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ULTRAFILTERS AND THE BASIS PROPERTY

RicHARD A. SANERIB, JR.

Three notions of a basis for an ultrafilter in a Boolean
algebra are investigated in this paper, namely having an inde-
pendent set of generators, a weakly independent set of
generators and a weakly independent set of generators over a
proper subfilter. In general these three notions are distinct, but
for a Boolean algebra with an ordered base the latter two are
equivalent. This paper shows that a large class of Boolean
algebras do not possess ultrafilters with a basis, in particular no
infinite homomorphic image of a o-complete Boolean algebra
has a nonprincipal ultrafilter with a basis. For Boolean algebras
with an ordered base necessary and sufficient conditions on the
order type of the base are given for the Boolean algebra to have
the basis property.

Introduction. The notion of an independent family of sets was
first introduced in [1] by Fichtenholz—Kantorovitch. Their results were
generalized in [3] by Hausdorff where it was shown that, if | I| = m, there
exists an independent family of subsets of I of power 2". It is well
known that the free Boolean algebra on m generators is generated by an
independent family of elements of power m and that every ultrafilter in
this algebra has an independent set of generators. A weaker notion,
that of an irredundant set of generators, or a weakly independent set of
generators, has been considered by both A. Tarski [11] and I. Reznikoff
[7] in the setting of mathematical logic, and it is the algebraic version of
this notion which we call a basis for an ultrafilter. Boolean algebras in
which every ultrafilter has a basis are said to have the basis
property. The idea of an independent set modulo a filter has been used
by K. Kunen in [4]-and this leads to the property considered here, that of
a basis over a filter.

The first section consists of the definitions and basic lemmas
concerning the above mentioned three notions and a theorem showing
that a large class of Boolean algebras do not have the basis property. In
§2 Boolean algebras with an ordered base are considered and for this
class of Boolean algebras necessary and sufficient conditions on the order
type of the base are given for the Boolean algebra to have the basis
property. For these Boolean algebras, the latter two notions of a basis
are shown to be equivalent and further, any such Boolean algebra with
the basis property must have cardinality less than or equal to 2*. Finally
a summary of the relationships between these three concepts of basis is
given.
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Preliminaries. If % is a Boolean algebra we assume U=
(A, v, A, —,0,1) and if & is a filter in A, and a € A, we write a/% =
a. The basic results concerning Boolean algebras may be found in [2] or
[10]. We recall that a filter in a Boolean algebra is generated by
{b},ca C% if for each a EF there exists v, -,y <a with
b,A---Ab,=a. A family of elements {a,},-.. C A is independent if,
for all vy, - - -, v, < @ which are distinct, b,, A - - - A b, # 0 where for each i,
b, =a, or —a,.

1. DeriNiTioN 1.1, A filter ¥ in a Boolean algebra U is said to
have a basis {a,},<. if

(1) {a,}.<. generates %, and

(ii) if o, -, vprs < @ are distinct, then a, A---ra, Z a,,.,.
A Boolean algebra is said to have the basis property if each ultrafilter has
a basis. The definition of basis is weaker than that of independent set of
generators. For example, in the Boolean algebra of finite and cofinite
subsets of w, there is only one nonprincipal ultrafilter and it has a basis
but does not have an independent set of generators:

If {A.}.,c. C & is an independent set of generators then each A, is
cofinite. Let Bo={n,,---,m}= ~A,and, fori=1,--- k, let

A, if n,€A,
B,—{

A; otherwise

Then B,C B,U---U B,. We may assume without loss of generality
that B,C(~A,U---U ~A)U(A,U---UA,). Thus, since B,=
~ Ay, we have (A,N---NA)N ~A;C(A.U---UA,) and hence
AN---NA CAUA;,,U---UA, which contradicts the indepen-
dence of the A;’s. On the other hand, the complements of singletons
form a basis for F.

Condition (ii) is an irredundancy condition and is the algebraic
translation of the logical notion of an independent set of formulas,
apparently first introduced by Tarski [11]. This algebraic version will be
referred to as weak independence. In this connection, it is interesting to
note that Reznikoff in [7] showed that every filter in a free Boolean
algebra has a basis. The following notion of a basis for one filter over
another filter is a modification of the definition of being independent
modulo a filter (See [4]):

DEefpNITION 1.2. Let 4 and % be filters in the Boolean algebra A
with #29. {a,},-. CF is a basis for ¥ over ¥ if



ULTRAFILTERS AND THE BASIS PROPERTY 257

(i) %YU{a}.<. generates ¥ and
@) if v, -, v<a are distinct, then —a,v---v-—
a,va,,%%

In particular, condition (ii) allows one to extend ¥ to a proper filter
containing a, A * A a, A = a,,.,.

If # is a filter in a Boolean algebra %, and # ={—x: x € ¥} then $
is an ideal and, by A/F we mean the quotient algebra A/4.

Lemma 1.3. Let U be a Boolean algebra, ¥ an ultrafilter in %A, G a
filter in A, A = A/G and F={a:a €F). Then F has a basis over FN'EG
if and only if ¥ has a basis in .

Proof It is straightforward to verify that {a },<a_is a basis for &
over # N9 if and only if {a,},., is a basis for % in 9.

LEMMA 1.4. Let U be an infinite Boolean algebra and {x,}.c., an
infinite set of distinct ultrafilters in UA. Then there exists an infinite
subsequence {x, }ie. C{X,}reo and {ai}re. C A of pairwise disjoint ele-
ments with a, € x,,.

Proof. Let b, € x, with — b, € x, and let By ={x,: b€ x,} By =
{x,: —byEx,}. If |[Bi|=N,, set By=Bj, ay= —b,, ¢,=b, and n,=
1. If |Bj|#N,, set Bo=Bg, a,= by, co= —b, and n,=0. Suppose
{a tizm {Citezm {Xn }x=m and {B,},=, have been defined with B, infinite
for k =m and i <j=m implies B; 2B, and for all k =m we have

() e Exp,c Exforalx EB, arra, =0if k#iand a, rc; =0

for all k = 1.
Let xi and x 7 be distinct elements of B,, of the form x,, where n > n,,
and let b, € xy with — b, €Ex7?. Then ¢, Ab, Ex§ and c,,,/\ -b, E
x". Let B,..={yE€B,:c,Ab, €Y}, Br.n={y €EB,: - b, Ey}.
If | Byii| =No, let Boy = Bty Gnit = Cu A = By Gt = Co A b and Xpor =
x®. If|Bh|# N, let By = Brii, Gmst = Cn A by Cusy = € A — b, and
Xp = Xx¢. Clearly {x, }e. and {a;}ic, so defined have the desired
properties.

THEOREM 1.5. Let U be a o-complete Boolean algebra, 4 a filter in
U and & an ultrafilter in A with ¥ 29. Then F has a basis over § if and
only if there exists a b € A such that ¥ is generated by § U {b}.

Proof. Obviously if # is generated by 4 U {b} then & has a basis
over 4. Now suppose ¥ has a basis {a,},-, over ¥ and that « is infinite
(if a 1is finite, then clearly 9 U{b} generates ¥ where b=
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AoA A A" A d,-q). Let &, be an ultrafilter in % such that %, D 9 U
{a,}u<a urv U{— a,}. This is possible by the definition of a basis over 4.

(1) If a€ % then {v<a:ag %,} is finite. Since a € F there
exists b€ 9 and v, -, v, <a such that bra, A - ra,=a and
a€ %, for all v# v, -+, v,.,

By Lemma 1.4 there exists a subsequence {%,} of {#}.,., and
b, € %, suchthat b, Ab, =0for k#j. Since U is o-complete there exist
b=Vicoby and ¢ = V,c,bx,;. Since b€ %, for all k we have
~bZ % by (1) and therefore b € %. Similarly c€%. But bac=0
which contradicts 0 € %. Thus if  has a basis in ¥, the basis is finite.

COROLLARY 1.6. Let U be a o-complete Boolean algebra and B a
homomorphic image of A. Then no nonprincipal ultrafilter in B has a
basis.

Proof. Immediate by the previous theorem and Lemma 1.3.

One easily sees that if % has the basis property, this does not imply
that, given an ultrafilter & extending a filter 9, & has a basis over
9. For example let U, be the free Boolean algebra on m generators
and let B be an atomless o-complete Boolean algebra with |B|<m.
Then there exists a filter 4 in ¥U,, such that %,/9% =B, but if  is an
ultrafilter extending %, then % has no basis over ¥ by Lemma 1.3 and
Corollary 1.6. It is interesting to note that for Boolean algebras with an
ordered base, if an ultrafilter has a basis then it has a basis over every
filter which it extends (see 2.5 and the remark preceding it). If an
ultrafilter has a basis over every proper filter which it extends then it does
have a basis since it has a basis over {1}. In fact if 4 C %, such that ¥
has a basis over ¢ and there exists a € ¥ with a = b forall b € 4, then &
has a basis in Y.

CoroLLARY 1.7. Let U be Boolean algebra and ¥ an ultrafilter in
A. If F has a basis over every proper subfilter, then F has a basis in Y.

In addition to free Boolean algebras, it is well known that every
countable Boolean algebra has the property that all nonprinciple ultrafil-
ters have a basis.

The following lemma, probably first proved by Tarski [9] establishes
this result:

LemMA 1.8. Let & be an ultrafilter in a Boolean algebra ¥ such that
& has a countable set {a,}.c., of generators. Then ¥ has a basis.
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Proof. Assume without loss of generality that a, # 1 and for n < m,
a,.>a, Letb, =a,v (Vi —a).

(1) a.=b, forall n € o,

2) —a,=b, forall n<m,

(3) b.vb, =1 for all n# m.
Now

(4) {b.}.c. is weakly independent if {b, A--- A by }= b, then
(b A" AbL)A D, =1.

But, since b, vbh,,=1 for 1=i=k by (3), we have
(bi, A+ A b))V by,.,,= 1. Since b,,.,, # 1, this is a contradiction.

(5) {b.}.c. generates Z.
A simple inductive proof shows a, = A<, b:.

CoroLLARY 1.9. Let U be a o-complete Boolean algebra and B a
homomorphic image of . Then no nonprincipal ultrafilter in B has a
countable set of generators.

Proof. By 1.6 and 1.8.

From 1.9, the well-known result that no infinite homomorphic image
of a o-complete Boolean algebra is countable is immediate.

The question of whether every projective Boolean algebra has the
basis property is open. Since little is known about projective Boolean
algebras a positive answer to this question would be most interesting. A
characterization of those Boolean algebras with the basis property, or
one for those ultrafilters with a basis — perhaps in terms of chains in the
filter — are additional areas of investigation. These latter two problems
are answered completely in the case of Boolean algebras with an ordered
base in the next section.

2. In this section we restrict the discussion to Boolean algebras
with an ordered base. These Boolean algebras were first introduced by
Mostowski and Tarski in [6] and have been studied more recently by
Mayer and Pierce [5] and Rotman [8] where additional references may be
found. Rotman shows that in a Boolean algebra with an ordered‘base
there are at most countably many independent elements. The question
for weakly independent elements appears to be open.

DEerINITION 2.1. A Boolean algebra U has an ordered base X if X
is linearly ordered by < (the order in %), X generates %, 0 € X and
1€ X

If (A, =)is a linearly ordered set, then the cofinality of A (cf(A))is
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inf{|B|: for all a €A there exists bEB CA with a=b}. The
coinitiality of A (ci(A)) is the inf{|B|: for all a € A there exists a
b€ B CA with b=a}. An initial segment of A is a set B C A such
that if » € B and a < b then a € B. A tail of A is the complement of
an initial segment.

LEmMA 2.2. Let U be a Boolean algebra with ordered base X, Y an
initial segment of X and F an ultrafilter in U containing {—y;y € Y} U
(X~Y). If x €%, then there exists yEY and z € X~ Y such that
XZ—yAz

Proof. Since X is a set of generators for the Boolean algebra and %
is an ultrafilter, the conclusion is obvious.

THEOREM 2.3. If U is a Boolean algebra with ordered base X, and
there exists an initial segment Y C X with cf(Y)> N, or there exists a tail
Z CX with ci(Z)>N,, then U does not have the basis property of
ultrafilter.

Proof. We may assume there exists an initial segment Y C X with
cf(Y)>N,, for otherwise {0}U{—x: x € X ~{0}} is an ordered basis
with an initial segment Z having cofinality greater than 8,. Let Y = {a,}ic;
and let & be an ultrafilter such that ¥ D {—a}ic; and FD X - Y.
Suppose # has a basis {c,},<,.

(1) |A]|>N,— we first note that no finite meet d of basis elements
is less than or equal to all — a, for otherwise by Lemma 2.2 there exists
—a, and xEX-Y with —gArx=d= —a for all i€l Hence
—a,Ax=—a rx foralli €l Choosing a; > a; we have a; < x since
Y is an initial segment of X. Thusa; A —aAx =a; A —a;=0s0 a; = a,
a contradiction.

By the above argument, |A|=N, so assume |[A|=N, Let d,=
CoA " A C,. Again by above argument, for each n € w there exists — a;,
such that d,£ —a,. Since cf(Y)>N,, we arrive at an obvious con-
tradiction — hence (1) is established.

(2) & has no basis.

Case 1. ci(X~Y)>N,.

Let {b}c; = X ~ Y. By Lemma 2.2 there exists i€ I and j,€J
with ¢, = — a, A b, = d, where d, is a finite meet of the basis elements
{c.},<»» By Lemma 2.2, choose i; € I and j, € J such that — a, A b, < d,.
Proceeding in this manner we construct ¢, = —a,Ab,=Zdp=---=
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-—a,Nb, Zd,Z--- where —a, Ab,> —a,, Ab,, and d, is a finite
meet of basis elements. Since cf(Y)>N,, there exists a € Y with
-a=-a, for all nEw and bEX~Y with b=b, for all
nE€w Hence —a-b=d, for all n € w. Now there exist v,,* ", v
with ¢, A - AC, = —a-b=d, forall n € w. Since the d,’s are strictly
decreasing, there exists c,, occurring in some d, with ¢, # ¢, ", C..
Hence ¢, A" Ac, =d,<c, contradicting the weak independence of
the ¢,’s.

Case 2. ci(X~Y)=N,.

We observe that for each a €Y and bE X~ Y, |{c,: —anrb=
¢,}| <N, — for otherwise there exist c,, ', ¢, with ¢c,A-rC, =
—a A b with —a A b less than infinitely many c¢,’s which contradicts the
weak independence of the ¢,’s. Let {b,},c, be coinitial with X ~
Y. Let B,={c,: —anb,=c, for some i EI}. Since U, B, =
{c,},<,» and A is uncountable there is an n, with B, infinite. This implies
there is a countable I, C I such that [{c,: — a, A b,, = ¢, forsome i € [,}|=
No. Since cf(Y)>N, there exists —a €Y with —a = —a, for all
i€l,. Hence —anb, is less than or equal to infinitely many basis
elements — a contradiction.

THEOREM 2.4. Let U be a Boolean algebra with ordered base X. If
cf(Y) =N, for every initial segment Y of X and c,(Z)= N, for every tail Z
of X, then U has the basis property for ultrafilters.

Proof. Let & be an ultrafilter in A. Let Y={y € X: y& F}.
Then Y is an initial segment of X and, by Lemma 2.2, & is generated by
{—y:y € Y}v(X ~ Y). By hypothesis there is a countable sequence {x,}
which is coinitial in X ~ Y and a countable sequence {y,} which is cofinal
in Y. Clearly & is generated by { — y,} U {x,}. Therefore, by Lemma 1.8
% has a basis.

Theorems 2.3 and 2.4 completely characterize the order types of
ordered bases which give rise to Boolean algebras with the basis property
for ultrafilters.

Boolean algebras with an ordered base which have the basis
property for ultrafilters have in fact a stronger property — namely, every
ultrafilter has a basis over every filter which it contains (see remark
following 1.6). This is established by Lemma 1.3 and the following:

CorROLLARY 2.5. Let U be a Boolean algebra with ordered base X
and suppose U has the basis property for ultrafilters. If B is a homomor-
phic image of 2 then B has the basis property for ultrafilters.
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Proof. Let h: A — B be a homomorphism and let X' = h(X)~ {1}.
Then one easily checks that X’ is an ordered base for B. By 2.4 it
suffices to check that if Y'is any initial segment of X’ and Z' is any tail of
X', then cf(Y')=N, and ci(Z')=N,. Since Y={y € X: h(y)E Y'} has
cofinality =N, by 2.3, it is easy to verify that cf(Y’) = N,. Similarly, one
sees that ci(Z') = N,.

By the proof of 2.3 and 2.4 it is clear that if U is a Boolean algebra
with an ordered basis X and % is an ultrafilter in % then & has a basis iff
cf(Y)=N, and ci(Z)=N, where Y={x€F:-x€X} and Z=
{x € #: x € X}. Similarly, as in 2.5, if ¥ has a basis and ¥ C %, then &
has a basis in A/%. Combined with 1.8 this gives us

CoroOLLARY 2.6. If U is a Boolean algebra with an ordered base
and % is an ultrafilter in 2 then the following are equivalent:

(i) & has a basis

(i) & has a basis over every filter § C %.

THEOREM 2.7. Let U be a Boolean algebra with an ordered base
X. If U has the basis property for ultrafilters, then |U|=2%.

Proof. Let X* be the completion by cuts of X. Then X* is a
compact, first countable Hausdorff space under the order topology and
hence has cardinality =2% (see [9]). As a consequence |U =2%.

We summarize results concerning our three notions of basis in the
following table where we use the notation:

(I) % has an independent set of generators

(II) % has a basis

(IIT) & has a basis over every proper subfilter.

Boolean Boolean algebras with
algebras an ordered base
[—-1I Yes Yes
II— 11 No Yes
-1 No No
I—1I1 No Yes
-1 No No

11— 1I Yes Yes
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