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ABSOLUTE SUMMABILITY OF FOURIER SERIES
WITH FACTORS

H. P. DIKSHIT AND A. KUMAR

Kanno in 1969 and M. Izumi and S. Izumi in 1970 have
obtained results concerning the absolute Norlund summability
of Fourier series with factors. The present paper contains
theorems sharper than the aforementioned results.

1* Definitions and notations* Let {pn} be a given sequence of
constants, real or complex, such that Pn = Σ £ = o pk Φ 0 for n ^ 0 and
pn — pn = 0, for n < 0. A given series Σ~=o an is said to be summable
(N, pn), if tn tends to a finite limit as n—> ©o, where

The series Σ*=o<&n is said to be summable \N, pn\, if Σ£=i l* ~~ *»-il <
oo. The IJV, j>H I method reduces to the \C, δ\ method in the special
case in which Pn = Aδ

n, where Aδ

n is defined by the identity

Σ Aix* = (1- x)~δ~\ \x\< 1, 8 Φ - 1, - 2 , .

Let f(t) be a periodic function with period 2π and integrable
(L) over ( — π, π) and

Σ K cos nί + δn sin rrt) -
n =•• J % = 1

We shall use the following notations throughout.

U + t) + fix - «)};
2

R. = (n + l)pJP.;S. = ±.

Given a function λ(έ) and a sequence {,«„}, we write for n = 1,

[x] denotes the greatest integer not greater than x, in particular
we write m = [n/2] and τ = [C/2t], for some fixed positive constant C.

K denotes a positive constant which is not necessarily the same
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at each occurrence. Σ« will be taken as 0, if a > b.

2. Introduction and the main results* Concerning the \C\-
summability of a Fourier series and a corresponding series with
factors the following is known ([1], [8])1.

THEOREM A. For 0 ^ a < 1, and β > a the series Σ~=i naAn(x)
is summable \C, β\9 if

(2.1) \*ra\dφ(t)\ £K.
Jo

Theorem A for a = 0 was proved by Bosanquet [1] who has also
shown that the result is the best possible in the sense that β cannot
be replaced by 0. For the other values of a the result was proved
by Mohanty [8].

In the direction of Theorem A, M. Izumi and S. Izumi [4] have
recently proved the following.

THEOREM B. Let {pn} be a positive monotonic decreasing sequence
and X{t), t > 0, be a positive increasing function, then the series
^i^=ιXnAn{x) is summable \N, pn\, if the following conditions hold.

n 9(2.2) Λ(l) S KXn/Pn

(2.3) {hjn} is monotonic decreasing ,

and

(2.4) \\(l/t)\dφ(t)\ ^K.
Jo

With a slight modification in the proof of Theorem B as contained
in [4] it may be seen that the result continues to hold even if X(t)
is a constant function. In view of this, we may obtain Theorem A
from Theorem B by taking X(t) — ta, 0 ̂  a < 1. Examining the
hypotheses of Theorem B closely, it appears that the condition (2.2) is
indispensable. For, if X(t) = K, then the condition (2.2) is equivalent
to the boundedness of the sequence {Sn} (see [2], Lemma 3) which
has been shown to be a necessary condition for the (N, pn) summability
of ΣZ=ιAJx) by Hille and Tamarkin ([3], Theorem II). The condition
(2.4), of course corresponds to the condition (2.1) of Theorem A. The
following theorem, which we prove in the present paper, shows that
condition (2.3) is redundant in Theorem B.

1 We write ί for lim \ .
Jθ δ->0 Je
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THEOREM 1. Let X(t), t > 0, be a positive nondeereasing function
and {pn} be a positive monotonic nonincreasing sequence such that
(2.2) holds and for some positive constant C

(2.4') \\(Clt)\dφ(t)\ ̂  K ,
Jo

then ΣϊUXnAn(x) is summable \N, pn\.

Lemma 6 of the present paper shows the role that a specific
choice of X(t) plays in (2.4').

Another generalisation of Theorem A, in the form of the following
theorem is due to Kanno [5].

THEOREM C. Let {pn} and {Δpn} are both nonnegative and non-
increasing and X{t), t > 0, be a positive nondeereasing function
such that {XjPn} is nonincreasing. Then the series Σ ϊU Rn^nAn+1(x)
is summable \N, pn\, if (2.4') holds and

(2.5) Jn(R) 5g KXjPn .

Dropping the condition that {Apn} is nonincreasing and replacing
the condition: '{\JPn} is nonincreasing' by the condition: '{λwpJPw}
is nonincreasing' which appears to be lighter than the former, we
obtain the following more refined result than Theorem C whenever

THEOREM 2. Let {pn} be nonnegative nonincreasing sequence
with Pn —> °o as n—>°° and λ(£), t > 0, be a positive nondeereasing
function such that {XnpJPn} is nonincreasing and (2.5) holds. Then
the series ^n=i RnXnAn+ί(x) is summable \N, pn\, if (2.4') holds.

In order to consider the remaining case of Theorem C in which
Pn—+l (finite) as n —> oo, we observe that in this case (2.5) implies
that

Further, since λ(ί) is positive nondeereasing, (2.4') implies that

Thus, applying Lemma 7 with εfc = RkXk, we obtain the absolute
convergence of ΣΓ=i Rk^kAk+ί(x) which a fortiori implies its \N, pn\
summability, since by virtue of Lemma 3, the method is absolutely
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regular whenever {pn} is nonnegative nonincreasing. Thus, a sharper
result under lighter assumptions is obtained for this case.

It may be observed that Theorem 2 and Theorem 1, which include
Theorem C when Pn —* co and Theorem B respectively, are established
by a unified proof shorter than the existing proofs of Theorem B and
Theorem C. For some interesting corollaries of Theorem C and a
fortiori of Theorem 2 reference may be made to [5].

3* Preliminary results* We need the following lemmas for the
proof of our theorems.

LEMMA 1. Let {an} be a given sequence, then for any x, we have

s s—1

— ™) / * akju — arJu — asx — y, uu/kju ,
fc=r fc=r

where r and s are integers such that s ^ r ^ 0.

LEMMA 2. If {qn} is a nonnegative nonincreasing sequence such
that Qn = Σ ϊ = 0 qk, then for 0 ^ a ^ b ^ oo and any n,

b

k=a

uniformly in 0 < t ^ π.

Lemma 2 follows from the proof of Lemma (5.11) of [7], when
we take τ = [C/2t] in place of [1/ί].

LEMMA 3. 1/ {pn} is nonnegative nonincreasing, έfoew, /or
^ 0 a n d 1 ^ a ^ 6 <£ ©o,

δ δ

Σ P(n, fc) = Σ

/or any n > 0, P(n, ί;) ^ 0 so έfca£ ίΛe (iV, pn) method is abso-
lutely regular.

Proof. We have

P P \ P Pq-ft-1 < JPn-k-1 \ _ . Pb-k

For, n > 0 we observe that

P(n, k) = P«-«P« ~ P*1**-* ^ 0 ,
PP
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since {pn} is nonnegative nonincreasing. It is known [6] that necessary
and sufficient conditions for the absolute regularity of the (N, pn)
method are that

Pn-k/Pn > 0 as n > oo and Σ IP(n, k)\ £ K

for all k. The latter of these conditions is already proved while the
former follows from the fact that (k + l)pk ^ Pk.

LEMMA 4. If {pn} is nonnegative nonincreasing, then
( i ) for any positive integer r, Prn ^ rPn and, if in addition

{Xn} is nonnegative nondecreasing such that (2.2) holds, or Pn—>°°
with n and (2.5) holds, then

(ii) X2n^KXn.

Proof. Using the hypothesis that {pn} is nonnegative and non-
increasing, we write

P r . ^ Σ Σ Pk£Σ*P» = rPn.

This proves (i). Next, if {μn} is a nonnegative sequence, then
for p ^ 2n,

Jn(μ) ^ J2n(μ) ^

since {λj is nondecreasing. Taking p — Sn and μn = 1 for all n and
observing that {Pn} is positive nondecreasing, we have

(3.1) Λ(i):>

by virtue of the result (i). Similarly, since

_. _i L_ > o ,
P P

taking p-+oo and μn = Rn, we get

(3.2) 2

In view of the inequalities (3.1) and (3.2) and the hypotheses (2.2),
(2.5), we have
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where μn = 1 or μn = ϋJΛ. This gives the result (ii) and thus we
complete the proof of the lemma.

LEMMA 5. If {pn} is nonnegative nonincreasing and {Xn} is
positive nondecreasing such that (2.2) holds, then for all N^ nf

n Σ I4W&)I ^ KXn , n = 1, 2, . . . .
k=n

Proof We first observe that {n/Pn} is nondecreasing. For,

n I n(n + 1)

since {pn} is nonnegative nonincreasing. Thus, under the hypothesis
(2.2), we have

(3.3)

Further, if N^n, then

(3.4) ^ - ^ T = nXN+1

since {λw} is positive and nondecreasing. Thus,

n n

+ 1)

*=» ft(ft + 1)

by virtue of (3.3) and (3.4). This completes the proof of the lemma.

LEMMA 6. Let θ(t) and λ(t) be two nonnegative nondecreasing
functions such that θ{n) = λ(w) = λn. Let a and b be two positive
numbers such that

θ, e) = ['θ(a/t) I dφ{t) \ and I{\ e) = J*λ(6/ί) | dφ(t) |

isί, /or evert/ e > 0. // λ2Λ 5g iΓλ ,̂ ίΛ,ê  /(^, 0) < °o if and only
if J(λ, 0) < oo.

Proof. We assume without loss of generality that a <Ξ 6. Thus,
for 0 < t <£ 6, we have
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a/t £ b/t S 2[b/t]

and, therefore, using the hypotheses that θ{t) and X{t) are nondeereas-
ing, we have

(3.5) θ(a/t) ̂  λ(2[6/ί]) £ K X(b/t) ,

since θ(n) ~ X{n) and X2n <; KXn. Now taking 0 < t S a>, we have
for some fixed integer r

bit ^ 2r[a/t]

and, therefore,

(3.6) λ(6/t) ^ KX([a/t]) = Kθ(a/t) .

The lemma readily follows from (3.5) and (3.6).

I dφ(t) I S K, then
o

S π

I dφ(t) I ̂  K, we have by integration by parts,
0

I4.<aθl =
7Γ Jo n

The desired result now follows directly.

4* Proof of Theorem 1 and Theorem 2* If tn denotes the
nth. (N, pn) mean of Σ?=i AJ&Pn^ then

t, - ί ^ = — \ Xφ{t)g(n, t)dt
π Jo

where

n

g{n, ί) = Σ -P(w. k)μk\k cos Aί

μh — 1 or i2fc and P(w, A;) is defined by Lemma 3.
Integrating by parts, we get

^ , t)dt = -

and, therefore,
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dφ(t)

Thus, using the hypothesis (2.4'), we observe that in order to prove
the \N, pn\ summability of Σ"=i A*iΛ»Ά»(aO> it is sufficient to show
that uniformly in 0 < t 5̂  π,

(4.1)

We write

Σ -P(w, k)Xkμkk~ι sin

Σ -P(», k)k~1Xkμk sin A t

(4.2) + Σ + Σ )P(n,k)k-1Xkμksinkt
k=ί k=τ+l/

<c y -4- y -\- y

say. Now, we observe that

(4.3) λ(2r + 1) ^

For, if τ ^ 1, then 2τ + 1 < 22τ and (4.3) follows from the result (ii)
of Lemma 4 and the hypothesis that X(t) is a positive nondecreasing
function. The latter also implies (4.3) directly when τ = 0.

Since |sin&£| ^ &£, we have by a change in order of summations
and Lemma 3

(4.4)

2r + l 2τ4-i
/ V tί \ V Pin 1Λ

fc=l n=k

£t±,

by virtue of (4.3). Again writing \sinkt\ ^ kt and applying the result
of Lemma 3, we get

(4.5)
^ t Σ Σ P(n, k)μk\k

- t Σ μ^u Σ ^(w, *0

In order to estimate Σ3, we consider the following sum and write for
a sufficiently large N,

Σ* - Σ

(4.6)

Σ -P(w, k)k~ιXkμk exp (ifc

= . Σ + J ( 4 Σ + i + jΣ^Ji'ίw, k)k-ιXkμkexv(ikt)

^ Σ? + J2* ,
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say. Applying first, Lemma 1 with x — exp (it) and then effecting
suitable changes in order of summations, we get

: X + P(n, k

+ Kr1 Σ P(n, m)μm\mm-χ + K Σ P(^, Γ +

TV JV

(4.7) + zr 1
 Σ Σ P(», Λ + l)

"T" J\.AιτjΓγ /} JΓ\Ύly T ~ή~ X)

= ΣH + Σ?2 + 2Ί* 4- JX ,

say. Since, due to nonnegative nonincreasing nature of {pn}
AkP(n, k) ^ 0, for relevant values of k, we have

^ Kt~ιpτ+ιJτ+1{μ) ^ KX(C/t) ,

by virtue of (4.3), the hypothesis (2.2) or (2.5) and the fact that

(4.3)

(4.9)

First taking μn = 1, we have by Lemma 3 and Lemma 5 with

A{Xkjk)

Next, when μΛ = i2n, that is, in the case of Theorem 2, we have

(4.9')

N

^ KRT+1X(C/t) ^ KX(C/t) ,

by virtue of the hypothesis that {λ>npJPn} is nonincreasing and the
result (4.3). Now,

ΣS, ̂
(4.10)
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by virtue of (4.3), the hypothesis (2.2) or (2.5) and the fact that
{Rn} e B. Further applying Lemma 3 and using (4.3), we directly
get

(4.11)

Writing

we have

1*4 ̂  KX(C/t)

P(n, k) = P^-
J

N 1

2

+ Σ

- 5 +
Pn

k=m+l
~ιμk exp (ikt)

Observing that {Ar1/̂ } is nonincreasing and applying AbePs lemma,
we obtain by Lemma 2

N 1

^#Σ -^-: max Σ exp

(4.12)
N

+ K Σ — ^ — P ^ λ ^ m ^ m max exp

(τ

by virtue of Lemma 4 and the hypothesis (2.2) or (2.5) with (4.3).
Combining (4.6)-(4.12), we prove that Σ* ^ KX(C/t) which in

its turn implies that Σz <̂  K\(C/t). The last result combined with
(4.2), (4.4) and (4.5) shows that (4.1) is valid and we have, thus proved
the \N, pn\ summability of Σ"=i /ΊΛ A OB). Observing that the above
proof remains unaffected, if An(x) is replaced by An+1(x), we conclude
the \N9pn\ summability of ΣSUt*»KAn+1(x).

This completes the proof of our theorems.
The authors should like to thank the referee for suggesting

Lemma 6 and Lemma 7 which have helped to improve the presentation
of the paper.
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