LINEAR DIFFERENTIAL SYSTEMS WITH MEASURABLE COEFFICIENTS

Dennis D. Berkey and Alan C. Lazer

Abstract

The general homogeneous first order linear differential system is considered. The principal result concerns a representation of the solution space as a direct sum of subspaces such that on each summand upper and lower bounds for the norms of the solutions can be given. The main tool in obtaining this decomposition is the method of fixed points of integral operators.

I. Introduction. Consider the homogeneous linear differential system

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t) \quad-\infty<t<\infty \tag{1}
\end{equation*}
$$

where $A(t)$ denotes an $n x n$ complex matrix whose entries are assumed only to be measurable functions of t which are summable on bounded intervals and it is understood that (1) holds almost everywhere. Here x denotes a complex n-vector and for $x=\operatorname{col}\left(x_{1}, \cdots, x_{n}\right)$ we use $\|x\|=$ $\max _{1 \Xi i \leq n}|x|_{i}$ throughout.

In [4] the second author has shown that when $A(t)$ in (1) is continuous and satisfies a diagonal dominance condition the solution space of (1) admits a type of exponential dichotomy. This result is also discussed in the notes [2, pg. 126-135]. In [1] the first author has established an analogous result for the linear difference equation

$$
\begin{equation*}
x(m+1)=A(m+1) x(m) \quad m=0, \pm 1, \cdots \tag{2}
\end{equation*}
$$

In §2 we give a more general and improved result for (1), assuming only measurability for $A(t)$, and then use this information to give estimates for upper and lower bounds for solutions to (1). Our estimates are comparative in that they give norm comparisons for solutions at any two values of the variable t. These estimates were obtained by Martin [5] in the continuous case and in a slightly weaker form were announced by the second author in [3]. However, the methods used here are completely different from those used in [4] and [5] and seem more transparent.

In § 4 we show, under the additional assumption that $A(t)$ be bounded, that our technique of proof is constructive in that all solutions of (1) bounded on $[0, \infty$) arise as fixed points of a family of contraction mappings. Finally, we indicate the appropriate analogy with our work concerning (1) for showing that the bounded solutions of (2) arise in a similar manner.
2. Statement of main theorems. For $A(t)=\left(\alpha_{i j}(t)\right)$ we define

$$
r_{i}(t)=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|\alpha_{i j}(t)\right|, 1 \leqq i \leqq n
$$

Our first main theorem is a strengthened form of the second author's original theorem.

Theorem 1. Let the entries of $A(t)$ in (1) be measurable and let α and β be measurable functions so that $\alpha(t)>\beta(t)$ almost everywhere. Let $\{1, \cdots, n\}=I_{1} \cup I_{2}$ such that both the following hold on the whole real line.
(i) $\operatorname{Re} \alpha_{i i}(t)+r_{i}(t) \leqq \beta(t), i \in I_{1}$
(ii) $\operatorname{Re} a_{i i}(t)-r_{i}(t) \geqq \alpha(t), i \in I_{2}$.

Let k denote the cardinality of I_{1} and L the solution space of (1). Then there exist subspaces $L^{-}(\beta)$ and $L^{-}(\alpha)$ of L such that each of the following holds:
(i) $x \in L^{-}(\beta)$ iff for any $t_{1} \leqq t_{2}$,

$$
\left\|x\left(t_{2}\right)\right\| \leqq\left\|x\left(t_{1}\right)\right\| \exp \int_{t_{1}}^{t_{2}} \beta(t) d t
$$

(ii) $x \in L^{+}(\alpha)$ iff for any $t_{1} \leqq t_{2}$,

$$
\left\|x\left(t_{2}\right)\right\| \geqq\left\|x\left(t_{1}\right)\right\| \exp \int_{t_{1}}^{t_{2}} \alpha(t) d t
$$

(iii) $L=L^{-}(\beta) \oplus L^{+}(\alpha)$
(iv) $\operatorname{dim} L^{-}(\beta)=k$.

Using Theorem 1 we shall establish the estimates for upper and lower bounds of solutions of (1) given by the following.

Theorem 2. Let $A(t)$ in (1) be measurable and let L denote the solution space of (1). For each $i=1, \cdots, n$ let

$$
\begin{aligned}
c_{i}(t) & =\operatorname{Re} a_{i i}(t)-r_{i}(t), \\
d_{i}(t) & =\operatorname{Re} \alpha_{i i}(t)+r_{i}(t)
\end{aligned}
$$

Suppose $\{1, \cdots, n\}=\bigcup_{j=1}^{s} I_{j}$ where if

$$
\begin{aligned}
\alpha_{j}(t) & =\min \left\{c_{i}(t) \mid i \in I_{j}\right\} \\
\beta_{j}(t) & =\max \left\{d_{i}(t) \mid i \in I_{j}\right\}
\end{aligned}
$$

then $\beta_{j}(t)<\alpha_{j+1}(t)$ holds almost everywhere, $1 \leqq j \leqq s-1$. Finally let n_{j} denote the number of indicies i with $i \in I_{j}, j=1, \cdots, s$. Then
there exist subspaces L_{j} of $L, j=1, \cdots, s$, such that each of the following holds:
(i) $x \in L_{i}$ iff whenever $t_{1} \leqq t_{2}$,

$$
\begin{aligned}
\left\|x\left(t_{1}\right)\right\| \exp \int_{t_{1}}^{t_{2}} \alpha_{j}(s) d s & \leqq\left\|x\left(t_{2}\right)\right\| \\
& \leqq\left\|x\left(t_{1}\right)\right\| \exp \int_{t_{1}}^{t_{2}} \beta_{j}(s) d s
\end{aligned}
$$

(ii) $L=L_{1} \oplus L_{2} \oplus \cdots \oplus L_{s}$
(iii) $\operatorname{dim} L_{j}=n_{j}, \quad j=1, \cdots, s$.
3. Proofs of the main theorems. Let K denote the complex field and let

$$
S=\left\{\operatorname{col}\left(x_{1}, \cdots, x_{n}\right) \in K^{n} \mid x_{j}=0 \text { if } j \in I_{2}\right\}
$$

where I_{2} is as in the statement of Theorem 1. Let P be the projection in $\mathscr{L}\left(K^{n}\right)$ defined by $P(x)=\operatorname{col}\left(\varepsilon_{1} x_{1}, \cdots, \varepsilon_{n} x_{n}\right)$ if $x=\operatorname{col}\left(x_{1}, \cdots, x_{n}\right)$ where $\varepsilon_{j}=\left\{\begin{array}{l}1 \text { if } j \in I_{1} \\ 0 \text { if } j \in I_{2} .\end{array}\right.$

The proof of Theorem 1 uses the following preliminaries.
Proposition 1. Let the entries of $A(t)$ be measurable and assume that both the following hold for all $t \geqq 0$:
(i) $\quad \operatorname{Re} \alpha_{i i}(t)+r_{i}(t) \leqq-\delta(t), i \in I_{1}$
(4)
(ii) $\quad \operatorname{Re} a_{i i}(t)-r_{i}(t) \geqq \delta(t), i \in I_{2}$
where $\delta(t)$ is measurable, $\delta(t)>0$ a.e., and $\int_{0}^{\infty} \delta(s) d s=\infty$. Then for each $b \in S$ there exists a unique solution x of (1) such that both the following hold:
(i) $P(x(0))=b$
(ii) $\left\|x\left(t_{2}\right)\right\| \leqq\left\|x\left(t_{1}\right)\right\| \exp -\int_{t_{1}}^{s_{1}} \delta(s) d s$ whenever $0 \leqq t_{1} \leqq t_{2}$.

Proof. We define two addends of $A(t)$ by

$$
\begin{gather*}
D(t)=\operatorname{diag}\left(a_{11}(t), \cdots, a_{n n}(t)\right), \quad \text { and } \tag{5}\\
N(t)=A(t)-D(t) \tag{6}
\end{gather*}
$$

and four additional matrix functions by

$$
\begin{equation*}
V_{1}(t)=\operatorname{diag}\left(\gamma_{1} \exp \int_{0}^{t} a_{11}(s) d s, \cdots, \gamma_{n} \exp \int_{0}^{t} a_{n n}(s) d s\right) \tag{7}
\end{equation*}
$$

where $\gamma_{j}= \begin{cases}1 & \text { if } \\ 0 & j \in I_{1} \\ j \in I_{2},\end{cases}$

$$
\begin{equation*}
V_{2}(t)=\operatorname{diag}\left(\gamma_{1} \exp \int_{0}^{t} a_{11}(s) d s, \cdots, \gamma_{n} \exp \int_{0}^{t} a_{n n}(s) d s\right) \tag{8}
\end{equation*}
$$

where $\gamma_{j}= \begin{cases}0 & \text { if } j \in I_{1} \\ 1 & \text { if } j \in I_{2},\end{cases}$
(9) $\quad W_{1}(t)=\operatorname{diag}\left(\gamma_{1} \exp -\int_{0}^{t} a_{11}(s) d s, \cdots, \gamma_{n} \exp -\int_{0}^{t} a_{n n}(s) d s\right)$
where $\gamma_{j}=\left\{\begin{array}{ll}1 & \text { if } \\ 0 & j \in I_{1} \\ & j \in I_{2},\end{array}\right.$ and

$$
\begin{equation*}
W_{2}(t)=\operatorname{diag}\left(\gamma_{1} \exp -\int_{0}^{t} a_{11}(s) d s, \cdots, \gamma_{n} \exp -\int_{0}^{t} a_{n n}(s) d s\right) \tag{10}
\end{equation*}
$$

where $\gamma_{j}=\left\{\begin{array}{l}0 \text { if } j \in I_{1} \\ 1 \text { if } j \in I_{2} .\end{array}\right.$
From (5)-(10) we observe that

$$
\begin{gather*}
\frac{d V_{k}}{d t}=D(t) V_{k}, k=1,2, \quad \text { and } \tag{11}\\
V_{1}(t) W_{1}(t)+V_{2}(t) W_{2}(t)=I=\text { Identity } \tag{12}
\end{gather*}
$$

For each fixed $b \in S$ we define the set M_{b} by

$$
\begin{array}{r}
M_{b}=\left\{x:[0, \infty) \longrightarrow K^{n} \mid x\right. \text { is continuous and } \\
\left.\|x(t)\| \leqq\|b\| \exp -\int_{0}^{t} \delta(s) d s, t \geqq 0\right\}
\end{array}
$$

and the mapping T_{b} on M_{b} by $T_{b}(x)=x^{*}$ where

$$
\begin{align*}
x^{*}(t)= & V_{1}(t)\left[b+\int_{0}^{t} W_{1}(s) N(s) x(s) d s\right] \\
& -V_{2}(t) \int_{t}^{\infty} W_{2}(s) N(s) x(s) d s \tag{13}
\end{align*}
$$

For $i \in I_{1}$ we have from (7), (9), and (13) that

$$
x_{i}^{*}(t)=b_{i} \exp \int_{0}^{t} a_{i i}(s) d s+\int_{0}^{t}\left(\exp \int_{s}^{t} a_{i i}(\sigma) d \sigma\right) \sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i j}(s) x_{j}(s) d s
$$

Since $x \in M_{b}$, (3) and the above give

$$
\begin{aligned}
\left|x_{i}^{*}(t)\right| \leqq & \|b\| \exp \int_{0}^{t}-\left(\delta(s)+r_{i}(s)\right) d s \\
& +\int_{0}^{t}\left[\left(\exp -\int_{s}^{t}\left(\delta(\sigma)+r_{i}(\sigma)\right) d \sigma\right) \sum_{\substack{j=1 \\
j \neq i}}^{n}\left|a_{i j}(s)\right|\|x(s)\|\right] d s \\
\leqq & \|b\| \exp -\int_{0}^{t} \delta(s) d s\left[\exp -\int_{0}^{t} r_{i}(s) d s\right. \\
& \left.+\int_{0}^{t}\left(\exp -\int_{s}^{t} r_{i}(\sigma) d \sigma\right) r_{i}(s) d s\right] \\
\leqq & \|b\| \exp -\int_{0}^{t} \delta(s) d s\left[\exp \int_{0}^{t}-r_{i}(s) d s+\exp \int_{s}^{t}-\left.r_{i}(\sigma) d \sigma\right|_{s=0} ^{s=t}\right. \\
= & \|b\| \exp -\int_{0}^{t} \delta(s) d s .
\end{aligned}
$$

Similarly, $i \in I_{2}$ implies

$$
x_{i}^{*}(t)=-\int_{t}^{\infty}\left(\exp -\int_{t}^{s} a_{2 i}(\sigma) d \sigma\right) \sum_{\substack{j=1 \\ j \neq i}}^{n} a_{2 j}(s) x_{j}(s) d s,
$$

So

$$
\begin{aligned}
\left|x_{\imath}^{*}(t)\right| \leqq & \int_{t}^{\infty}\left(\exp -\int_{t}^{s}\left(r_{\imath}(\sigma)+\delta(\sigma)\right) d \sigma\right) r_{i}(s)\|b\|\left(\exp -\int_{0}^{s} \delta(\sigma) d \sigma\right) d s \\
\leqq & \left(\|b\| \exp -\int_{0}^{t} \delta(s) d s\right) \int_{t}^{\infty}\left(\exp -\int_{t}^{s}\left(r_{\imath}(\sigma)\right.\right. \\
& +\delta(\sigma)) d \sigma)\left(r_{\imath}(s)+\delta(s)\right) d s=\|b\| \exp -\int_{0}^{t} \delta(s) d s .
\end{aligned}
$$

Thus $T_{b}\left(M_{b}\right) \subseteq M_{b}$, and the set $T_{b}\left(M_{b}\right)$ is uniformly bounded. From the equality

$$
\begin{aligned}
x^{*}\left(t_{2}\right) & -x^{*}\left(t_{1}\right)=\left[V_{1}\left(t_{2}\right)-V_{1}\left(t_{1}\right)\right]\left[b+\int_{0}^{t_{1}} W_{1}(s) N(s) x(s) d s\right] \\
& +V_{1}\left(t_{2}\right) \int_{t_{1}}^{t_{2}} W_{1}(s) N(s) x(s) d s \\
& -\left[V_{2}\left(t_{1}\right)-V_{1}\left(t_{2}\right)\right] \int_{t_{2}}^{\infty} W_{2}(s) N(s) x(s) d s \\
& +V_{2}\left(t_{1}\right) \int_{t_{1}}^{t_{2}} W_{2}(s) N(s) x(s) d s
\end{aligned}
$$

it follows that the restriction of $T_{b}\left(M_{b}\right)$ to any compact interval is equicontinuous. Since T_{b} is clearly continuous we have by the SchauderTychonoff theorem the existence of at least one $x_{0} \in M_{b}$ so that $T_{b}\left(x_{0}\right)=$ $x_{0}^{*}=x_{0}$. Rather than prove directly that T_{b} has a unique fixed point in M_{b} we shall prove the slightly stronger assertion that there is at most one solution $x_{0}(t)$ of (1) such that $T_{b} x_{0}=x_{0}$ and $\left\|x_{0}(t)\right\| \rightarrow 0$ as $t \rightarrow \infty$. (To see that this is stronger than uniqueness recall that since

$$
\left.\int_{0}^{\infty} \delta(s) d s=+\infty, x \in M_{b} \Rightarrow\|x(t)\| \rightarrow 0 \text { as } t \rightarrow \infty .\right)
$$

We therefore assume that x and y are two distinct solutions of (1) such that $T_{b} x=x, T_{b} y=y$, and that $\|x(t)\| \rightarrow 0$ and $\|y(t)\| \rightarrow 0$ as $t \rightarrow \infty$.

Let

$$
\rho(x, y)=\sup _{t \geq 0}\|x(t)-y(t)\|>0 .
$$

Since $\|x(t)-y(t)\| \rightarrow 0$ as $t \rightarrow \infty$ there exists a t_{1} such that $\rho(x, y)=$ $\left\|x\left(t_{1}\right)-y\left(t_{1}\right)\right\|$. For $i \in I_{1}$ we have

$$
\begin{aligned}
& \left|x_{i}\left(t_{1}\right)-y_{i}\left(t_{1}\right)\right|=\left|x_{i}^{*}\left(t_{1}\right)-y_{i}^{*}\left(t_{1}\right)\right| \\
& \quad \leqq \int_{0}^{t_{1}}\left(\exp -\int_{s}^{t_{1}}\left(r_{i}(\sigma)+\delta(\sigma)\right) d \sigma \sum_{\substack{j=1 \\
j \neq i}}^{n}\left|a_{i j}(s)\right|\left|x_{j}(s)-y_{j}(s)\right| d s\right. \\
& \quad \leqq \rho(x, y) \int_{0}^{t_{1}}\left(\exp -\int_{s}^{t_{1}}\left(r_{i}(\sigma)+\delta(\sigma)\right) d \sigma\right) r_{i}(s) d s \\
& \quad \leqq \rho(x, y) \int_{0}^{t_{1}}\left(\exp -\int_{s}^{t_{1}}\left(r_{i}(\sigma)+\delta(\sigma)\right)\left(r_{i}(s)+\delta(s)\right) d s\right. \\
& \quad=\rho(x, y)\left[1-\exp -\int_{0}^{t_{1}}\left(r_{i}(\sigma)+\delta(\sigma)\right) d \sigma\right] \\
& \quad<\rho(x, y)
\end{aligned}
$$

Similarly if $i \in I_{2}$ then

$$
\begin{aligned}
& \left|x_{i}\left(t_{1}\right)-y_{i}\left(t_{1}\right)\right|=\left|x_{i}^{*}\left(t_{1}\right)-y_{i}^{*}\left(t_{1}\right)\right| \\
& \quad=\int_{t_{1}}^{\infty}\left(\exp -\int_{t_{1}}^{s}\left(r_{i}(\sigma)+\delta(\sigma)\right) d \sigma\right) \sum_{\substack{j_{j}=1 \\
j \neq i}}^{n}\left|a_{i j}(s)\right|\left|x_{j}(s)-y_{j}(s)\right| d s \\
& \quad \leqq \rho(x, y) \int_{t_{1}}^{\infty}\left(\exp -\int_{t_{1}}^{s}\left(r_{i}(\sigma)+\delta(\sigma)\right) d \sigma\right) r_{i}(s) d s \\
& \quad<\rho(x, y) \int_{t_{1}}^{\infty}\left(\exp -\int_{t_{1}}^{s}\left(r_{i}(\sigma)+\delta(\sigma)\right) d \sigma\right)\left(r_{i}(s)+\delta(s)\right) d s \\
& \quad=\rho(x, y) .
\end{aligned}
$$

We have therefore arrived at the contradiction

$$
\rho(x, y)=\max \left|x_{i}\left(t_{1}\right)-y_{i}\left(t_{1}\right)\right|<\rho(x, y)
$$

Hence there can exist at most one solution of $T_{b} x=x$ with $\|x(t)\| \rightarrow 0$ as $t \rightarrow \infty$.

We next observe that for any $x \in M_{b}$

$$
\begin{aligned}
\frac{d}{d t}\left(x^{*}(t)\right)= & D(t) V_{1}(t)\left[b+\int_{0}^{t} W_{1}(s) N(s) x(s) d s\right] \\
& -D(t) V_{2}(t) \int_{t}^{\infty} W_{2}(s) N(s) x(s) d s
\end{aligned}
$$

$$
\begin{aligned}
& +\left[V_{1}(t) W_{1}(t)+V_{2}(t) W_{2}(t)\right] N(t) x(t) \\
= & D(t) x^{*}(t)+N(t) x(t)
\end{aligned}
$$

so the fixed point x_{0} satisfies

$$
x_{0}^{\prime}(t)=A(t) x_{0}(t) .
$$

Now note, for

$$
V(t)=\operatorname{diag}\left(\exp \int_{0}^{t} a_{11}(s) d s, \cdots, \exp \int_{0}^{t} a_{n n}(s) d s\right),
$$

that

$$
V^{\prime}(t)=D(t) V(t), V(0)=I
$$

so by the variation of parameters formula any solution of

$$
x^{\prime}(t)=D(t) x(t)+f(t)
$$

must satisfy

$$
x(t)=V(t) x(0)+V(t) \int_{0}^{t} V^{-1}(s) f(s) d s
$$

Thus, for $i \in I_{2}$

$$
\begin{equation*}
x_{i}(t)=\exp \int_{0}^{t} a_{i i}(s) d s\left[x_{i}(0)+\int_{0}^{t}\left(\exp -\int_{0}^{s} a_{i i}(\sigma) d \sigma\right) f_{i}(s) d s\right] \tag{15}
\end{equation*}
$$

so if $x(t)$ is to be a solution of (1) with $\|x(t)\| \rightarrow 0$ as $t \rightarrow \infty$ then

$$
\lim _{t \rightarrow \infty}\left|x_{i}(0)+\int_{0}^{t}\left(\exp -\int_{0}^{s} a_{i i}(\sigma) d \sigma\right) f_{i}(s) d s\right|=0
$$

or

$$
\begin{equation*}
\left.x_{i}(0)=-\int_{0}^{\infty}\left(\exp -\int_{0}^{s} a_{i i}(\sigma) d \sigma\right)\right) f_{i}(s) d s . \tag{16}
\end{equation*}
$$

(15) and (16) now give that

$$
\begin{equation*}
x_{i}(t)=-\left(\exp \int_{0}^{t} a_{i i}(s) d s\right) \int_{t}^{\infty}\left(\exp -\int_{0}^{s} a_{i i}(\sigma) d \sigma\right) f_{i}(s) d s \tag{17}
\end{equation*}
$$

Requiring that $P(x(0))=b$ gives for $i \in I_{1}$, that

$$
\begin{equation*}
x_{i}(t)=\exp \int_{0}^{t} a_{i i}(s) d s\left[b_{i}+\int_{0}^{t}\left(\exp -\int_{0}^{s} a_{i i}(\sigma) d \sigma\right) f_{i}(s) d s\right] . \tag{18}
\end{equation*}
$$

(17) and (18) now give that

$$
x(t)=V_{1}(t)\left[b+\int_{0}^{t} W_{1}(s) f(s) d s\right]-V_{2}(t) \int_{t}^{\infty} W_{2}(s) f(s) d s
$$

Letting $f(s)=N(s) x(s)$ from our above calculations we conclude that any solution of (1) satisfying $P(x(0))=b$ and $\|x(t)\| \rightarrow 0$ as $t \rightarrow \infty$ satisfies $T_{b} x=x$. Thus to complete the proof of the proposition we need only show that the unique fixed point x_{0} of T_{b} on M_{b} satisfies the indicated inequality.

Fix $t_{1} \geqq 0$. For $t \geqq 0$ define $B(t)=A\left(t+t_{1}\right)$ and let $\beta(t)=\delta\left(t+t_{1}\right)$. Then for $B(t)=\left(b_{i j}(t)\right)$

$$
\operatorname{Re} b_{i i}(t)+\sum_{j \neq i}\left|b_{i j}(t)\right| \leqq-\beta(t), i \in I_{1}
$$

and

$$
\operatorname{Re} b_{i i}(t)-\sum_{j \neq 1}\left|b_{i j}(t)\right| \geqq \beta(t), i \in I_{2}
$$

Thus $B(t)$ satisfies the same hypotheses with respect to $\beta(t)$ as does $A(t)$ with respect to $\delta(t)$. Let $c=P\left(x_{0}\left(t_{1}\right)\right) \in S$. By what we have already proved there exists a unique $x_{1} \in M_{c}$ so that

$$
x_{1}^{\prime}(t)=B(t) x_{1}(t), P\left(x_{1}(0)\right)=c
$$

Since $x_{1}(t) \in M_{c}$ we have that

$$
\begin{equation*}
\left\|x_{1}(t)\right\| \leqq\left\|P\left(x_{0}\left(t_{1}\right)\right)\right\| \exp -\int_{0}^{t} \beta(s) d s, t \geqq 0 \tag{19}
\end{equation*}
$$

Also we have that

$$
\begin{aligned}
& x_{0}^{\prime}\left(t+t_{1}\right)=B(t) x_{0}\left(t+t_{1}\right), t \geqq 0, \\
& \left.P\left(x_{0}\left(t+t_{1}\right)\right)\right|_{t=0}=P\left(x_{0}\left(t_{1}\right)\right)=c, \text { and } \\
& \left\|x_{0}\left(t+t_{1}\right)\right\| \longrightarrow 0 \text { as } t \longrightarrow \infty
\end{aligned}
$$

Threfore, from our above uniqueness result applied to $B(t)$ we conclude that $x_{0}\left(t+t_{1}\right)=x_{1}(t)$.

Thus (19) gives that

$$
\left\|x_{0}\left(t+t_{1}\right)\right\| \leqq\left\|P\left(x_{0}\left(t_{1}\right)\right)\right\| \exp -\int_{0}^{t} \beta(s) d s, \quad t \geqq 0
$$

so

$$
\left\|x_{0}\left(t_{2}\right)\right\| \leqq\left\|P\left(x_{0}\left(t_{1}\right)\right)\right\| \exp -\int_{t_{1}}^{t_{2}} \delta(s) d s, \quad 0 \leqq t_{1} \leqq t_{2}
$$

from which the inequality in the statement of the proposition follows.
Our second preliminary is a direct generalization of the second author's original theorem to the case where $A(t)$ is measurable and $\delta(t)>0$ is no longer assumed to be constant on $(-\infty, \infty)$.

Proposition 2. Let $A(t)$ in (1) satisfy the hypotheses of Proposition 1 on the whole real line except for the requirement that $\int_{0}^{\infty} \delta(s) d s=\infty$. Then there exist vector spaces L^{-}and L^{+}of solutions of (1) such that each of the following holds:
(i) $x \in L^{-}$iff whenever $-\infty<t_{1} \leqq t_{2}<\infty$

$$
\begin{equation*}
\left\|x\left(t_{2}\right)\right\| \leqq\left\|x\left(t_{1}\right)\right\| \exp -\int_{t_{1}}^{t_{2}} \delta(s) d s \tag{20}
\end{equation*}
$$

(ii) $x \in L^{+}$iff whenever $-\infty<t_{1} \leqq t_{2}<\infty$

$$
\begin{equation*}
\left\|x\left(t_{2}\right)\right\| \geqq\left\|x\left(t_{1}\right)\right\| \exp \int_{t_{1}}^{t_{2}} \delta(s) d s \tag{21}
\end{equation*}
$$

(iii) $\operatorname{dim}\left(L^{-}\right)=k$
(iv) $L=L^{-} \oplus L^{+}$.

Proof. First let us assume as in Proposition 1 that $\int_{0}^{\infty} \delta(s) d s=\infty$. Fix $t_{0} \in(-\infty, \infty)$ and let $B(t)=A\left(t+t_{0}\right), \beta(t)=\delta\left(t+t_{0}\right), t \in[0, \infty)$. Then $B(t)$ satisfies the same conditions with respect to $\beta(t)$ as does $A(t)$ with respect to $\delta(t)$. Let x be any solution of (1) which satisfies inequality (20) for $0 \leqq t_{1} \leqq t_{2}$. By Proposition 1 there exists a unique solution y of $y^{\prime}(t)=B(t) y(t)$ so that $P(y(0))=P\left(x\left(t_{0}\right)\right) \in S$ and

$$
\left\|y\left(t_{2}\right)\right\| \leqq\left\|y\left(t_{1}\right)\right\| \exp -\int_{t_{1}}^{t_{2}} \beta(s) d s, \quad 0 \leqq t_{1} \leqq t_{2}
$$

If $z(t)=x\left(t_{0}+t\right)$ then $z^{\prime}(t)=B(t) z(t), P(z(0))=P\left(x\left(t_{0}\right)\right)=P(y(0))$, and

$$
\|z(t)\| \longrightarrow 0
$$

Thus by the uniqueness of Proposition $1 x\left(t_{0}+t\right)=z(t)=y(t), t \in[0$, ∞), so

$$
\left\|z\left(t_{2}\right)\right\| \leqq\left\|z\left(t_{1}\right)\right\| \exp -\int_{t_{1}}^{t_{2}} \beta(s) d s, \quad 0 \leqq t_{1} \leqq t_{2}
$$

holds. Hence any solution of (1) which satisfies (20) for $0 \leqq t_{1} \leqq t_{2}$ does so for $-\infty<t_{1} \leqq t_{2}$.

Now for each $b \in S$ let y_{b} denote the unique solution of $x^{\prime}(t)=$ $A(t) x(t), t \in[0, \infty)$, whose existence is established by Proposition 1 and let x_{b} denote the solution of $x^{\prime}(t)=A(t) x(t), t \in(-, \infty)$ determined by the initial condition $x_{b}(0)=y_{b}(0)$. By our above observations x_{b} satisfies (20) on the whole real line. Let $L^{-}=\left\{x_{b} \mid b \in S\right\}$. By the uniqueness of Proposition 1, formula (13), and the fact that $\operatorname{dim} S=k$ it follows that L^{-}is a vector space of dimension k.

Now let $C(t)=-A(-t), t \in(-\infty, \infty)$. Then there are $n-k$ in-
tegers $i \in I_{2}$ such that

$$
\operatorname{Re} c_{i i}(t)+\sum_{j \neq i}\left|c_{i j}(t)\right| \leqq-\delta(-t)<0
$$

and k integers $i \in I_{1}$ so that

$$
\operatorname{Re} c_{i i}(t)-\sum_{j \neq i}\left|c_{i j}(t)\right| \geqq \delta(-t)>0
$$

Hence, by our preceding argument there exists an $n-k$ dimensional vector space R^{-}of solutions of $y^{\prime}(t)=C(t) y(t)$ such that

$$
\left\|y\left(t_{2}\right)\right\| \leqq\left\|y\left(t_{1}\right)\right\| \exp -\int_{t_{1}}^{t_{2}} \delta(-s) d s,-\infty<t \leqq t_{2}<\infty .
$$

Let $L^{+}=\left\{x \mid x(t)=y(-t), y \in R^{-}\right\}$. Then $x \in L^{+}$implies that $x^{\prime}(t)=$ $A(t) x(t)$ and that

$$
\| x\left(t_{2}\|\geqq\| x\left(t_{1}\right) \| \exp \int_{t_{1}}^{t_{2}} \delta(s) d s, \quad-\infty<t_{1} \leqq t_{2}<\infty\right.
$$

which establishes (21).
Since $\int_{-\infty}^{\infty} \delta(s) d s>0$ it follows that $L^{-} \cap L^{+}=\{0\}$. Since $\operatorname{dim} L^{+}=$ $\operatorname{dim} R^{-}=n-k$ we have that $L=L^{-} \oplus L^{+}$.

We now remove the restriction that $\int_{0}^{\infty} \delta(s) d s=\infty$. For each integer $m=1,2, \cdots$ define the matrix E_{m} by

$$
E_{m}=\operatorname{diag}\left(\frac{\varepsilon_{1}}{m}, \frac{\varepsilon_{2}}{m}, \cdots, \frac{\varepsilon_{n}}{m}\right)
$$

where

$$
\varepsilon_{j}=\left\{\begin{array}{rll}
-1 & \text { if } & j \in I_{1} \\
1 & \text { if } & j \in I_{2}
\end{array}\right.
$$

and let $A_{m}(t)=A(t)+E_{m}$. Then for $\delta_{m}(t)=\delta(t)+1 / m$ we have that $\int_{0}^{\infty} \delta_{m}(s) d s=\infty$ so our preceding argument applies to the system

$$
x^{\prime}(t)=A_{m}(t) x(t) .
$$

Denoting the solution space of this system by L_{m} we have the corresponding decomposition $L_{m}=L_{m}^{-} \oplus L_{m}^{+}$.

For each integer m we define a vector space V_{m} by

$$
V_{m}=\left\{x(0) \mid x \in L_{m}^{-}\right\} .
$$

Let $\left\{c_{1 m}, \cdots, c_{k m}\right\}$ be a basis for V_{m} which is orthonormal with respect to the complex inner product on K^{n}. By the compactness of the unit ball in K^{n} there exists a sequence of integers $\left\{m_{j}\right\}$ and vectors c_{1}, \cdots,
c_{k} such that $\lim _{j \rightarrow \infty} c_{i m_{j}}=c_{i}, 1 \leqq i \leqq k$. These vectors are orthonormal and hence independent. Let V^{-}be the k-dimensional space spanned by c_{1}, \cdots, c_{k} and let

$$
L^{-}=\left\{x \in L \mid x(0) \in V^{-}\right\}
$$

(where L denotes the solution space of (1) as before). Then for $x \in$ L^{-}there exist scalers $\alpha_{1}, \cdots, \alpha_{k}$ such that

$$
x(0)=\sum_{i=1}^{k} \alpha_{i} c_{i} .
$$

Let $x_{j}(t)$ denote the solution of

$$
x^{\prime}(t)=A_{m_{j}}(t) x(t)
$$

such that

$$
x_{j}(0)=\sum_{i=1}^{k} \alpha_{i} c_{i m_{j}} .
$$

Then $\lim _{j \rightarrow \infty} x_{j}(0)=x(0)$ and by what we have already proved x_{j} satisfies the inequality

$$
\left\|x_{j}\left(t_{2}\right)\right\| \leqq\left\|x_{j}\left(t_{1}\right)\right\| \exp -\int_{1}^{2}\left(\delta(s)+\frac{1}{m_{j}}\right) d s, t_{1} \leqq t_{2} .
$$

Thus, since $\lim _{j \rightarrow \infty} A_{m_{j}}(t)=A(t)$ uniformly on $(-\infty, \infty)$ it follows that $x_{j}(t) \rightarrow x(t)$ uniformly on compact intervals as $j \rightarrow \infty$, and that

$$
\left\|x\left(t_{2}\right)\right\| \leqq\left\|x\left(t_{1}\right)\right\| \exp -\int_{t_{1}}^{t_{2}} \delta(s) d s, \quad t_{1} \leqq t_{2} .
$$

This establishes the existence of L^{-}in the statement of Proposition 1. The existence of L^{+}follows in a similar fashion. The proof that $L^{+} \cap L^{-}=\{0\}$ follows as before.

Proof of Theorem 1. For each $t \in(-\infty, \infty)$ let

$$
\begin{equation*}
\gamma(t)=(1 / 2)(\alpha(t)+\beta(t)) \text { and } \rho(t)=(1 / 2)(\alpha(t)-\beta(t))>0 . \tag{22}
\end{equation*}
$$

Define the matrix $B(t)$ by

$$
B(t)=A(t)-\gamma(t) I=\left(b_{i j}(t)\right), \quad t \in(-\infty, \infty) .
$$

Then

$$
\operatorname{Re} b_{i j}(t)+\sum_{j \neq i}\left|b_{i j}(t)\right| \leqq-\rho(t), \quad i \in I_{1},
$$

and

$$
\operatorname{Re} b_{i j}(t)-\sum_{j \neq i}\left|b_{i j}(t)\right| \geqq \rho(t), \quad i \in I_{2}
$$

hold almost everywhere. Let M denote the solution space of $y^{\prime}(t)=$ $B(t) y(t), t \in(-\infty, \infty)$. Then by Proposition 2 there exist subspaces M^{-}and M^{+}of M so that each of the following holds:
(i) $y \in M^{-}$iff whenever $-\infty<t_{1} \leqq t_{2}<\infty$

$$
\left\|y\left(t_{2}\right)\right\| \leqq\left\|y\left(t_{1}\right)\right\| \exp -\int_{t_{1}}^{t_{2}} \rho(t) d t
$$

(ii) $y \in M^{+}$iff whenever $-\infty<t_{1} \leqq t_{2}<\infty$

$$
\left\|y\left(t_{2}\right)\right\| \geqq\left\|y\left(t_{1}\right)\right\| \exp \int_{t_{1}}^{t_{2}} \rho(t) d t
$$

(iii) $\operatorname{dim} M^{-}=k$
(iv) $\quad M=M^{-} \oplus M^{+}$.

Now y is a solution of $y^{\prime}(t)=B(t) y(t)$ if and only if $y(t)=$ $x(t) \exp -\int_{0}^{t} \gamma(s) d s$ for some solution of (1). Therefore, if we set

$$
L^{-}(\beta)=\left\{x \mid x(t)=y(t) \exp \int_{0}^{t} \gamma(s) d s, y \in M^{-}\right\}
$$

and

$$
L^{+}(\alpha)=\left\{x \mid x(t)=y(t) \exp \int_{0}^{t} \gamma(s) d s, y \in M^{+}\right\}
$$

the conclusions of Theorem 1 follow from those above and (22).
Proof of Theorem 2. Without loss of generality we may assume that

$$
\alpha_{1}(t)<\beta_{1}(t)<\alpha_{2}(t)<\cdots<\alpha_{s}(t)<\beta_{s}(t)
$$

holds almost everywhere. Let j be any integer so that $1 \leqq j \leqq s$. Then by Theorem 1 there exist subspaces $L^{-}\left(\beta_{j}\right)$ and $L^{+}\left(\alpha_{j}\right)$ of L such that each of the following holds:
(i) $x \in L^{-}\left(\beta_{j}\right)$ implies whenever $-\infty<t_{1} \leqq t_{2}<\infty$ that

$$
\begin{equation*}
\left\|x\left(t_{2}\right)\right\| \leqq\left\|x\left(t_{1}\right)\right\| \exp \int_{t_{1}}^{t_{2}} \beta_{j}(t) d t \tag{23}
\end{equation*}
$$

(ii) $x \in L^{+}\left(\alpha_{j}\right)$ implies whenever $-\infty<t_{1} \leqq t_{9}<\infty$ that

$$
\begin{equation*}
\left\|x\left(t_{2}\right)\right\| \geqq\left\|x\left(t_{1}\right)\right\| \exp \int_{t_{1}}^{t_{2}} \alpha_{j}(t) d t \tag{24}
\end{equation*}
$$

(iii) $\operatorname{dim} L^{-}\left(\beta_{j}\right)=n_{1}+n_{2}+\cdots+n_{j}$
(iv) $\operatorname{dim} L^{+}\left(\alpha_{j}\right)=n-\left(n_{1}+n_{2}+\cdots+n_{j-1}\right)$.

Let $L_{j}=L^{-}\left(\beta_{j}\right) \cap L^{+}\left(\alpha_{j}\right)$. Then $\operatorname{dim} J_{j} \geqq n_{j}$ and if $x \in L_{j} x$ satisfies the inequality in the statement of Theorem 1 by (23) and (24). Since $\operatorname{dim} L=n_{1}+\cdots+n_{s}=n$ it follows that $\operatorname{dim} L_{j}=n_{j}$ and that

$$
L=L_{1} \oplus L_{2} \oplus \cdots \oplus L_{s}
$$

4. Applications. As our first application of the preceding techniques of proof we point out that mapping T_{b} actually gives an iterative scheme for computing the bounded solutions of (1) on $[0, \infty)$ when $A(t)$ satisfies stronger conditions than those of Theorem 1.

Theorem 3. Let $A(t)$ be as in Theorem 1. In addition let $A(t)$ be bounded and assume the existence of a fixed number $\delta>0$ so that $\delta(t) \geqq \delta>0$ holds for all $t \in[0, \infty)$. Then to each $b \in S$ corresponds a unique bounded solution x_{b} of

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t), t \in[0, \infty) \tag{25}
\end{equation*}
$$

which is given by

$$
x_{b}=\lim _{n \rightarrow \infty} T_{b}^{n}(x)
$$

where x is any element of M_{b}. Furthermore, all solutions of (25) bounded on $[0, \infty)$ arise in this manner.

Proof. Since $A(t)$ is bounded and $\delta(t) \geqq \delta>0$ there exists a constant γ with $0<\gamma<1$ such that

$$
r_{i}(t) \leqq \frac{\gamma \delta(t)}{1-\gamma}
$$

holds for all $t \in(-\infty, \infty)$ and all $1 \leqq i \leqq n$. Thus

$$
\left.r_{i}(t) \leqq \gamma(t)+\delta(t)\right),-\infty<t<\infty, 1 \leqq i \leqq n
$$

Referring to the uniqueness proof of Proposition 1 we see that if $T_{b} x=x^{*}, T_{b} y=y^{*}$ for $x, y \in M_{b}$ then for $i \in I_{1}$

$$
\begin{aligned}
& \left|x_{i}^{*}(t)-y_{i}^{*}(t)\right| \leqq \rho(x, y) \int_{0}^{t}\left(\exp -\int_{s}^{t}\left(r_{i}(\sigma)+\delta(\sigma)\right) d \sigma\right) r_{i}(s) d s \\
& \quad \leqq \gamma \rho(x, y) \int_{0}^{t}\left(\exp -\int_{s}^{t}\left(r_{i}(\sigma)+\delta(\sigma)\right) d \sigma\right)\left(r_{i}(s)+\delta(s)\right) d s \\
& \quad \leqq \gamma \rho(x, y) .
\end{aligned}
$$

Similarly, for $i \in I_{2}$ we see that

$$
\begin{aligned}
\left|x_{i}^{*}(t)-y_{i}^{*}(t)\right| & \leqq \gamma \rho(x, y) \int_{t}^{\infty}\left(\exp -\int_{t}^{s}\left(r_{i}(\sigma)+\delta(\sigma)\right) d \sigma\right)\left(r_{i}(s)+\delta(s)\right) d s \\
& =\gamma \rho(x, y) .
\end{aligned}
$$

Hence

$$
\sup _{t \geq 0}\left\|T_{b} x(t)-T_{b} y(t)\right\| \leqq \gamma \sup _{t \geqq 0}\|x(t)-y(t)\|
$$

so under our present hypotheses T_{b} is a contraction mapping on M_{b}. Theorem 3 now follows from our preceding work and the contraction mapping principle.

As our second application we indicate the analogues of our preceding technique for the problem of determining the bounded solutions of the linear difference equation

$$
\begin{equation*}
x(m+1)=A(m+1) x(m) \quad m=0,1,2, \cdots \tag{26}
\end{equation*}
$$

Theorem 4. Let $\{1, \cdots, n\}=I_{1} \cup I_{2}$, let k denote the cardinality of I_{1}, and assume that both the following hold for some $\delta \in(0,1)$ and all $m=0,1,2, \cdots$
(i) $\left|a_{i i}(m)\right|+r_{i}(m) \leqq 1-\delta<1, i \in I_{1}$
(ii) $\left|a_{i i}(m)\right|-r_{i}(m) \geqq 1+\delta>1, i \in I_{2}$.

Let S and $M_{b}, b \in S$, be as before. Then to each $b \in S$ corresponds a unique bounded solution of (26) which is the fixed point of the contraction mapping F_{b} defined on M_{b} by (27). Furthermore, every bounded solution of (26) arises in this manner.

Indication of proof. For each $m=0,1,2, \cdots$ we define

$$
D(m)=\operatorname{diag}\left(a_{11}(m), \cdots, a_{n n}(m)\right)
$$

and

$$
N(m)=A(m)-D(m) .
$$

Let

$$
V_{1}(m)=\operatorname{diag}\left(f_{1}(m), \cdots, f_{n}(m)\right)
$$

where

$$
f_{j}(m)=\left\{\begin{array}{l}
\prod_{i=2}^{m}\left|a_{j j}(i)\right| \quad \text { if } \quad j \in I_{1} \\
0 \text { if } j \in I_{2}
\end{array}\right.
$$

and define $V_{2}(m), W_{1}(m)$, and $W_{2}(m)$ by analogy between the above and (8)-(10).

Let S be as before and for $b \in S$ let

$$
M_{b}=\left\{x: Z^{+} \longrightarrow K^{n} \mid\|x(m)\| \leqq\|b\|(1-\delta)^{m}, m \in Z^{+}\right\}
$$

where $Z^{+}=\{0,1,2, \cdots\}$. Define F_{b} on M_{b} by $F_{b} x=y$ where

$$
\begin{equation*}
y(m)=V_{1}(m)\left[b+\sum_{s=1}^{m} W_{1}(s) N(s) x(s)\right]-V_{2}(m) \sum_{s=m+1}^{\infty} W_{2}(s) N(s) x(s) \tag{27}
\end{equation*}
$$

The proof then follows by direct analogy with our preceding work for (1).

References

1. D. D. Berkey, A Gerschgorin theorem for linear difference equations and eigenvalues of matrix products, Linear Algebra Appl., 11 (1975), 27-40.
2. A. M. Fink, Almost Periodic Differential Equations, Springer-Verlag, New York, 1974.
3. A. C. Lazer, Asymptotic decomposition of the solution space of a linear differential system, Notices Amer. Math. Soc., (1972), A-13.
4. -, Characteristic exponents and diagonally dominant linear differential systems, J. Math. Anal. Appl., 35 (1971), 215-229.
5. R. M. Martin, Jr., Logarithmic norms and projections applied to linear differential systems, J. Math. Anal. Appl., 45 (1974), 432-454.

Received December 19, 1974.
Boston University
AND
University of Cincinnati

