for all n = 1, 2, 3, . Therefore, as
in Lemma 1.2, using continuum hypothesis, for each ne N, On — {pn}
can be expressed as the union of an increasing collection {AaΛ}aeίltΩ) of
clopen sets relative to On (and hence relative to βN — N also). For
each n e N, put Aa = [c\βN_N (U"=i Aan)] Π if. Then, by Corollary 2.9
and Note 2.11 above, Aa is clopen relative to K for all a e [1, β).
Since Aan c A ^ for a <. β,a, βe [1, 42), it follows that Aa c A^ for all
a, βe [1, β) such that a < β.

Now it remains to show that U«e[i,0> Aa — K — B. Clearly Aa Π
J5 = ^ for all a e [1, Ω) and hence JJ« Λ* <= -^ - -B T o ^ e t t h e o t h e r

inclusion, let xQeK — B. Now, iΓ — B is open relative to K and iΓ
is zero-dimensional. Therefore, there exists a clopen set V relative
to K such that xQe VaK — B. Since F c i Γ is clopen in K and
/SiV — N is zero dimensional, there exists a clopen set W in /9iV — JV
such that V = Wf)K. PutWf]On = Wn for all n = l , 2 , 3 , . . . We
note that pn can belong to Wn for at most a finite number of n's.
Therefore, 3fc0 e N such that pΛ e Ϊ7%V^ > fc0. Hence, for each w > fc0,
there exists a countable ordinal an such that Aα%% Z) Wn. Let the
supremum of an for ^ > &0, be 7. Then Arn=> T7WV^ > k0. Therefore,
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U Λ.=> U
n=ko+l n=ko+l

Hence,

U Aΐn Π K = Ar = U AXnf]K

= U

Also #o e V. Therefore, U«e[i,ί» Aa = K - B.

LEMMA 2.13. Let B be as defined in Corollary 2.10 and let K
be as in Lemma 2.12. Then, there exists a collection {Xtt}aeii,Ω) of
clopen sets relative to K such that Xa c XβVa, β e [1, Ω) such that
a<β and [\Ja&lhΩ)Xa] ΠB = B- {p}.

Proof. Now, p is a P-point of B and hence, using continuum
hypothesis, B — {p} can be written as the union of an ascending
collection {Ba}aeίltΩ) of clopen sets relative to B. Since, by Corollary
2 . 1 0 , B U {pί9 Pi, - - - , p n , •} = β ( { p l 9 - - - , p n , •••}), e a c h B a g i v e s a
subset Na = {pn«, , ί>Λ«, •} of {pίf p2, ---,pn, •} such that

cW-tfTO n 5 α - B .

Since S α c Bβ for a < β, we have iVα is almost contained in JV̂  for
a<β. Put [ c l ^ . ^ d J ^ i O4)] Π -K" = XαVα e [1, Ω]. Then Xα is clopen
in K Vae [1, ώ), Xα aXβ for a < β, Xa Π B = BaVa e [1, Ω) and also

( U J J n B = u«(-x« n B) = a f t = B - {p}.

LEMMA 2.14. Let the collection {On}neN, M and Kbe as in Lemma
2.12. Let βN - N - M = T. Let {Ca} a e [1, Ω) be an ascending
collection of clopen sets relative to K. Then, there exists an ascending
collection {Ia}aeii,Ω) of subsets of T{JK such that each Ia is clopen
in Ta{jK,IaΓ\k= CaVa e [1, Ω) and \Ja Ia -\JaCa= T.

Proof. Using the fact that βN — N is zero-dimensional and is
of weight c and also using the fact that the clopen sets of βN — N
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satisfy the Dubois-Reymond separability condition, we can write T
as the union of an ascending collection {Ga}aeίhΩ) of clopen sets in
βN - N such that GaΠM = φVa e [1, Ω).

Now, Ci is clopen in K. Since βN — N is zero-dimensional, 3 a
clopen set Jγ in βN - N such that J, Π K = Cx. Put [JΊ Π (Γ U 10] U
Gi = Λ. Then I x is clopen in T U JBΓ and li Π ίΓ = Ci Suppose that
we have constructed clopen sets 1Ί, J2, •••,/» in Γ U -K" for w e iSΓ such
that Λ c I2 c c In and J, Π JBΓ = C, for j = 1, 2, , n. Then we
construct In+1 as follows: Since Cn+1 is clopen in if and βN — N is
zero-dimensional, there exists a clopen set Jn+1 in βN — JV such that
JΛ+ί ΓiK = Cn+1. Put In+ι = [Jn+ι Π (Γ U JBΓ)J U J U σw+1. Then In+1 is
clopen in T{j K, J Λ + 1 3 /w and /H + 1 Π ίΓ = Cn+1. Having constructed
ί c ί j C c / . c we now proceed to construct Iω. First, we
claim that cλβN-N (U?=i D Π (X — Cω) = 0 . For, let cc0 e fc. — Cω, which
is clopen in K. Since βN — N is zero-dimensional, there exists a
clopen set Hω in βN — N such that HωΓ\K = K — Cω. Let fl"βΠ/« =
jH»ωVn = 1, 2, 3, . . . . Then Hnω is closed in /3i\Γ - N. We will now
prove that Hnω is also open in βN — iV. Since, I% is clopen in TUK
and 8̂JV — Nis zero dimensional, there exists a clopen set Γn in /3iV — N
such that ΓΛ Π (Γ U K) = /.. Then / \ Π [(Γu ίΓ) ΠK] = I . Π # = Cn.
Now

fl-^ = (an/.) = ff.n [rnn (Γ
= a . n [(rn n r ) u (rn n κ)\
= (Hω n rw n D u (fl. n rn n i:)
= (fl. f]Γnnτ)u [(K - cω) n r j
= (iz. n r π n Γ) u [irn (if - c.) n r j
= ( s . n r Λ n τ)u[(Cnn(κ- cω)]
= Hωf]ΓnΓ) T which is open in βN - N.

Therefore, Hnω is clopen in βN - N. Also βN - N - Ol9 βN - N-
(Oi U O2), form a decreasing countable collection of clopen sets in
βN- N such that (βN - N - U?«i 00 => ^ V m , n = 1, 2, 3, . . The-
refore, by Dubois-Reymond separability condition, there exists a clopen
set H in βN - N such that jffc Γ and HZD \Jn=iHnω. Therefore,
(βN-N-H)f]Hω is a clopen set in βN-N and xoe(βN-N-H)ΠHω.
Also [(βN-N-H)Πg.]ΓΊ(υ~=i!»)= 0- Therefore α?oί cW_^(U.=i4).
Hence, (JE" - Cω) n (Π?=i i ) = 0 Now Cω U c l ^ - y (U?=i D and JΓ - Cω

are disjoint closed sets in βN — ΛΓ which is normal. Threfore, there
exist disjoint open sets Dl9 D2 in βN — N such that

A =) Cω U CI^-ΛΓ f U /•) and A 3 K - Cω .
\Λ = 1 /
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Now βN — N is zero dimensional, Cω U c\βN-κ (U~=i In) is a compact
subset of /3iV — JV and A is an open set in βN — N containing Cω U
cW-i\r (U?=i ίι) Hence, there exists a clopen set Jω in βN — iV such
that flpΛ^Cu CW=JV (U"-i 4 ) . Now, Jω Π A = 0 and hence (ϋΓ -
Cω)ΠJφ= 0 . Therefore, /ω Π K = Cω. Take 7ω = [Jω Π (T U #)] U 22*.
Then Iω is clopen in T\J K, Iωz> U?=i ί» and Jω Π K = Cω. Continuing
this process, we get an increasing collection {Ia}aeiι,Ω) of clopen sets
in Γ U if such that Ia Π K = CαVα e [1, i2). It can also be seen that

COROLLARY 2.15. Let the collection {Aa}ae[ltΩ) be as in Lemma
2.12. Then, there exists a collection {Sa}aetltΩ) of clopen sets in T{jK
such that SaaSβVa, βe[l, Ω) such that a < β, Sa Π K= Ay a e [1, Ω)
and \J*Sa-\JaAa= T.

COROLLARY 2.16. Let the collection {xa}aentQ) be as in Lemma
2.13. Then, there exists an increasing collection {Lα}α6[i,β) of clopen
sets in T{JK such that La f\κ = -^Vα 6 [1, Ω) and [Ja La - \J« %« = T.

DEFINITION 2.17. Let σt and σ2 be two partitions of a nonempty
set X. Then we define σt Π o2 to be the partition of X given by
the collection {A Γ) J?| Ae σu Be σ2, A Π B Φ 0} of nonempty subsets
of X

LEMMA 2.18. Let X be a compact Hausdorff space. Let σ19 σ2

be two Hausdorff partitions for X. Then σx Π σ2 is also a Hausdorff
partition for X.

Proof. LetX/σ1 = Y1ϊmdX/σ2 = Y2. Let qλ: X-+Y, and q2:X-+Y2

be the corresponding quotient maps. Define (qί9 q2): X—+Yt x Y2 by
(?i> ^2)^) = (̂ i(̂ )» Qτix))^x 6 X. This is a continuous function form X
into YΊ x Ya Now Yi x Y2 is Hausdorίf. Consider (qlf q2) as a map
from X onto (#!, qz)(X) Let the partition induced on X by this map
be σ. Then cr = σt Π ίτ2. Let g: X-^ Xjσ be the corresponding quotient
map. Let g: X/σ —> (qu q2)(X) be the natural fill-up map making the
following diagram commutative.

tei, 92) Compact, Γ2

continuous ^ \ / g one-to-one
unto \-X"/ continuous

~σ
Compact
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Now X/σ is compact, (qlf q2)(X) is Hausdorff and g is one-to-one, onto
and continuous. Hence g is a homeomorphism. Since (qlf q2)(X) is
Hausdorff, it follows that X/σ is Hausdorff. Therefore σx Π σ2 is a
Hausdorff partition for X.

In the above proof, we also note that the quotient space induced
by 0Ί Π σ2 is homeomorphic to the range of the function (qu q2) in
Y, x Yt.

LEMMA 2.19. Let T and K be as in Lemma 2.14. Let B and
p be as in Lemma 2.13. Then, there exists a Hausdorff partition
for T U K with {p} as a separate partition class.

Proof. Let the collection {Sa}«e[ifa> be as in Corollary 2.15 and
let the collection {La}aeίl>Ω) be as in Corollary 2.16. Put Hx — Sλ and
for each a e [2, Ω), Ha = Sa - U«r<« Sr and Ho = K - \Ja Aa = B.
Also, let M1 — La for each a e [2, Ω), Ma — La — Uî r<« A- and JlfΛ =
K — Uαβ[i,χ?)-X« Then, the collection {Ha}aeίl>Ω) gives a partition πx for
Γ U i ί such that the quotient space (T\jK)lπ1 is homeomorphic to [1, Ω\.
Therefore, πx is a Hausdorff partition for T [j K. Similarly, the
collection {Ma}aeίuOi gives a Hausdorff partition π2 for ΓLJUL. Let
TΓJL Π τr2 = τr3. Then, by Lemma 2.18, ττ3 is a Hausdorff partition for
TO K. Also

fix, n MΛ - B n ( # - y

= B - U £* = {?>}•
a

LEMMA 2.20. Let X be a topological space. Let Ax and A2 be
closed in X. Let Ax U A2 = X. Let A c X be such that AΠA1 is
open relative to A1 and AΠA2 is open relative to A2 Then A is
open in X.

Proof. This follows from the fact that

A - (Oχ - A2) U (O2 - A,) U (<λ n O2) .

LEMMA 2.21. Let π3 be the partition of T U K as obtained in
the proof of Lemma 2.19. Let the collection of sets {AaΛaeίlΩ) be as

obtained in the proof of Lemma 2.12. Let {pl9 p2, , pn, •} be as
in Corollary 2.10. For each keN, let Da]c = Aa]c — \}^Ί<aAΊk. Then
the collection of sets {DaΛaeίltΩ) and {pn}neN together with the members

keN

of π% form a Hausdorff partition π4 for βN — N.
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Proof. Clearly π4 is a partition for βN — N. We will now prove
that (βN — N)/π4 is Hausdorff. Given any two partition classes d
and C2 of βN — N with respect to π4, we must prove that there
exists a clopen set Y1 in βN — N containing Cl9 disjoint with C2 and
saturated under π4. The cases where either d or C2 is a Dαjk or a
p» are easy to handle and we consider the following cases:

Case 1. Let Cί = HaΠ Mβ and C2 = HaΠ Mr where α, β, 7 e [1, 42]
and β Φ Ύ. Without loss of generality, we can assume that β < 7.
Now, by definition X^ = cW^flJ ϊU #*f) Π ϋΓ where cl^_^ ({#„£, ,
pnβ, ---})ΠB = Bβ (see the proof of Lemma 2.13). Also Lβf]K= Xβ

where Lβ is clopen in T U K (see Corollary 2.16). Now, Yλ = Lβ\J
<t\βN-N (U?=i Onβ) is closed in βN — iV and using Lemma 2.20, we can
see that it is also open in βN— N. Further YΊDCΊ and ΓiΠC2 = 0 .
Also, Yi is saturated under τr4.

Case 2. Let Cx = Ha Π Af̂  and C2 = Hrf] Mδ where α, β,Ύ, δe
[1, β] and a Φ Ί. Without loss of generality, we can assume that
a < 7. In this case, using Lemma 2.20, we can verify that the set
Yi = cW_* (U?=i ΛrJ U Sα is clopen in βN - iNΓ. Further, Y1Z) d and
γλf] C2 = 0 . Also YΊ is saturated under 7Γ4. Therefore, ττ4 is a Haus-
dorff partition for βN - N.

LEMMA 2.22. Let π4 be the Hausdorff partition of βN — N as
given in Lemma 2.21. Let πδ be the partition of M given by τc5 =
TΓJM = {X Π M\Xeπ4}. Then πδ is a Hausdorff partition for M.

Proof. Let Dav pny B and On be as in above lemmas. Let Eι = Ax

and Ea = Aa — f|i^r<« ^ r> Vα e [2,42). Then, it is easy to see that the
partition π6 of M given by the collection {Dak}ae[l, Ω]keN, [pn}nzN,
{Ea}aeιltQ) and B is a Hausdorff partition for If. Let Kλ = Xx and
ί β = i α - U « r < α - X r V α e [ l , f l ) . Also, let iΓ Λ =ίΓ-U β . [ i . ί»-Σ«. Then,
the partition π7 of ikf given by the collection {On}neN and {iΓα}αe[i,i2] is
also a Hausdorff partition for M. Further πδ = ττ6 Π ττ7. Hence, by
Lemma 2.18, ττ5 is a Hausdorff partition for M.

LEMMA 2.23. Let M, π4 and π5 be as in previous lemmas. Then
M/π5 is homeomorphic to (βN — N)jπ4.

Proof. Let (βN - N)/π4 = Y and let q4: βN - N-+Y be the quo-
tient map induced by the partition π4 of βN — N. Then, by Lemma
2.21, Y is Hausdorff. Now, the map qJM: M-+Y is a continuous
function from M onto Y where M is compact and Y is Hausdorff.
Hence, the topology of Y is the quotient topology of M induced on
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it by the function qJM. But g4 induces the partition πδ on M.
Therefore, M/πδ is homeomorphic to Y — (βN — N)jπi9

LEMMA 2.24. Let all notations be as in previous lemmas. Then
M/πδ is homeomorphic to ΎN X [1, Ω] where ΎN is the compacti-
fication of N constructed by S. P. Frankline and M. Rajagopalan
in [1]. (See also remark 1.6a).

Proof. Now πδ=π6 Π π7 where π6 and π7 are Hausdorff partitions of
M as given in the proof of Lemma 2.22. Let qβ: M-+M/π6 and q7: M—>
M/π7 be the corresponding quotient maps. Consider the function (qe,
q7):M-+M/π6 x M/π7 given by (qQ, q7)(x) = (qQ(x), qΊ(x))VxeM. Since
τr6 Π τr7 = τr5, it follows from Lemma 2.18 that M/π6 is homeomorphic
to the range of the function (g6, q7) from M into M/π6 x M/π7. But
it can be seen that M/πQ is homeomorphic to [1, Ω] x [1, ω] with its
usual product topology and M/π7 is homeomorphic to ΎN and that
the range of the map (q6, qΊ) is homeomorphic to [1, Ω] x ΎN. Hence,
M/πδ is homeomorphic to [1, Ω] x ΎN.

THEOREM 2.25. N{J{p} has a scattered Hausdorff compactifica-
tίonf when p is a P-point of order 2 for βN — N.

Proof. Consider the partition π4 of βN — N given in Lemma
2.21. Let τr4 be the partition of βN whose members are the members
of τr4 and the singletons in N. Since, (βN — iV)/7r4 is Hausdorff, by
Lemma 1.3, it follows that βN/π^ is Hausdorff. Since βN is compact,
we have βN/π4 is compact. Since (βN — iSΓ)/τr4 is homeomorphic to
[1, Ω] x ΎN which is scattered, we have that βN/π^ is also scaterted.
Since N is dense in βN and N U {p} maps homeomorphically onto
itself under the quotient map from βN onto βN/π (Lemma 1.4), it
follows that N U {p} is dense in βN/π^ Thus, βNjπi is a scattered
Hausdorff compactification for N U {p}. Hence the theorem.
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