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AVERAGING STRONGLY SUBADDITIVE SET
FUNCTIONS IN UNIMODULAR

AMENABLE GROUPS I

W. R. EMERSON

Kieffer has considered the problem of averaging strongly
subadditive, nonpositive, right invariant set functions S
defined on the class ^ of precompact Borel subsets of a locally
compact (unimodular) amenable group G as a means of defining
entropy in a abstract probabilistic context. He shows if {Aa}
is a net in 3f satisfying an appropriate growth condition
then λ{Aa)~1S{Aa) has a limit depending only on S9 where λ
is right Haar measure on G. Here we prove a somewhat
stronger result of the same type based on a Fundamental
Inequality valid in any locally compact group G and for any
set function S as described above:

for all sets A in ^ of positive measure and all open sets K
in <3f which satisfy λ(K) = λ(K), the so-called open continuity
sets in ST.

This inequality when considered in a unimodular, amenable group
G then yields the existence of the limit in question by standard
amenable group arguments; this inequality also allows us to give a
much more explicit formula for its value:

inf {\{K)~ιS(K): K an open continuity set in SΓ) .

1* Definitions, notation, and other relevancies* Throughout
the topological group G is assumed locally compact, noncompact, and
equipped with a fixed right invariant Haar measure λ. Also ^Γ=
Sf{G) is the set of all precompact Borel subsets of G, Jί^ consists
of all open sets in J^7 and J3έΓ+ consists of all sets in J ^ of positive
measure. Standard notation is generally in force, e.g. A, A', A0

represent the closure, complement, and interior of A (in G) respec-
tively.

DEFINITION 1.1. For any subsets A and K of G,

DEFINITION 1.2. Let {Aa} be a net of sets from JΓ+. Then {Aa}
is:

( i ) regular, {A*} e &, iff limα X(KA^\i\Aa\κ) = 1 for all Ke
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(ii) admissible, {Aa} e JK iff Hmα λίAJ ^λflΛJ*) = 1 for all
KG o

(iii) full, {Aa} e &\ iff Umβ MΛrΓ'MUy*) = 1 for all iΓe
(iv) almost closed, {AJe <g*, iff limα

e. The notation [A]* and the definition of & is essentially
that of Kieffer [5]. It is trivial to verify that

Observe also that the family 2̂fJ of (i)-(iii) could equivalently be
replaced by any subfamily of 3ίΓ which is cofinal under inclusion.
Finally, in case a set BQ G is not Haar measurable, e.g. some [A]κ,
λ(ί?) denotes inner Haar measure. We next give some basic properties
of these nets.

PROPOSITION 1.3.

( i ) & φ 0 iff ssfφ 0 iff ^Φ 0 iff G is unimodular and
amenable,

(ii) If G is discrete & — J*f— ^ otherwise &a*Stf'(zJr

with proper inclusions (if ά?~Φ 0) ,
(iii) {Aa} e &, Jϊζ &~ implies {A°a} e &, J*f, &~ respectively,
(iv) j ^ = ^ " n ^ ,
(v) {Aa} 6 Jϊf and {Ba} subsets of 3ίΓ such that λ ΐAJ^λ^} — 0

implies {Ca} e Ssf where Ca = Aa U Ba,
(vi) {AJeJ^ and {Ba} subsets of SΓ such that λ ^ Γ ^ C B J — 0

implies { Q G ^ where Ca = Aa U Ba.

Note, (v) and (vi) show that Sxf and ά?~ are closed under "small"
enlargement as indicated whereas & is much more sensitive and
apparently does not admit any obvious perturbations (for nondiscrete
G).

Proof. For Ke J ^ , ϊ j g i i f f Kg £ A0 and thus [A]* = [A0]*
and (iii) follows. Assume moreover that Ke J?Γ0 always contains the
identity e of G (such sets are cofinal) to guarantee that [A]κ Q A and
upon writing

where both factors on the right are ^ 1, (iv) follows. Next (v) and
(vi) follow readily from the inclusion

[A]κ Q[AU B]κ and λ(Cαrλ(Aα) ~* 1 and λίαΓMΛr) — 1 ,

respectively. Turning to (ii), equality for discrete G follows from
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known arguments, e.g. [2, Theorem 1], and the inclusions are clear
in general since A α £ 4 α £ KAa if ee K (which we may always assume
by the note following Definition 1.2). On the other hand to see that
they are proper we utilize (vi) and (v). First, we observe that any
nondiscrete locally compact (/-compact group G contains a Borel null
set N such that N= G (the same is true for arbitrary G if one
replaces null by locally null):

For let K be any compact normal subgroup of G with X(K) = 0
and for which G/K is second countable (e.g. as follows from [4,
Theorem A.9] upon choosing X(Wi)—+Q) and let C be any countable
dense subset of G/K. Then the full inverse image of C in G, say
N, is the union of a countable family of cosets of K and is clearly
a Borel null set in G with N = G.

Now fix any {Aa} e ^ and let N be a Borel null set for which
X(N) = + oo (if G is not σ-compact, let Gx £ G be a σ-compact, non-
compact, open subgroup of G and choose N as above with N = Gt).
Then for any Na £ N and Na e JίΓ, {Ca} e &~ where Ca = Aa U Na by
(vi) (taking Ba = Na). But Na £ Ca which may be chosen to satisfy
M^«) > 2λ(AJ (since X(N) = +oo), and for such a choice of {Na} the
net {Ca} i Ĵ Γ Similarly (in light of (i)), let {Aa} e j*Γ Then trivially
by (v), if Fa is chosen to be any finite subset of G for each a we
have {Ca} e ^f where Ca = Aa U F β . Next fix any Koe^Γo and choose
Fa to satisfy X(KQFa) > 2X(Aa) additionally, which is possible since G
is not compact. Then clearly the net {Ca} £ & since it violates the
defining property for K = Ko. Finally to prove (i): that G unimodular
and amenable implies & Φ 0 is straightforward and shown in [5].
On the other hand, since & £ S^ £ &~ trivially, it suffices to show
&" Φ 0 implies G unimodular and amenable to complete the proof
of the equivalence. If G were not unimodular, let KeSί^l be chosen
such that A(k) ̂  2 for some ke K, where A is the modular function
of G. Then since K[A]K £ A for any A £ G we have

MA) ^ X(K[A]K) ^ X(k[A]κ) = Δ(k)X{[A]κ) ^ 2X([A]K) ,

showing that %βr= 0. Therefore G is unimodular, and if {Aa}e
0 and Ke 3ίT^ we have

X(K[Aa]κy>X([Aa]κ) > 1 since K[Aa]κ Q Aa ,

and consequently by inversion invariance in G,

and the net {[AJi1} eventually satisfies condition (A) of [3] for any
ε > 0 and K'1 which is equivalent to amenability.

We now define and investigate a special family of subsets of G
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which is crucial to our analysis.

DEFINITION 1.4. 3ίTc = {Ke JΓ: X(K) = X{K)} is called the class
of (precompact) weak continuity sets of G.

Note. This terminology is so chosen because a set Ke 3Z~ satis-
fying the stronger condition X(K) = λ(jβΓ°) is called a continuity set
of G [6, p. 174], i.e. iff Xκ is Riemann integrable. Of course for
KeJ%"0 the conditions coincide. Also observe Ke<3Γc iff K~ιe3ίΓc.

The following result gives an equivalent characterization of 3ίΓe

which is used in the sequel.

LEMMA 1.5. Ke3ίίc iff for every ε > 0 there corresponds

a symmetric open neighborhood 0 = O(ε) of e such that

< e.

Proof. KeJfiiftK-'eJr.ift HIT1) = MK~ι). Now for any
neighborhood 0 of e we have K~ι Q O2K~ι and consequently

XiW1) - XiK-1) rg λίO2^-1) - XiK-1) < ε

implying XiK'1) = XiK"1), i.e. K'1 e J%~c, if the second condition holds
for every ε > 0. Conversely, assume K€,5ΓC. By the regularity of
λ, given any ε > 0 there corresponds an open U = ί7(ε) 2 K~ι such
that λ(Z7) — X(R~ι) < ε. Now U' is closed and K compact implying
U'K is closed in G. Moreover, since K"1 = K^ Q U, we must have
e g U'K and thus by the continuity of group operations there exists
an open symmetric neighborhood 0 of e such that O2 is disjoint from
U'K, i.e. O'K'1 = O'W1 £ U, and consequently

XiO'K'1) - XiK-1) = XiO'K'1) - XiΪΓ1) (since K'1 e
^ Xiβ^W1) - XiϊC"1) ^X(U)- XiK^) < ε

as was to be shown.
The following results show how pervasive the open (weak) conti-

nuity sets are in ^ .

LEMMA 1.6. If C S U are subsets of G with C compact and
Ue J?ΓQ then there is an Oe SΓ0 n ^ such that CQθQθ Q U.

Proof. Since G is normal as a topological space, by Urysohn's
lemma there is a continuous f:G—+[Q, 1] such that f(C) = 0 and
f(U') = 1. Now for each t in (0,1) set Ot == /~x([0, t)) and observe
that Ot is always open and CQOtQOtQ U since Ot £ /"'([0, t\).
But f~\[Qf i\) = Ot U f'ι({t})9 and since
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U {/"'({ί}): 16 (0, 1)} QU and X(U)< +oo ,

the disjointness of the /-1({£}) implies Mf"1^}) ~ 0 for all but at most
countably many t e (0, 1). Any such nonexceptional t e (0, 1) yields an
Ot e 3^c as desired.

COROLLARY 1.7. For any

( i ) sup {λ(O): 0 S i ί , 0 6
(ii) inf {λ(O): if Q 0, 0 e J ^ n JO =

JVbίβ. (ii) says that if e JίΓ is a weak continuity set iff K may
be covered arbitrarily close in measure by open (weak) continuity
sets.

Proof. 0 e JfT* and 0 S K imply 0 £ JBΓ° and λ(O) ^ λ(JBΓ°) so ^
is clear in (i). Also KζZO implies K Q 0, and since 0 e 3^fc we have
X(K) S λ(O) = λ(O) so ̂  is clear in (ii). Conversely, given any ε > 0
the regularity of λ yields a compact C Q K° satisfying X(K°) — ε <
λ(C). But by Lemma 1.6 (with U = if0) we may find an 0 e 3T0 Π ̂
such that CQθQθQK°QK implying λ(O) ^ λ(C) > λ(if°) - ε
implying ^ also holds in (i) and equality follows. Finally, regularity
of λ means we may find a Ue 3^1 with KQU and λ(ϊ7) — X(K) < ε.
Thus by Lemma 1.6 again (with C = K) we may find an 0 e J^o Π ̂ ^
such that KQKξZOQOg: U and consequently

λ(O) - λ(^) ̂ X(U)- X(K) < ε ,

i.e. λ(O) < λ(j^) + ε, and ^ is true in (ii) and the proof of equality
is complete.

We conclude this section with a definition of the set functions
which we shall consider as well as a fundamental "rearrangement"
result needed in the next section.

DEFINITION 1.8. A set function S: 3ΐ~-+ R is said to be regular
iff

( i ) S^O always, S(0) = 0,
(ii) S(A Uΰ) + S(A ΠB)£ S(A) + S(B) for A, J5e J Γ
(iii) S(Ag) - S(A) for Ae SΓ and are G,

i.e. a nonpositive, normalized, strongly subadditive, and (right) trans-
lation invariant function on the precompact Borel subsets of G.

Note. These are the same set functions considered in [5] where
their probabilistic genesis is also described.

We conclude this section with the discrete rearrangement theorem
for strongly subadditive set functions.
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PROPOSITION 1.9. Let S: 5ίΓ ~-> R satisfy

S(KΌ T) + S(KΓ) T) ̂  S(K) + S(T)

for all K, Tejr: Then:
(i) i / ζ e ^ U i ^ w , then Σ?=i S(It) £ Σ?=i

ίi = {g€ G: Σ?=i %#*(#) ̂  Λ> o r equivalently the union of all inter-
sections of j distinct if*.

(ii) if (A, Σ, μ) is a finite measure space and a ~> Ka is any
(measurable) simple function from A into 3ίΓ then

^ S(Ka)dμ(a)
j o •

where

It = \geG:\ χKa(θ)dμ(a) ^ t\ for

Note, (ii) is written in integral form for the purposes of ap-
plication even though it is an inequality of finite sums formally
derived from (i). Of course It = 0 for t > μ(A).

Proof, (i) is well known and readily proved by induction on n.
Note that strong subadditivity itself is the case n = 2. To prove
(ii) we first partition A into finitely many measurable sets, say
A = U {Ail 1 ̂  i ^ r}, such that Ka is constant on each At. Then

(1 ) ( ) μ ( ) ±
JA ί=l

where Kι is the constant value of Ka on A%. Note

( 2 ) ( Xxa(g)dμ(a) = Σ {μiA,): 1 S i £ r and g G K*} .

Now first assume all μ(A*) are rational, say μ{A^) = njd, 1 ̂  i ^ r.
Then

where w = ΣΓ=i ̂  a n ( i ^> 1 ̂  i ^ n» i s simply any listing of the
K* where each K* occurs nt times for 1 ̂  i ^ r. Now by (i),

(4) ΣS(/;)^Σ%),
i=l J=l

where j ; = {g e G: Σ?=i Z^(^) ̂  i} for any i ^ 0 (not necessarily

integral). Since It = I[t+Il, a.e. Σi]=ι S(Ij) = [° S(Γt)dt in "integral"
Jo
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form. Furthermore, from equations (2) and (3) we see that g e Γt iff
g e ItU for any t ^ 0, i.e. Γt — It/d, and consequently by (1), (3) and (4),

Jo
S(It)dt = λ Γ S(It/d)dt = 1 Γ S(Iί)ίί ^ 1 Σ S(JBΓy)

(X Jo $ Jo α i=i

= ί S(Ka)dμ(a) ,
J ^

and (ii) is proved if {̂ (-4*)} are all rational. The general result follows
upon passage to the limit since both sides of the inequality in (ii)
are in fact finite sums which depend continuously on the {μ{A?j\ in
light of (1) and (2).

2* The average of a regular set function* We now define the
"average" which we are to analyze in the remainder of the paper.

DEFINITION 2.1. For any (real-valued) set function S on 5ίΓ, let
MS(K) = HKy'SiK) for Ke ^Γ+.

The main result of this paper is:

THEOREM 2.2. If S is any regular set function on J^ and
{Aa} e J^f then

lim Ms(Aa) = inf {MS(K):

= inf {MS(K):

Note. The second equality follows readily from Corollary 1.7
(ii) and the monotonicity of S. This result is to be compared with
the basic result of [5] which establishes the existence of the limit
on the left for {Aa) e &.

The following proposition is at the center of our proof:

PROPOSITION 2.3 (The Fundamental Inequality). // 4 G J Γ + and
3Γ G 3ίrc Π JtTto then

X(A)-ιS(KA) ^ XiK-T'SiK) .

Note, that K is assumed open is merely for technical convenience
—to assure that KAeJsί^., but the restriction to 3ίΓc is crucial.

Proof. Fix Ke ^ ^ Π J ^ and ε>0 and choose 0 as in Lemma 1.5,
for this K and ε. Then cover A by (J {Oa: a e A}, and extract a finite
subcover U {Oα*: 1 ^ i ^ n} (since the compact set A Q \J {Oa: ae A}
also). Define the finite partition of A into n sets

A, = Oa, Π A, At = (Oat — Oa, — . . . — Oa^) Π A, 1 < i <£ n ,
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and the (measurable) simple function from A into 3ίΓ by α^> Ka ==
KOak Π KA for a e Ak £ Oak. Since 0 is symmetric a e OαA implies
αfc e Oa and consequently for all ae A,

(1) £Γα C KOak f]KA = KaQ K02a ΠKAQKA.

The monotonicity and translation invariance of S give

(2) ( S(iΓ.)dλ(α) ^ ί S(Ka)dX(a) = X(A)S(K) .
JA JA

Now by Proposition 1.9 (ii),

(3 ) (~ S(It)dt
Jo

where

Moreover, in light of (1) we have for t > 0,

It C It Φ \g e G : Ĵ  χ*owΛί/¥λ(α) ^ tj g KA

and consequently by (2), (3), and the monotonicity of S,

(4) [" S(It)dt ^ X(A)S(K) .
Jo

Finally for g e iΓA, # e K02a n ίΓA iff a e O2Krιg and therefore

I
J ̂ 0

Consequently If = 0 and S(I?) = 0 for t > X{OzK~ι) and thus

S oo r

S(i?)dί = \
0 Jo

S{KA)dt -
0

which in conjunction with (4) yields

^ X(A)S(K)

or

and the proposition follows upon letting ε j 0.
We derive the following important corollary on our way to proving

Theorem 2.2.
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COROLLARY 2.4. If S is any regular set function on 3^" and
{Aa} e ̂  then

inf MS(K) - inf MS(K) ^ lim Ms(Aa) ^ Em Jlf^A.)

( Q ) ^ inf {MS(K):

Proof. Only the last inequality requires a proof as all the other
relations are straightforward, e.g. the note after Theorem 2.2. Fix
Ke SΓe Π 3tl and note that \{K~ι) = \{K) since G must be unimodular.
Let A'a 4= [Aa]κ implying KA'a Q Aa and S(Aa) ^ S(KA'a) and conse-
quently (for X(A'a) > 0),

Ms(Aa) =

^ MAJ^MAiJAW^) , by Proposition 2.3 .

Thus since

and the last inequality of (6) follows immediately.
The following simple lemma is independent of the preceding

argument and needed for Theorem 2.2.

LEMMA 2.5. // {Aa}e <gf then

inf {MS(K): KeJT.n ^] ^ Hm Ms(Aa) .

Proof. Since {Aa} e ̂  upon utilizing Corollary 1.7 (ii) we obtain
a net {0j with I α S θ α e ^ ί l ^ such that XiP^HAά —'l Conse-
quently, since S(Oα) ^ jS(Ae) by monotonicity, we have

inf {MS(K): Ke^Tcn^^ljm Ms(Oa) ̂  lim Ms(Aa)
a a

as desired.
Theorem 2.2 follows immediately from Corollary 2.4 and Lemma

2.5 since J ^ = ^ T l ̂  by 1.3 (iv).

3* Concluding comments* The question arises as to whether
Theorem 2.2 remains valid with Jzf replaced by <β\ This is in fact
not the case for general regular S, but is permissible if S satisfies
a mild "continuity" condition. See [2] for a discussion and proof of
this and related questions such as when Proposition 2.3 is valid for
general K e <5Γ09 when the inf of MS(K) on J%^ is the same as on
5%l Π ̂  , and the utility of the standard (Folner) summing nets in
this context. An analogous theory for nonunimodular amenable groups
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is to be desired but this author has had no success.
Thank to J. C. Kieffer for bringing these questions to my atten-

tion.
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