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SOME MAPPINGS WHICH DO NOT ADMIT
AN AVERAGING OPERATOR

Joun WARREN BAKER AND R. C. LACHER

The problem of determining for spaces X and Y necessary
and sufficient conditions such that there exists a map ¢ of X
onto Y which does not admit an averaging operator is
considered. This corresponds to identifying the uncom-
plemented closed selfadjoint subalgebras of C(X) which contain
1x. Mappings ¢ of X onto Y are constructed which do not
admit averaging operators, for example, when X is any uncount-
able compact metric space and Y is any countable product of
intervals. Also, X can be any space containing an open set
homeomorphic to a Banach space and Y = X. These results
generalize earlier work by D. Amir and S. Ditor.

If ¢ is a mapping of X onto Y, the induced operator ¢° from C(Y)
to C(X) that takes f € C(Y) to fo ¢ € C(X) is a multiplicative isometric
isomorphism. In case ¢ is a quotient map (e.g., if X and Y are compact
Hausdorff spaces) then ¢°(C(Y)) consists of all functions in C(X) which
are constant on each point inverse of ¢. We say ¢ admits an averaging
operator if there is a projection of C(X)onto ¢°(C(Y)). Itis easily seen
that ¢ admits an averaging operator if and only if there exists a bounded
linear operator u from C(X) into C(Y) such that u¢’(f) = f for each
f € C(Y) (see [12], Cor. 3.2), and in this case u is called an averaging
operator for ¢.

Following the appearance of the monograph by A. Pelczynski on
averaging and extension operators [12], there has been much interest in
the study of averaging operators (e.g., see [2], [3], [4], [5], [6], [15]). A
central problem in this study, known as the complemented subalgebra
problem, is to determine necessary and sufficient conditions for a map ¢
from a compact Hausdorff space X onto a compact Hausdorff space Y to
admit an averaging operator. Strong necessary conditions have been
established in [5]. (Also, see [2] and [3].) Two closely related prob-
lems are to determine for compact Hausdorff spaces X and Y necessary
and sufficient conditions that there exists a map ¢ of X onto Y which (1.
admits; 2. does not admit) an averaging operator. Since this corres-
ponds to determining the complemented and uncomplemented closed
selfadjoint subalgebras of C(X) which contain 1x by Stone’s Theorem
[14, p. 122], results of this type yield information about the structure of
C(X).

In 1968, S. Ditor established that there is a map ¢ of [0, 1] onto itself
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which does not admit an averaging operator (see [6] and also [5]). In[3],
it was shown that if a topological space X contains an open 0-dimensional
compact metric space K with K nonempty, then there is a map ¢ of X
onto itself which does not admit an averaging operator. The same result
was also established if K is a first-countable compact subset of X and
Int(K)™ contains an isolated point for each integer n. It has recently
been shown [4] that if X and Y are compact metric spaces with
| X®@| =] Y| for each ordinal number a, X is 0-dimensional, and Y is
nonempty, there is a map ¢ of X onto Y which does not admit an
averaging operator. (Also, see [4] for other related results.)

All of the preceding results except the one by Ditor require the
space X to be 0-dimensional. In this paper, we continue this study by
considering Hausdorff spaces X and Y which are not necessarily
0-dimensional and establishing sufficient conditions such that there will
exist a map ¢ of X onto Y which does not admit an averaging
operator. For example, we show that if X is locally a Banach space at
some point, then there is a map ¢ of X onto itself which does not admit
an averaging operator (Theorem 2). The same conclusion holds if
X = I* for any cardinal number a =1 (Corollary 1.1). Another corol-
lary is that if X is any nondispersed compact Hausdorff space and Y is
any cube I, 1 = a =N,, then there exists a map ¢ of X onto Y which
does not admit an averaging operator (Corollary 3.1). These results
generalize the previously mentioned result by Ditor and the well-known
theorem by D. Amir [1] that C[0, 1] contains an uncomplemented
subspace isometrically isomorphic to C[0, 1].

The terminology used herein is standard and follows that in Dunford
and Schwartz’s Linear Operators I [9] and Dugundji’s Topology [7]. We
let I =10, 1].

Let S be a topological space. The cone K over S is the quotient
space (I X §)/R where R is the equivalence relation (0, x) ~ (0, x") for all
x,x' €S (see [7, p. 126]). The vertex of this cone is v = {0} X S and S is
identified with the base {1}xS. Let Y=IxXxK and Y=
({0, 1} X K)U(I X S). Frequently, Y is the boundary of Y. The pre-
ceding assumptions about Y are satisfied by many topological
spaces. For example, the closed unit ball K ={x €B|||x[[=1} in a
Banach space B is the cone on the unit sphere § = {x € B||x| =1} and
the cone on the cube I* for @ = 0 is homeomorphic to I**' (« finite) or I*
(a infinite).

THEOREM 1. There exists a map ¢ of Y onto itself such that ¢(y) =y
for each 'y € Y and ¢ does not admit an averaging operator.

Proof. Let ¢,:1— I be a monotone map such that ¢,(0)=0 and
¢o(1)=1. Define a map ¢ from I XI X S onto itself by
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(1t s)=(tt'+ (1 —t)py(t), ', s)
and let
¢ IXK—IXK

be the map induced by ¢ on the quotient space. We claim that ¢ maps
I x (K —{v}) bijectively to itself and that ¢|Y is the identity. The
second statement is obvious. For the first, suppose (t,ti,s) and
(t2, 13, 5,) are two points of I X I X S with ¢{ >0 such that

Gt t],5)= b (tx 13, 5).
Then t;=1t;, s,=s,, and

h—t6= 1_‘;{—” [do(t2) — do(t1)].

Thus, ¢, # t, implies ¢o(t,) # Po(t,). The claim now follows from the fact
that ¢, is monotone, for if ¢, <t,, then ¢.(t,) < ¢o(t,); hence,

tti+ (1= ) bo(t:) < otz + (1 — t3)do(t)

and ¢ (1, 1], $1) # G (t, 15, 5,), a contradiction.
Next, define E : C(I)— C(Y) by

Ef(t, x)=f(1)

for (t,x)EIX K. Then E is a linear operator with |E||=1 and RE is
the identity operator on C(I) where R : C(Y)— C(I) is the restriction
operator with Rf(t) = f(t,v). Moreover, since the nondegenerate point
inverses of ¢ all lie in I X v (where they are of the form ¢;'(t) X v) it is
clear that if f € C(I) and f is constant on each ¢;'(t) for each ¢t € I, then
E(f) is constant on each ¢7'(t,x) for (t,x)E€IX K. Equivalently,
E(¢jCDC[C(Y)).

Let ¢, be a map such that ¢y[C(I)] is uncomplemented in
C(I). Forexample, if ¢ is the Cantor map from the Cantor set € onto I
defined by ¢(27.,2&/3")=Z7., £/2', then ¢, can be selected to be the
map of I onto itself which extends ¢ and is constant on the disjoint
intervals of I — € (see [5, Cor. 5.8]). Then either by Corollary 5.5 in [5]
or Corollary 1.4 in [2], ¢, does not admit an averaging operator.

Suppose P is a bounded projection of C(Y) onto ¢°[C(Y)]. Define
P,:C(I)—» C(I) by P,=RPE. Then P, is a bounded linear operator
and

R[C(I)] = RPE[C(I)] CR¢[C(Y)] C o[ C(I)].
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Moreover, if f € ¢[C(I)], then Ef € ¢°[C(Y)] and P(f)= RPE(f) =
RE(f) = f; hence, P}= P, and P, is a projection of C(I) onto ¢[C(I)],
which is a contradiction.

CoroLLARY 1.1. Suppose X = I* for some cardinal « = 1. Then
there exists a map ¢ of X onto itself which does not admit an averaging
operator.

Proof. I*=1X K where K is always a cone except when a =1, in
which case the above-mentioned result of Ditor applies.

Since the next theorem is applicable to a space X which contains an
open set homeomorphic to Euclidean n-space for n = 1, it generalizes
the previously mentioned results of Amir and Ditor.

THEOREM 2. Suppose X contains an open set homeomorphic to some
(nonzero) Banach space. Then there exists a map ¢ of X onto itself which
does not admit an averaging operator.

Proof. If B is a Banach space of dimension greater than one, then
B = R X B, where R is the real line and B, is a Banach space. Let K be
the unit ball in B,. By Theorem 1, there exists a map & of Y =1XK
onto itself such that ¢’[C(Y)] is uncomplemented in C(Y) and ¢ is the
identity on Y. Since B may be identified with an open set in X, we
define ¢ : X — X to be ¢ on B and the identity otherwise. (If B = R,
we simply extend the Cantor function ¢ :I—1 used by Ditor to
¢: X—X)

Suppose P is a projection of C(X) onto ¢°[C(X)]. Since Y is
bounded in B, there is a closed neighborhood V of Y in B. Let
Z=YU(V~-IntV) and define T: C(Y)— C(Z) by Tf(x)=f(x) for
x €Y and Tf(x)=0 otherwise. Then T is a linear operator with
I Tf|l=|Ifll (i.e., T is a simultaneous extension operator). By the
Borsuk-Dugundji Simultaneous Extension Theorem (see [8, p. 360] or
[13, p. 37]), there is a linear operator E : C(Z)— C(V) with | Ef||=|f]
and Ef(x)=f(x) for x€Z Let M={feC(V)|f(x)=0 for
x €(V—Int V)} and define L : M — C(X) by Lf(x)=f(x) for x €V
and Lf(x)=0 otherwise. Clearly, L is a simultaneous extension
operator with || Lf| =|f|. Let R be the restriction operator from C(X)
onto C(Y) and define P,= RPLET. Clearly, P, is a linear operator on
C(Y) with | P =||P|. Moreover,

P[C(Y)] CRP[C(X)] CR[C(X)] Cy[C(Y)]

and if f € y"[C(Y)], then LET(f) € ¢°[C(X)] and P,(f) = RPLET(f) =
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RLET(f)=f Therefore P, is a projection of C(Y) onto ¢°[C(Y)],
which is a contradiction.

In the next theorem, we suppose S is a locally connected compact
metric space, K is the cone over S, and Y =1X K. Recall that a
topological space X is called dispersed if X contains no perfect subsets.

THEOREM 3. Suppose S is a locally connected compact metric space
and X is a nondispersed compact Hausdorff space (e.g., an uncountable
compact metric space). Then there exists a map ¢ of X onto Y which
does not admit an averaging operator.

Proof. Since Y is a nonempty locally connected continuum, it
follows by the Hahn-Mazurkiewicz-Sierpinski Theorem [10, p. 256] that
there is a map v of I onto Y. Since X is nondispersed, there is a map ¢
of X onto I [11. Thm. 1]. By Theorem 1, there is a map 7 of Y onto
itself such that #°[C(Y)] is uncomplemented in C(Y). Let ¢ =
mrp.  We show ¢°[C(Y)] is uncomplemented in C(X). Suppose P isa
projection of C(X) onto ¢°[C(Y)]. If A = vy and P, = (A°)"'PA°, then
P, is a linear operator from C(Y) into #{C(Y)]. Moreover, if f€
w'[C(Y)], f=m"g for some g€ C(Y) and Py(f)=(A°)'PA%(7’g)=
(A" 'PP°(g) = (A" (g) = (A)'A(7"g)=f. Thus P, is projection of
C(Y) onto 7°[C(Y)], a contradiction.

Since the continuous image of a dispersed space 1s dispersed [11], we
obtain the following characterization.

COROLLARY 3.1. Let 1=n=N8, If X is a compact Hausdorff
space, then there is a map of X onto I" which does not admit an averaging
operator if and only if X is not dispersed.

In particular, if 1 =m, n =N,, then there is a map of I™ onto I"
which does not admit an averaging operator.
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