ON STARSHAPED SETS AND HELLY-TYPE THEOREMS

JOHN D. BAILDON AND RUTH SILVERMAN

Suppose an ordered pair of sets (S, K) in a linear topological space is of Helly type (n + 1, n), i.e., for every n + 1 distinct points in S there is a point in K which sees at least n of them via S. Then if S is closed, K compact, and $n \ge 3$, the nontrivial visibility sets in K are pairwise nondisjoint. Sufficient conditions are obtained for S to be starshaped.

Let S be a subset of a linear topological space L. For points x, y in S, we say x sees y via S if and only if the segment [x, y] lies in S. Further, the set S is said to be starshaped if and only if there is some point p in S such that, for every x in S, p sees x via S.

If S and K are subsets of L, with every point x in S is associated its visibility set K(x), the set of all points of K which x sees via S.

We shall say (S, K) has Helly-type (s, r), where r and s are positive integers, $r \leq s$, if for every s distinct points in S there is a point on K seeing at least r of them via S. Clearly, if (S, K) has Helly-type (s, r), and $0 \leq i \leq r - 1$, then (S, K) has Helly-type (s - i, r - i).

In this paper we obtain a solution to a problem posed by Valentine, concerning sets of Helly type which are unions of a finite number of starshaped sets [3, Prob. 6.7, p. 178], and also obtain some related results. Breen [1] has given conditions in the plane for a simply connected set to be a union of two starshaped sets. We replace simple connectedness by the following:

For S and K subsets of a linear topological space L, we shall say the ordered pair (S, K) has the *triangle property* if the interior of every triangle having an edge on K and the other edges in S is itself a subset of S.

If S is a closed subset of a linear topological space L, K is a compact convex subset of L of dimension k and (S, K) has the triangle property, then K(x) is compact and convex for each $x \in S$. If (S, K) is of Helly type (r, r), for $r \ge k + 1$, then by Helly's theorem $\cap \{K(x): x \in S\} \neq \emptyset$, and S is starshaped. However, it is possible under certain conditions to weaken the hypothesis considerably, and yet reach the same conclusion.

A collection of sets \mathcal{K} is said to have "piercing number" j or a *j*-partition for a positive integer j, if \mathcal{K} can be represented as a union of j collections, each with a nonvoid intersection.

The classical result on *j*-partitions is a theorem by H. Hadwiger and H. DeBrunner [2], which for convenience we state here as Theorem 1.

THEOREM 1. For integers r, s and n, let J(s, r, n) denote the smallest integer (if one exists) for which a *j*-partition is admitted by each family \mathcal{X} of compact convex sets in \mathbb{R}^n which has the (s, r) property, i.e., for every s members of \mathcal{X} , some r have a common point. Then J(s, r, n) = s - r + 1whenever $r \leq s$ and $nr \geq (n - 1)s + (n + 1)$.

REMARKS. When j = 1 and r = n + 1, Theorem 1 reduces to Helly's theorem.

If S is a closed subset of a linear topological space, K a compact convex subset of S of dimension n, such that (S, K) has the triangle property and is of Helly type (s, r), then for every $x \in S$, K(x) is compact and convex, and the collection $\{K(x): x \in S\}$ has the (s, r) property.

Therefore, if J(s, r, n) = j, then the set S can be expressed as a union of j starshaped sets. However, for choices of s, r and n as small as s = 4, r = 3, n = 2, it is not known whether J(4, 3, 2) exists.

If n = 1, then Theorem 1 implies that J(s, r, 1) = s - r + 1 if $r \ge 2$, so that J(s, 2, 1) = s - 1. Consequently S will be the union of s - 1 starshaped sets if (S, K) has Helly-type (s, 2) and K is a compact line segment. Also, since J(r+1, r, 1) = 2 for all $r \ge 2$, J(3, 2, 1) =J(4,3,1) = 2. Consequently if (S, K) has Helly-type (3,2) or (4,3), where K is a compact line segment, then S is the union of two starshaped sets. Breen [1] proved this result for Helly-type (3,2) without the assumption that $K(x) \neq \emptyset$ for all x in S. We improve the (4, 3) case by showing S will be starshaped. In fact, in Theorem 4, we obtain the more general result that if (S, K) is of Helly type (2k + 2, 2k + 1) in a linear topological space, and K is of dimension k, then with a single exception S is starshaped. This result improves the prediction, from J(2k+2, 2k+1)(1, k) = 2, that S would be a union of two starshaped sets. In Theorems 2 and 3, for (S, K) of Helly type (n + 1, n), without restrictions on dimension, sufficient conditions are obtained for the visibility sets to be pairwise nondisjoint (2), or for S to be starshaped (3).

We must first prove the following lemma.

LEMMA. Let S and K be a closed and a compact subset, respectively, of a linear topological space L. If there exist x, w in S such that $K(x) \cap K(w) = \emptyset$ and $p \in K(x)$, $q \in K(w)$, then there exist t_0 , τ_0 in (0, 1)such that if $|t| < t_0$, $|\tau| < \tau_0$, then $K(y(t)) \cap K(z(\tau)) = \emptyset$, where y(t) =tp + (1 - t)x, and $z(y) = \tau q + (1 - \tau)w$.

Proof. We first observe that for every x in S, K(x) is compact: recall $K(x) = \{p \in K \cap S | [p, x] \subset S\}$. Let p be a limit point of K(x). Select a sequence $\{p_n\}$ such that $p_n \in K(x)$ for every n and $p_n \rightarrow p$. For each n, the line segment $[p_n, x]$ is contained in S. By closure of S, $[p, x] \subset S$ and by closure of K, $p \in K$. Therefore $p \in$ K(x). So K(x) is a closed subset of a compact set and consequently compact.

Since K(w) and K(x) are compact and disjoint, there are disjoint open neighborhoods U, U' in L, such that $K(x) \subset U$ and $K(w) \subset U'$.

We wish to prove the existence of $t_0 > 0$ such that $0 < t < t_0$ implies $K(y(t)) \subset U$. Since t_0 exists trivially if $K(x) = \{x\}$, we may assume $K(x) \neq \{x\}$.

Assume no such t_0 exists. Then we can find a sequence of real numbers $\{t_n\}$, $t_n \to 0$ as $n \to \infty$, and a corresponding sequence of points $\{\alpha_n\}$ in $K \sim U$, such that for every $n, \alpha_n \in K(y(t_n))$.

By compactness of $K \sim U$, there is a point $\alpha_0 \in K \sim U$ and a subsequence of $\{\alpha_n\}$, called for convenience $\{a_i\}$, such that $\alpha_i \to \alpha_0$ as $i \to \infty$. Now for each $i, \alpha_i \in K(y(t_i))$, so the line segment from $y(t_i)$ to α_i is in S. By closure of S, the limiting line segment from x to α_0 is also in S. Therefore x sees α_0 , contradicting the hypothesis, since α_0 , not being in U, is clearly not in K(x).

The same argument implies the existence of $\tau_0 > 0$ such that for $0 < \tau < \tau_0$, $K(z(\tau)) \subset U'$. We therefore conclude that for t, τ sufficiently small, $K(y(t)) \cap K(z(\tau)) = \emptyset$.

THEOREM 2. Let S and K be, respectively, a closed and a compact subset of a linear topological space L, such that (S, K) is of Helly type (n + 1, n) for some $n \ge 3$. Let $\mathcal{H} = \{K(x): x \in S, K(x) \not\subset \{x\}\}$. Then \mathcal{H} is pairwise nondisjoint.

Proof. Suppose \mathscr{X} fails to be pairwise nondisjoint and let K(x) and K(w) be members of \mathscr{X} such that $K(x) \cap K(w) = \emptyset$. There exist neighborhoods U, U' such that $K(x) \subset U$, $K(w) \subset U'$, and $U \cap U' = \emptyset$. As in the proof of the lemma, select $p \in K(x)$, $p \neq x$, $q \in K(w)$, $q \neq w$, and then y on (x, p), z on (w, q) such that $K(y) \subset U$, $K(z) \subset U'$. There is no point in K seeing three of the four points x, y, w, z. Expanding the set $\{x, y, w, z\}$ if necessary, we have a contradiction of the hypothesis of Helly type (n + 1, n) for all $n \ge 3$. Therefore \mathscr{X} is pairwise nondisjoint.

A special case of Theorem 2 is of sufficient interest to be stated separately.

THEOREM 3. Let S and K be a closed and a compact subset respectively, of a linear topological space L, such that (S, K) is of Helly type (n + 1, n) for some $n \ge 3$. Let us further assume that for some $x_0 \in S, K(x_0) = \{p\}, p \ne x_0$. Then either S is starshaped relative to p or S is the union of an isolated point and a set starshaped relative to p.

Proof. Suppose y_1 and y_2 are points in $S \sim \{p\}$, such that $K(y_i) \subset \{y_i\}, i = 1, 2$. The set $\{x_0, y_1, y_2\}$, suitably expanded, lacks the

(n + 1, n) property, since y_1 and y_2 do not see p, and x_0 sees neither y_1 nor y_2 . Therefore there is at most one point y in $S \sim \{p\}$ such that $K(y) \subset \{y\}$.

We then have, by Theorem 2, that at most one point in S does not see p. Furthermore, any such point must be isolated, by the closure of S.

REMARK. It is possible for a point x_0 to be the only point with singleton visibility set. Consider the following example: Let $S = \{(x, y) \in \mathbb{R}^2 | y \le x^2, 0 \le x \le 1, 0 \le y \le 1\}$, and $K = \{(1, y) | 0 \le y \le 1\}$. Let $x_0 = (0, 0)$. Then $K(x_0) = \{(1, 0)\}$. It is easily seen that (S, K) satisfies the hypothesis of Theorem 3, and that (0, 0) is the only point with the required property.

REMARK. Theorems 2 and 3 do not hold when (S, K) is of Helly type (3.2). An example is shown below.

REMARK. Theorems 2 and 3 trivially fail if the hypothesis lacks the condition that $K(x) \neq \emptyset$, for every $x \in S$.

REMARK. Let S and K be subsets of a linear topological space L, such that (S, K) is of Helly type (3, 2). If there exist points $x, z \in S$ such that $K(x) = \{a\}, K(z) = \{b, c\}, a, b, c$, distinct, then S is a union of three starshaped sets, since an arbitrary w in S sees at least one of $\{a, b, c\}$ via S. As we see by Breen's example [1], even with the restriction that S is a closed subset of the plane and K is a line segment we may need as many as three points to write S as a union of starshaped sets.

THEOREM 4. Let S be a closed subset of a linear topological space L, and let K be a compact convex subset of S of finite dimension k. Suppose (S, K) has the triangle property and is of Helly type (2k + 2, 2k + 1). Then S is the union of a starshaped set and at most one isolated point.

Proof. Since the theorem is trivially true for k = 0, we assume k > 0. For arbitrary $x \in S$, K(x) is compact, as was shown in the Lemma, and is also convex.

Suppose $K(x) \neq \emptyset$ for every $x \in S$. If, for arbitrary $\{x_i : x_i \in S, i = 1, 2, \dots, k+1\}$, the set $\bigcap_{i=1}^{k+1} K(x_i) \neq \emptyset$, then Helly's theorem implies $\bigcap_{x \in S} K(x) \neq \emptyset$, so S is starshaped. Assume S is not starshaped. Then let j be a minimal integer such that $\bigcap_{i=1}^{j} K(x_i) = \emptyset$ for some collection

 $\{x_i: x_i \in S, i = 1, 2, \dots, j\}$. Then $j \ge 2$ since $K(x) \ne \emptyset$ for all x, and $j \le k+1$ by assumption.

Consider $(S \sim \{x_1, \dots, x_j\}, K)$. This pair is of Helly type (2k + 2 - j, 2k + 2 - j): for given an arbitrary collection of 2k + 2 - j points from $S \sim \{x_1, \dots, x_j\}$, augment the collection with $\{x_1, \dots, x_j\}$, making a total of 2k + 2 points of S. By hypothesis at least 2k + 1 of these points must see a point of K in common. One point from the 2k + 2 points in S must fail to see the point in K, in fact, a point from the set $\{x_1, \dots, x_j\}$ since otherwise the assumption that $\bigcap_{i=1}^{j} K(x_i) = \emptyset$ would be violated. Therefore all of the 2k + 2 - j points from $S \sim \{x_1, \dots, x_j\}$ see the point in question.

Since $j \leq k + 1$, it follows that $2k + 2 - j \geq k + 1$, so the pair $(S \sim \{x_1, \dots, x_j\}, K)$ is of Helly type (k + 1, k + 1) as well, and consequently, by Helly's theorem $S \sim \{x_1, \dots, x_j\}$ is starshaped. Then the closure of $S \sim \{x_1, \dots, x_j\}$ is also starshaped. Our assumption that S is not starshaped implies that there is an integer $i, 1 \leq i \leq j$, such that x_i is not in the closure of $S \sim \{x_1, \dots, x_j\}$. Therefore x_i has a neighborhood containing no points of $S \sim \{x_1, \dots, x_j\}$, and sees no points of K via S, which contradicts that $K(x_i) \neq \emptyset$. Therefore S is starshaped.

On the other hand, suppose for some $x_0 \in S$, $K(x_0) = \emptyset$. Then x_0 is the only point of S with empty visibility set, and $(S \sim \{x_0\}, K)$ is of Helly type (2k + 1, 2k + 1). By Helly's theorem, the collection $\{K(y): y \in S \sim \{x_0\}\}$ has a nonvoid intersection, so $S \sim \{x_0\}$ is starshaped. S consists of the starshaped set $S \sim \{x_0\}$ and the point $\{x_0\}$. Closure of S implies that x_0 is isolated.

References

1. M. Breen, An Example Concerning Unions of Two Starshaped Sets in the Plane, Israel J. of Math., 17 #4 (1974), 347-349.

2. H. Hadwiger and H. DeBrunner, Über eine Variante zum Hellyschen Satz, Arch. Math., 8 (1957), 309–313.

3. F. A. Valentine, Convex Sets, McGraw-Hill, New York (1964).

Received July 2, 1975 and in revised form October 9, 1975. Partial support for the second author was provided by Pennsylvania State University through Grant PDE-OCC-EDUC-PROG IV #3412.

Lehigh University, Bethlehem, Pennsylvania and Pennsylvania State University, Worthington Scranton Campus