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The spinor norms of integral rotations on an arbitrary
quadratic form over a dyadic local field in which 2 is prime
are determined. Results are stated in terms of the components
of a Jordan splitting of the given form. Results obtained
are applied to improve a theorem of Kneser giving sufficient
conditions for an indefinite Z-lattice to have class number 1.

The behavior of integral quadratic forms over a global field can
be partially described in terms of the local behavior relative to each
of the prime spots on the field. In particular, in computing the number
of spinor genera in the genus of a given form, it is necessary to
compute the spinor norm of the group of local integral rotations at
each prime spot (see e.g. [3], [4]). These computations have been
performed whenever the local form is modular (see [2]). In the case
of an arbitrary form, the Jordan splitting can be used to decompose
the given form as an orthogonal sum of modular forms. In the
present article we deal with the problem of obtaining the desired
spinor norm by using these modular components. When the spot in
question is nondyadic, this problem has been solved by Kneser in [3].
We handle the case of a dyadic spot in which 2 is prime. The sig-
nificance of the restriction of 2 being prime is that strong use is made
of theorems on the generation of the local integral orthogonal groups
in this case (see [5]) which are not known for arbitrary dyadic local
fields.

We adopt the notation of [4]. So we will consider a lattice L
over a dyadic local field F' in which 2 is prime. Denote the integers
and units in F' by o and U, respectively; 4 =1 + 4p0 denotes a non-
square unit of quadratic defect 4o. To emphasize the distinction
between spaces over F' and lattices over o, we will use [a, ---, a,]
to denote spaces and <a,, ---, «,> to denote lattices. (,) will denote
the Hilbert symbol on F and 6 the spinor norm function.

For any lattice L, the Jordan decomposition of L can be obtained
as in [4]. We determine 6(0*(L)), where 0*(L) denotes the group of
rotations of L, in terms of invariants of the Jordan components.
The paper is divided into 4 sections. In the first we perform the
calculations for the binary case. The second and third deal with
the various possible types of Jordan decompositions and the fourth
section shows an application of these calculations to improve the
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bounds obtained in a theorem of Kneser [3, Satz 5] giving sufficient
conditions for an indefinite Z-lattice to have class number 1. Further-
more, the new bounds obtained are shown to be the best possible.

The calculations which appear in this paper will be further applied
in a subsequent paper investigating the behavior of the spinor genus
of an integral quadratic form over a global field under an extension
of the field of coefficients.

1. Binary case. We begin by computing 6(0*(L)) where dim L=2.
These binary lattices are the fundamental building blocks on which
higher dimensional computations will be based.

If L is modular then 6(0*(L)) has been determined in [2]. So we
deal only with the nonmodular case. Since the spinor norm is not
affected by scaling, we may assume that L represents 1. Thus, for
the remainder of this section we deal with

L= 1<2a),r=1,acl—ox+ 0y

We introduce some notation that will be used throughout: For
any lattice L P(L) = {ve L: v maximal and S,€0(L)} and D(L) =
Q(P(L)). The problem can now be reduced as follows: Any oe 0*(L)
can be expressed as a product of 2 symmetries of F'L, say ¢ = S,S,,
where S, can be chosen arbitrarily. In particular, choose w = x so
S, = S,0e0(L) and 6(0) = 6(S,) = Q(v)F*. Thus, 6(0"(L)) = D(L)F™.
So in the present case, it suffices to determine D(L).

First, we characterize P(L):

LEMMA 1.1. Consider v = Ax + Bye L, A, Beo

(i) If Aell, then ve P(L)

(ii) If Ae¢l, and r =38, then ve P(L)= BecWl and either
ordA=1lorordA=r—1

Proof of (ii)
(1) Suppose ord A =1
Then B(v, L) = B(v, x)o = Ao and Q(v) = A® 4 2"B’a.
So 2B(v, L) = 240 = A’ = Q(v)o
2B, L) — 4 . 5 cO(L
Q) - L)
(2) Suppose ord A = r — 1.
Then
Ao if ordA=7r—1
, ; ; 2r—1 .
B(v L) 2pif ordA>r—1 °
Ord Q(v) = ord (A* + 2"B%a) = r since ord A* = (r — 1) > r.
So 2B(+ L) < 20 = Q(v)o and, thus, S,c O(L).
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(3) Suppose 1l sordAx7r—1.
Then B(v, L) = B(v, )0 = Ao since ord A = r — 1.

=ord A% if ordA* < r
=7 if ord A*> r.

In either case, 240 £ Q(v)o. Thus, S, ¢ O(L).

Ord Q(v) = ord (A? + 2"B*a)

So if 7 = 8, the set P(L) can be decomposed as P(L) = P,(L) U P,(L)
where
P(L)={v=Ax + By:ord A =1 or 0}
P(L)={v=Ax + By:ord B=0 and ord A = r — 1} .

We now determine Q(P,(L)) when r = 3.

LEMMA 1.2. Let r = 3. Then Q(PJ(L)) = 27[Q(K) N UJF* where
K =<a, 277%.

Proof. Let ve P(L) wherev = Ax + By and t =ordA=7r — 1.
So

Q(v) = A* + 2'B'a = 2"4} + 2'B'a where A = 2'A,, A,c 1l
= 27[2% " A} + Bla] = 27[2 24 4Y) + Ba] .

Let w = 2"""Ay’ + Bx' where K =2’ + 0y’. Then Q(v) = 2"Q(u)
and Q(w)e Q(K) N 1.

Conversely, let £ =2"C* + aD?*c Q(K) N 11. Write C=2°C, where
C,ell. Then & =2"**C:+ aD? C,ell, Dell. So 27& = 22r+*2C2 |
2'aD? = (2"°7'C,)* + 2"aD*. Letting v = 2'Cx + Dy, we obtain
v € P(L) since ¢ = 0 and, furthermore, Q(v) € oreF,

PROPOSITION 1.3. Let r = 5. Then 6(0*(L)) = F? U 2"aF™
Proof. Follows from 1.2 and the Local Square Theorem.
PROPOSITION 1.4. Let r =1. Then
(1) QU)NU=QFL)NN.
(2) 6(0%(L)) = QFL)F".
Propf. Suppose that ve Q(FL)N 7, say 7Y = A® + 2aB?, with
A, Be F. By the Principle of Domination 0 = ord ¥ = min {ord 4%,
ord 2aB?%; so Aell and Beo. Hence, ¥ e Q(L) N n.

To prove (2), note that if 7€ Q(FL), there is some pc F' so that
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ordzy* =0or1l. As above, the Principle of Domination gives Q(L)N
2u = Q(FL)N 2u. In particular, 7¢fe Q(L), say 7 = Q(v), velL.
Furthermore, v € P(L) since ord Q(v) =0 or 1. On the other hand,
it is clear that 6(0*(L)) = D(L)F* < Q(FL)F*, and equality follows.

LEMMA 1.5. Let r = 2. Then (Q(L) N WE* = F* U 4F™

Proof. Suppose 7€ Q(L) N U; say ¥ = A + 4B’« with Aell. So
v = A’ + 4B'a = A¥(1 + 4B/A)a) = A*" where 7' el and the quadratic
defect of 7' & 40. Thus, Y € F® or 7' €4F* and the same is true
for .

Conversely, we need to verify that 4 € Q(L). Consider the lattices
L={, 4a) and K= {4, 4a4™'y. By a computation of Hilbert symbols,
it follows that FL = FK. It now follows from 93:29 [4] that L = K.
So 4€ Q(L) as desired.

PROPOSITION 1.6. Let r = 2. Then 6(0*(L)) = (Q(FL) N W)F™.

Proof. We first show that D(L) S UF® Let veP(L), say
v = Ax + By. Clearly, Aell=Q(v)el. So consider Ac20 and
Bell; write A =24, with t =1, 4,el. If ¢>1, then Q(v) =
2 A + daB*edll. If t =1, Q(v) = 4A: + aB?). So

B(v, L) = B(v, x)op = 24,0 .

Then S,e0(L)—2B(v, L) = 40 S Q(v)o— Q(v) e 4ll. Thus, D(L)<
(QUFL) N M)F™.

Conversely, suppose that {€ Q(FL)NU. In that case, [{, {T'a] =
[1, «]. Consider the corresponding lattices K = <({, (') and L' =
{1, @y. Since K and L’ are both proper unimodular lattices on the
same space, it follows from 93:16 of [4] that K=L'. So {eQ{l, a),
say { = A* + aB® with A, Beo. We consider several possibilities:
(i) Suppose 4, Bell. Then let v = 24x + By.

Q(v) = 44 + 4aB* = 4(A* + aB’) = &

So Q(v)eCF? and v e P(L) since {el.
(ii) Suppose A ell, Be2o; write B = 2!B, with B,e U, t = 1. Let
v = Ax + 2°*Byy. Then
Q(v) = A? + 4a(2**B?) = A* + 2¥Bla = A* + aB* = (

(iii) Suppose A€20, Bell; write A = 2'4, with t =1, A, el
Let v = 274 + By. Then
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Q(v) = 27242 + 4aB* = 4(2¥Al + aB®) = 4.

So in any case, we have found a vector v € P(L) such that Q(v) € CE™,

PROPOSITION 1.7. Let r = 3. Then 6(0*(L)) = Q(FL)F".

Proof. Consider ve P(L), v = Az + By. If ve P(L), then Aecll
orde2ll. Aell—Q(v)ec A = F. Ac2l— Q(v) = 4(4:+ 2aB* e
Q<1, 2a) NWE™  On the other hand, (Q(1, 2a)NM) = Q(P(L)). Using
1.4, QP(L)F* = (Q1, 2a] N W)F™.

If ve Py(L), then by 1.2, Q(P(L)F* = 8(Q(K) N )F* where K =
{a, 2. So
Q(P(L)F* = 2(Q[e, 2] N WE* = (Q[2ex, 4] N 2U)F™
= Q[1, 2a] N 2N)EF™ .

PROPOSITION 1.8. Let » = 4. Then

6(0*(L)) = F* U aF* U 4F* U adF™* .

Proof. Q(P(L)) = 16(Q{a, 4) N WF* by 1.2. By 1.5, (e, 4N
WF* = aF* U adF* Also by 1.5, Q(P(L)) = F* U 4F* and the result
follows.

1.9. The results of this section can now be summarized as fol-
lows:

(veF: (7, —2a) = +1) if r=1,8
(veUF (v, —a) = +1} if r=2
F*UaF* U 4F? U adF* if r=4
F* U2 a k™ if r=5.

0(0%(L)) =

II. Higher dimensional cases—1-dimensional components. In
this section, let L be a lattice of dim = 8 with Jordan splitting

L={1)12ay 1. 12,

where r,€e Zand a,ell,9=1, ---, m,and r, < r,,, fori=1, ..., n — 1,
r, = 0.

In this section we make strong use of a theorem of O’Meara and
Pollak which states that whenever F' = @,, the group O(L) is generated
by symmetries of L. In order to compute 8(0*(L)) it therefore suffices
to compute Q(P(L)). In case F'= Q,, O(L) can be generated by symme-
tries of L along with the Eichler. transformations £:. But it is known
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(see [1]) that 6(E}) = 1. Thus the problem of computing 6(07(L)) can
again be reduced to that of finding Q(P(L)).

Theorem 2.2 gives sufficient conditions for 6(0*(L)) = F. Then
the problem of computing Q(P(L)) is essentially reduced to the same
problem for certain binary sublattices, with the result appearing as
2.17.

NoTATION 2.1. Let L =<1) L (2"a,y L +-+ 1L (2™a,). Then for
ji=1L . ,mn—-1

Lj i1 = 2Ma;) L <270,
§; = 2rinTiag 000
7(Ljj41) = Ti40 — 75
Liju = (FJF™ 60" Ly, 5,))) -

THEOREM 2.2. Suppose there is at least one k for which r(Ly .,) =1
or 3. Then if r.—r,=2 or 4 for any s, t=1, -+, n, we have
0(0+(L)) = F'.

Proof. .By 1.9, 0(0*(L,,.,)) has index 2 in F'and does not contain
the coset 4F?. On the other hand, 1.9 also yields 4€6(0"(L’)) where
L' = (2ra,) L (2"a,>. Hence, 6(0+(L)) = F.

We now wish to examine those lattices which do not satisfy the
conditions of 2.2. It is convenient to regroup the Jordan components
to obtain perhaps larger sublattices. The role of these sublattices
is made clear by 2.4.

NOTATION 2.3. Let L, = <1, 2"a,, -, 2™, ) where s, is taken
to be the largest integer for which r;,, —r; <4 forall =1, ...,
s, — 1 (in particular, L, = (1) = r(L,,,) = 5). L, -+, L, are defined
inductively as follows: if L, = (2ray, -, 27,y Where q = p + s,,
then E,m = (2T @y, + v -, 200k, S Where s,,, is taken to be the
larger integer for which r, ;,, —r,, <4 for all =1, -+, 8,4, — 1.
Thus, we obtain a new (generally non-Jordan) splitting

A

L=L,1.--1L,.

_PROPOSITION 2.4. Let ve P(L). Then Q(v) € QW')F* where v' e
P(L,) for some s=1, ---, t'.

Proof. Write v = 3\, Ajx; where A;eo and Q(r;) = 2%a;. Let
k be the largest integer for which ord (27+43) is minimal. Let m be
the largest integer for which m <k and r, — 7. =5, and let & be
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the smallest integer for which k' < % and », — r, = 5. Define v =
?:'}n+1 ijj .

We first verify that Q(v)e Q(v’)F’Z. S,€0(L) forces ord A, <1
and ord Q(v') = 7,. In particular, if s = & we have

re=r, =ord Q) + 3.

So by the Local Square Theorem, Q(v') + A2"a,c Q(v')F?. On the
other hand, if j <k, then S,e0(L)= ord (2"*'A4,) = ord (Ai2") =
ord A;+7r;+1=20rd A, + r,=ord A; = 2o0rd 4, + (r, — r; — 1).
So ord (2742 =20rd A4, + 2(r, — r; — 1) + r; = 20rd A, + 2r, — 7; —
2 = ord (4;27%) + (r, — r; — 2). In particular, whenever u < m, we
get ord (27+A2%) = ord (A432%) + 3 = ord Q(v') + 8. So that again Q(v') +
A22mur, € Q(v')F™. It now follows that Q(v) € Q(v')F2 By the choice
of m and h, v’ € L, for some s.

Finally, if A;ell for some j,m +1=<h —1, then o' eP(IA/,,).
On the other hand, if A;€2o for all such j, consider v" = v’/Zeﬁ,.
In particular, 4,2, so v’ e P(L,) and Q'(v') € Q(v")F".

ProPOSITION 2.5. Let L =<1, 2"a,, ---, 2™a,> with r, even for
all =2, -+, m. Given ve P(L), there exists v' € P(L; ;) for some
L1237 n—1, so that Q(v) e Q(W)F™

Proof. Write v = >, Ax;. Let k be the largest integer for
which ord (27*A4%) is minimal.

(1) Suppose there exists j # k for which ord (277A4%) = ord (27:A4}).
Since S,€0(L), it follows that k=5 + 1 and », = r; + 2; further-
more, A,€0 and ord Q(v) = r,. If h = j, k then

ord (27 A3;) = ord Q(v) + 2

since 7, is even. Thus Q(v)/Q(4;x; + A;.x;4,) = 1 (mod 4o).

Consider the vector ¥ = A;x; + A;.,%;1,. Then 2B(%, L; ;) &
2B(v, L) < Q(v)o = Q(?)o and thus ¥ e P(L; ;). Furthermore,

Q(P(L; ;1) = 2ria {7y e UF: (7, —&;) = +1}

by 1.6. Thus, Q@) = 2""a,;é with éell and (¢, —¢&;) = +1. Write
Q(v)=2""a;e with ¢ € Il; then ¢=¢& (mod 40) since Q(v)/Q(¥)=1 (mod 4o).
Hence, (¢, —&;) = +1 and Q(v) € Q(P(L; ;+.))F™

(2) So now assume that ord (27742 = ord (2+A4%) + 2 for all
j # k. Thus, Q(v)/2"«a, A} =1 (mod 40). Note that S,e0(L) forces
ord 4; <1. Now if both r, —r,., =6 and 7., —r, =6, by the
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Local Square Theorem @Q(v)e2*Aja, . In particular, Q(v)e
Q(P(Ly,.1))F*.  Otherwise, one of 7, — 7, and 74, — 7, is < 4; let
us say that 7., — 7. =<4. Then Q(v)e ZTkAiakF'z U2Aia, AR C
Q(P(L;,..,))EF* by 1.6 and 1.8,

ProOPOSITION 2.6. Let L = {1, 2"a,, .-, 2™a,) with r, a multiple
of 3 for each 1 =2, -+, n. Given v e P(L), thegﬂe exists v' € P(L; ;)
for some j, 1 <7< n—1, so that Q(v) € Q(v')F™

Proof. The proof is analogous to proof of 2.5. Using the no-
tation of that proof, if A,eM, then Q(v)e Q(P(Ly_.,))F% if A, e21,
then Q(v) € Q(P(Ly, 14.))EF? When S,c0(L), these exhaust all possi-
bilities.

THEOREM 2.7. Suppose that L does mot satisfy the hypotheses
of 2.2. Then

00°(L) = {11 Qi v.e PLy 5, 15 4 S m =1}

~

Proof. Consider the splitting L = L, 1 --- 1 L,.

First suppose that r(Ly, w0 #* 1,3 for any k. Then, for each 1,
L, satisfies either dim L, =1 or L, = (2"e)(1, 248, +++, 2'nB,) With
each 7; even, and the result follows from 2.4 and 2.5. On the other
hand, if », — 7, = 2, 4 for any s and ¢, then for each <, L, satisfies
one of following: dim L, =1, dim L, = 2, or L, = (2e){1, 278, -+,
2"nfB,y With each of the 7} a multiple of 8. The result then follows
from 2.4 and 2.6.

REMARK 2.8. The result of 2.7 may not be true for a lattice L
satisfying the hypotheses of 2.2. For example, consider L = <1, 2, 4)
over the field F' = @,. In this case, the binary sublattices L; ;., do
not carry all the information about 6(07(L)). Indeed, 6(0*(L)) = F,
while the right hand side in Theorem 2.7 only gives those field elements
¢ # 0 such that the Hilbert symbol (¢, —2) =

ITI. Higher dimensional cases—Arbitrary components. In this
section we handle the remaining cases in which L is a lattice of
dimension = 3 with at least one Jordan component of dimension = 2.
For most cases, it suffices to examine the orders of the elements Q(v),
ve L, for each component L,.

Following [4], let A(«, B) denote the lattice with matrix (i%), for

a, € F. Then all of the unimodular binary lattices over F' are
isometric to one of the following:
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A(0, 0), A(L, 0), A2, 20), A(L, 40), A, 20) where ¢, el .

DeEFINITION 3.1. A lattice L has “even order” if Q(P(L)) S UWF% L
has “odd order” if Q(P(L)) & 21LF™.

PrOPOSITION 8.2. Let L be unimodular.
(1) Suppose dim L = 2. Then

L has odd order — L = A(0, 0) or L = A(2, 20),
L has even order — L = A(1, 0) or L = A(1, 40) .

(2) Suppose dim L = 3. Then
6(0*(L)) # F — L has odd order .

Proof. Note that 6(07(L)) = UF* forces the parity of all elements
of Q(P(L)) to be the same.

Suppose that L = A(0,0), A, 40), A(2, 20), A(1,0). Then
6(0*(L)) = ME? (see [2]) and the lattice L has odd or even order
depending upon whether L is improper or proper, respectively. But
if L = A(e, 20) then 6(0+(L)) = Q[1, d]F* where d = det L, by Propo-
sition B of [2]. Since d = —1, —4, there is 8 ¢ 1l for which (28, —d) =
+1; that is, 268 Q[1, d]F Thus, 6(0"(L)) & WF™ This completes
proof of 1).

Now let dimL = 38. By Proposition A in [2], if 6(07(L)) = F
then L is improper. So, L is split by A(0, 0) (see 93:18, [4]), and
A(0, 0) primitively represents all prime elements. Hence, L must have
odd order.

LEMMA 8.8. Suppose that L has odd order, and the norm nL
of L s contained in 20, then the lattices K = A(0,0) L L and M =
A(2, 20) 1. L both have odd order.

Proof. First, consider K. Let v e P(K) where v = Ax + By + 2,
with A, Beo and ze L. (a) Suppose ord Q(z) < ord (24B). S,c0(K)
gives 2B(v, K)S Q(v)o. If Ax+ By is maximal, say A €11, then, B(v, y)
is a unit and Q(z) and Q(v) are both prime elements. If Az + By
is nonmaximal, then z is maximal. But, z e P(L) since 2B(z, L) =
2B(v, K) € Q(v)o = Q(z). As L has odd order, this completes this
case. (b) Suppose ord Q(z) = ord (24B). This time S,<c0(X) yields
2B(v, K) < Q(v)o < (2AB)o. In particular, 2B(v, y) = 24. Hence, B
is a unit. Similarly, A is a unit. Hence, ord Q(v) = 1.

Next, consider M, and let v be as above. The case for ord Q(z) <
ord Q(Ax + By) is easier so we suppose ord Q(z) = ord Q(Ax + By).
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This time S, € 0(M) gives 2B(v, M) S Q(v)o S Q(Ax + By)o. A straight-
forward calculation shows the case of neither A nor B is a unit can
not occur. But, if either A or Bis a unit, then ord @(Ax + By) = 1.
When A (resp. B) is a unit, then 2B(v, ¥) = 2(4 + 20B) (resp. 2B(v, x) =
2(2 + B)) shows ord Q(v) = 1.

LEMMA 3.4. Suppose that L has even order, 3L & 20. Then
A(1,0) L L = K and A(1, 40) L L both have even order.

Proof. We treat only the case K. As before, consider a vector
ve P(K) with v = Ax + By + 2, A, Beo, z€ L.

(1) Suppose ord Q(z) < ord (A* + 24B). If Ax + By were a
maximal vector in A(1, 0), then 2B(v, K) = 20 and we deduce Q(z) € 211.
But, L has even order and so a contradiction. Thus, Az + By is not
maximal which means z is. S,€0(K) implies then z€ P(L). Thus,
ord Q(v) = ord Q(z) is even.

(2) Suppose ord Q(z) = ord (A% + 2AB). This time we have
2B(v, x)o = 2(A + B)o & (A* + 2AB)o. If A is a unit, then so is Q(v).
If B is a unit, then the containment forces A also to be a unit, and
again Q(v) becomes a wunit. Thus, the only possibility is that
ordA=1 and ord B=1. But, in this case ord Q(v) = ord (4* +
2AB) = 2.

LEMMA 8.5. Suppose that L has even order, 8L < 20. Then, for
ecll, we have K = {¢) L L has even order.

Proof. Consider the vector ve€ P(K) where v = Ax + y, A€o,
ye L. The case of AeWis trivial. So, let A¢WU. Then, y <€ P(L) so
if ord Q(v) = ord Q(y) the result follows since L has even order. But,
if ord Q(y) = ord A% then S,eO(K) gives ord2B(v, ) = ord 24 =
ord Q(v) = ord A?, forcing ord A =1 and ord Q(v) = 2.

LEMMA 3.6. Suppose that L has odd order, and 8L < 40. Then,
for e, the lattice K = (2¢) 1 L has odd order.

Proof. Follows as in 8.5. Or, scale by a factor 1/2 and apply
3.5.

LEMMA 3.7. Let L be unimodular with odd order dim L = 3;
let L' have odd order, nL' Z 20. Then, K =L L L' has odd order.

Proof. L is isometric to either A(0,0)L --- 1 A(0,0) or to
A0,0) L --- 1 A2, 20). In any case, Lemma 3.3 applies.
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Now, let L be an arbitrary lattice with Jordan splitting L =
L 1 .-« 1L, with dimL, =2 for at least one k. We determine
6(0+(L)):

THEORE}VI 3.8. Suppose at least one L, has dimension = 3. Then,
0(0*(L)) = F wunless L; has odd order for all j=1,.--,¢. In the
exceptional case, 6(01(L)) = NF™

Proof. If L has a component L, of dim = 8 of even order, then
[2] gives 8(0"(L,)) = F. So, we may assume that any component L,
of dim =3 has odd order, in which case [2] gives 6(0*(L,) = UEF™
Then if L has only components L; of even order, 6(07(L)) = F.
The only other possibility is that L has a binary component of the
kind 27A(e, 20) with ¢,0€ll, and r = 0. But any such component
primitively represents elements of both odd and even order. So, it
remains to show that if all Jordan components of L have odd order,
then L has odd order, thereby 6(0*(L)) = WF™ This result follows
from 8.3, 3.6 and 3.7 by induction on the number ¢ of Jordan com-
ponents.

We need some more lemmas in order to handle the case of a
Jordan splitting with dim L, < 2 for every <.

LEMMA 3.9. Suppose L =M 1L 2°M' where M = A(a, 2b), M' =
A(a', 2b") and a, b, o', b" are units, and 0 < r < 3. Then, 6(07(L)) = F.

Proof. Let M and M’ above be adapted to bases {z, y}, {u, v}
respectively. First note that 6(0*(M)) = {ce F'| (¢, 1 — 2ab)) = +1}.
L contains the sublattices L, = ox L ou = <a,2a¢') and L, =o0x L ov =
{a, 27"y, If r =1 or 3, consider L,. Every rotation of L, extends
trivially to a rotation of L so that 6(0%(L)) = 6(0*(L,)). The latter
is just the set {f e F'|(f, —2a¢’) = +1}. But, 4 ¢ 6(0*(L,)). Hence,
6(0*(L)) = F.

If » =2, consider L,. We claim that every vector w = Ax + Bv
in P(L;) also yields we P(L). If this claim is 'verified, then once
again 0(07(L)) contains 6(0"(L,)) and the same argument as before
prevails. To show this claim, let z = ¢x + ¢,y + ¢cu + ¢,v, each ¢, € 0.
Since w € P(L,) it suffices to check that 2B(w, ¢,y + c,u) € @(w)o. This
one checks routinely.

LemmA 3.10. Suppose L = M 1 2*M’, where M, M’ as in Lemm_a
3.9. If the spaces FM and FM' are nonisometric, then 6(07(L)) = F.
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Proof. Put d = —det M. Secaling permits us to assume a = 1.
As 6(0*(M)) already has index two in F), it suffices to show 6(0*(L))
catches an element in F not represented by the binary space
FM =[1, —d]. Since FM and F'M' are nonisometric, @(M’) is not
contained in Q(M). Since every maximal vector of M’ lies in fact
in P(M'), there must be a maximal vector w in M’ with Q(w) ¢ Q(FM).
Clearly, the symmetries S, and S,c0(L). Now, 6(S,S,) = Q(w)E" is
not contained in 6(0*(M)) = Q[1, d]¥2. We are done.

REMARK 8.11. In general, for L = 2:M 1 2!M’, where M, M’ are
as in Lemma 8.9, if the associated spaces F(2°M) and F(2'M’) are
nonisometrie, then 6(0*(L)) = F.

LEMMA 8.12. Suppose L = L, | 2L, | --- 1 2" L, with
L, = A(a;, 2b,), a,b,cll, and r;,, —7r; =5

for 3=1,.--,t — 1. Furthermore, assume the associated subs.paces
F(@2"L,) are pairwise isometric. Then, 6(0*(L)) = 0(07(L,)) = F.

Proof. Let ve P(L) with » = 3}_ 2z, where z, = A%, + By,
A, B;€o, Qx;) = 2"a,, 2"(2b,) = Q(y,). Let k be a subscript for
which ord Q(z,) is minimal. Using S,€0(L), in particular, 2B(v, x,)
and 2B(v, ¥,) both lie within Q(z,)o. Hence, if ord 4, > ord B,, then
B, must be a unit and Q(z,) €2+ 1. And if ord A, < ord B,, then
ord 4, <1, so that ord Q(z,) < 27+,

Consider 5 > k. We have ord Q(z;) = ord Q(2,) + 3. On the
other hand, for j <k, again using S,€0(L), one sees that both
27t (A; + 2B;b;)0 and 27*Y(A;a; + B;)o are contained in 27¢(Aje, +
2B2b, + 24,B,)o. Therefore, A;, B; are both inside 2" " '(A4ia, +
2B:b, + 24,B,)o. When A4, is a unit, i.e. ord Q(z,) = 2"+, then A}, Bj,
and A;B; belongs to 2*"+"i~Yp which gives Q(z;) € 2"+ " 2"k & 2°Q(2,)0.
And when 4, is a nonunit, 4;, B; are both inside 2" "ip which implies
Q(z;) € 2°27p Z 2°Q(z,)0. Thus, we always have: ord Q(v) = ord Q(z,)
and moreover, by Local Square Theorem, Q(v)< Q(z,)F*?. Hence,
6(0*(L)) = Q(F(2+*L,)F* = 6(0*(L,)) for any 1.

REMARK 38.13. Since for any <4, 6(07(L,)) = Q[1, —d,]F?, where
d, = —det L, =1 — 2a,b,. In particular, 4F?e6(0%(L;). The same
proof, therefore, extends the validity of Lemma 3.12 to the case
where we require that the exponents satisfy: »;,, — L; = 4 for j =
1, ...,t —1. All other conditions remain unchanged.

Summarizing, we have the following theorem:

THEOREM 3.14. Suppose L = L, 1 2L, 1 --- 1 2"L* is a Jordan
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splitting for L, and dim L, £ 2 for every i and with at least one
component, say L; being binary. Then, 6(0%(L)) is determined as
Sollows:
(i) Ifall L, haveodd (or all have even) order, then 6(0*(L))=UF"
(ii) If there is a binary component L; with odd (even) order
and a component L, with even (odd) order, then 6(0+(L)) = F.
(iii) Suppose L, = A(a,, 2b,) for some i with a, b, e,
(a) If there is a bimary component of either odd or even
order, then 6(07(L)) = F.
(b) If there is some L; = A(a;, 2b;) such that the associated
spaces F(27L,) and F27iL;) are nonisometric, then 6(0*(L)) = F.
(iv) Suppose L,= A(a,, 2b;) whenever dim L,=2, then 6(0+(L)) =~ F
if and only if
(a) the associated spaces of all binary components are iso-
metric,
(b) for any unary component, say L, =<¢c,>, €, € 1, the Hilbert
symbol (27k¢,, —det L,)) = +1, and
(¢) rjpy—r;=4 for =1, -, t — 1.
In the exceptional case described im iv) we actually have 6(07(L)) =
0(0*(L.) = {c€ F'| (¢, —det L,) = +1}.

REMARK 3.15. After a Jordan decomposition for L = J, 1 --+ L J,
is obtained, the forms of the components can be easily determined.
In case the dimension of J, is greater or equal to 3 it suffices to
check whether J, is proper or improper. In the binary cases, it
suffices to compute nJ,, ¢J, and the associated spaces FVJ,

IV. Application to a theorem of Kneser. In this section we
apply the results of §§II and III to improve a theorem of Kneser
[3, Satz 5], which gives sufficient conditions, in terms of the reduced
determinant (a la Eichler [1]), for an indefinite lattice over Z to have
class number 1.

The notation of this section will conform to that of [4]. In
particular, when L is a lattice over Z, nL denotes the Z-module
generated by the subset Q(L) of Q. Define the reduced determinant
d'L to be the determinant of the lattice obtained from L by scaling
by o™ where nL is generated by a. The formulation of the original
Kneser’s theorem will be modified to conform to our notational con-
ventions and is stated here for reference.

THEOREM (Kneser). Let L be an indefinite lattice over Z with
dimL=n>=3. If dL= 1], »"” and (i) s, < n(n — 1)/2 whenever p
18 odd, and (ii) s, < n(n — 3)/2 + [(n + 1)/2] = b, (where [ ] denotes the
greatest integer function), then the class number h(L) = 1.
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The bounds given for s, for » odd are the best possible. How-
ever, we now show that the bound b, can be considerably improved.

Furthermore, the new bounds obtained here will be shown to be the
best possible.

THEOREM 4.2. Suppose L is indefinite over Z, and dim L = n = 8.
If L = +1I,p*” and (i) s, < n(n — 1)/2 whenever p is odd, and
(ii) s, < m(n — 1) = b}, then h(L) = 1.

We break the proof of the theorem into two parts which we state
separately as lemmas.

LEMMA 4.3. Let L be as in the theorem. If L satisfies condition

(i) and if the localization L, of L at p = 2 has a Jordan component
L; which has dim L} = 2, then h(L) = 1.

Proof. The condition (i) assures that 8(0%(L,)) 2 1,Q: whenever
pisodd. If dim L] = 3 or if dim L} = 2 with L} 2 2'A(a, 2b), a, becll,,
then 6(0+(L,)) 2 U,Q: (see [2]) and A(L) = 1.

So we assume L} = 2'A(a, 2b) with a,bell,, Then the index
[Q./Q%: 6(07(L)))] = 2, so that either (0*(L,)) = Q, or

0(0*(Ly)) = 6(0°(LY) = {c € Q.| (¢, —det L), = +1} .

In the first case, the proof is finished; for the second case, note that
0(0*(L,)) N U,Q: = Q3 U 5@ since —det L e U,@\5Q:.

Now, in the indefinite situation k(L) is equal to the order of
the factor group J,/PeJ5. So in the remaining case above, take an
element ¢¢e P,J5. Since J, = PoJ§, it suffices to take ¢ to belong to
J§, i.e. i,ell, for all finite primes p. If i,€ QU 5@, then ieJj; if
1, €3Q2 U 7Q:, then e (—1)J3

LEMMA 4.4. Let L be as in the theorem. If L satisfies condition
(i) and if k(L) # 1, then s, = n(n — 1).

Proof. By 4.3, L, must have a Jordan splitting consisting of
only 1l-dimensional components, say

9 kL, = (&) 1 (2726, L+ L (276,

with ¢, e, r,e Z with 0 =r, <7, < --- <7, and k = ord, (@) where
nl, = aZ,

It suffices to verify that »; = 2(j — 1) for j =3, ---, n, and that
r,+1r,=>6. If r,=1and »,<5 or if r, =2 and »;, = 3, it follows
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from 2.2 that 6(07(L,)) D1,Q. So, in any case, r, =4 as desired
and 7, + 7, = 6.

Assume that r; =2(5 — 1) for j =3, ..+, m < n, and verify that
Tmsy = 2m. First note that if », = 2m, then the result is immediate.
So,r,=2m—2or r,=2m—1,and 7, — 1,., <8. Ilf r,—7r,,=1
or 2, then arguing as above gives 7,,, = 7., + 4 as desired. If

P = Tmoy = 3, then 7, = 2m — 1 and 7r,,, = 2m.

Thus r; = 2(5 — 1) for j =38, .-+, n. The result follows as
sz=i'r,-g6+i¢j26+2ﬁ‘i(j—1)::22”‘,(3'—1):%(%—1).
J=1 J=4 Jj= j=1

REMARK 4.5. Although the difference b, — 2b, tends to infinity
as n grows large, one sees lim,_, b;/2b, = +1. The bound b; is the
best possible for any value of n because the lattice L = (-1, 2 24,
..., 20D% gatisfies the condition (i) of 4.2 but has class number 2
and s, = n(n — 1). [Strictly speaking, we should be discussing in
terms of proper class number; of course, when » is odd there is no
distinction.] When L is a definite lattice, there is an analogous
theorem giving sufficient conditions for g¢g*(L) =1 (the number of
proper spinor genera in the genus of L). The bound b; obtained there
is not as large as b, because such a lattice may have binary 2-adic
Jordan components but still not have ¢g*(L) = 1. See a comparison
table given below.

THEOREM 4.6. Suppose L s a definite lattice over Z with
dimL=n=38. IfdL==*T],»” and (i) s, < n(n — 1)/2 whenever
p 1s odd, and (ii) s, < n(n — 3) + 2[(n + 1)/2] = b;'(=2b,), then g*(L) = 1.

The proof follows from 3.14 using an argument analogous to
the proof of [3, Satz 5].

REMARK 4.7. The bound b, is again the best possible for any
value of n since the lattice L=<1,1, 2,2*, 28, ..., 2%} with k=[(n—1)/2],
satisfies the condition (i) of 4.6 but has g*(L) = 2 and s, = n(n — 3) +
2[(» + 1)/2].

TABLE 4.8.
n bs by by
3 4 6
4 4 8 12
5 8 16 20
6 12 24 30
7 18 36 42
8 24 48 56
9 32 64 72
—10 40 80 90
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