ON STARSHAPED SETS AND HELLY-TYPE THEOREMS

John D. Baildon and Ruth Silverman

Abstract

Suppose an ordered pair of sets (S, K) in a linear topological space is of Helly type ($n+1, n$), i.e., for every $n+1$ distinct points in S there is a point in K which sees at least n of them via S. Then if S is closed, K compact, and $n \geqq 3$, the nontrivial visibility sets in K are pairwise nondisjoint. Sufficient conditions are obtained for S to be starshaped.

Let S be a subset of a linear topological space L. For points x, y in S, we say x sees y via S if and only if the segment $[x, y]$ lies in S. Further, the set S is said to be starshaped if and only if there is some point p in S such that, for every x in S, p sees x via S.

If S and K are subsets of L, with every point x in S is associated its visibility set $K(x)$, the set of all points of K which x sees via S.

We shall say (S, K) has Helly-type (s, r), where r and s are positive integers, $r \leqq s$, if for every s distinct points in S there is a point on K seeing at least r of them via S. Clearly, if (S, K) has Helly-type (s, r), and $0 \leqq i \leqq r-1$, then (S, K) has Helly-type ($s-i, r-i$).

In this paper we obtain a solution to a problem posed by Valentine, concerning sets of Helly type which are unions of a finite number of starshaped sets [3, Prob. 6.7, p. 178], and also obtain some related results. Breen [1] has given conditions in the plane for a simply connected set to be a union of two starshaped sets. We replace simple connectedness by the following:

For S and K subsets of a linear topological space L, we shall say the ordered pair (S, K) has the triangle property if the interior of every triangle having an edge on K and the other edges in S is itself a subset of S.

If S is a closed subset of a linear topological space L, K is a compact convex subset of L of dimension k and (S, K) has the triangle property, then $K(x)$ is compact and convex for each $x \in S$. If (S, K) is of Helly type (r, r), for $r \geqq k+1$, then by Helly's theorem $\cap\{K(x): x \in S\} \neq \varnothing$, and S is starshaped. However, it is possible under certain conditions to weaken the hypothesis considerably, and yet reach the same conclusion.

A collection of sets \mathscr{K} is said to have "piercing number" j or a j-partition for a positive integer j, if \mathscr{K} can be represented as a union of j collections, each with a nonvoid intersection.

The classical result on j-partitions is a theorem by H. Hadwiger and H. DeBrunner [2], which for convenience we state here as Theorem 1.

Theorem 1. For integers r, s and n, let $J(s, r, n)$ denote the smallest integer (if one exists) for which a j-partition is admitted by each family \mathscr{K} of compact convex sets in R^{n} which has the (s, r) property, i.e., for every s members of \mathscr{K}, some r have a common point. Then $J(s, r, n)=s-r+1$ whenever $r \leqq s$ and $n r \geqq(n-1) s+(n+1)$.

Remarks. When $j=1$ and $r=n+1$, Theorem 1 reduces to Helly's theorem.

If S is a closed subset of a linear topological space, K a compact convex subset of S of dimension n, such that (S, K) has the triangle property and is of Helly type (s, r), then for every $x \in S, K(x)$ is compact and convex, and the collection $\{K(x): x \in S\}$ has the (s, r) property.

Therefore, if $J(s, r, n)=j$, then the set S can be expressed as a union of j starshaped sets. However, for choices of s, r and n as small as $s=4$, $r=3, n=2$, it is not known whether $J(4,3,2)$ exists.

If $n=1$, then Theorem 1 implies that $J(s, r, 1)=s-r+1$ if $r \geqq 2$, so that $J(s, 2,1)=s-1$. Consequently S will be the union of $s-1$ starshaped sets if (S, K) has Helly-type $(s, 2)$ and K is a compact line segment. Also, since $J(r+1, r, 1)=2$ for all $r \geqq 2, J(3,2,1)=$ $J(4,3,1)=2$. Consequently if (S, K) has Helly-type $(3,2)$ or $(4,3)$, where K is a compact line segment, then S is the union of two starshaped sets. Breen [1] proved this result for Helly-type $(3,2)$ without the assumption that $K(x) \neq \varnothing$ for all x in S. We improve the $(4,3)$ case by showing S will be starshaped. In fact, in Theorem 4, we obtain the more general result that if (S, K) is of Helly type $(2 k+2,2 k+1)$ in a linear topological space, and K is of dimension k, then with a single exception S is starshaped. This result improves the prediction, from $J(2 k+2,2 k+$ $1, k)=2$, that S would be a union of two starshaped sets. In Theorems 2 and 3 , for (S, K) of Helly type $(n+1, n)$, without restrictions on dimension, sufficient conditions are obtained for the visibility sets to be pairwise nondisjoint (2), or for S to be starshaped (3).

We must first prove the following lemma.
Lemma. Let S and K be a closed and a compact subset, respectively, of a linear topological space L. If there exist x, w in S such that $K(x) \cap K(w)=\varnothing$ and $p \in K(x), q \in K(w)$, then there exist t_{0}, τ_{0} in $(0,1)$ such that if $|t|<t_{0},|\tau|<\tau_{0}$, then $K(y(t)) \cap K(z(\tau))=\varnothing$, where $y(t)=$ $t p+(1-t) x$, and $z(y)=\tau q+(1-\tau) w$.

Proof. We first observe that for every x in $S, K(x)$ is compact: recall $K(x)=\{p \in K \cap S \mid[p, x] \subset S\}$. Let p be a limit point of $K(x)$. Select a sequence $\left\{p_{n}\right\}$ such that $p_{n} \in K(x)$ for every n and $p_{n} \rightarrow p$. For each n, the line segment $\left[p_{n}, x\right]$ is contained in S. By closure of $S,[p, x] \subset S$ and by closure of $K, p \in K$. Therefore $p \in$
$K(x)$. So $K(x)$ is a closed subset of a compact set and consequently compact.

Since $K(w)$ and $K(x)$ are compact and disjoint, there are disjoint open neighborhoods U, U^{\prime} in L, such that $K(x) \subset U$ and $K(w) \subset U^{\prime}$.

We wish to prove the existence of $t_{0}>0$ such that $0<t<t_{0}$ implies $K(y(t)) \subset U$. Since t_{0} exists trivially if $K(x)=\{x\}$, we may assume $K(x) \neq\{x\}$.

Assume no such t_{0} exists. Then we can find a sequence of real numbers $\left\{t_{n}\right\}, t_{n} \rightarrow 0$ as ${ }^{\wedge} n \rightarrow \infty$, and a corresponding sequence of points $\left\{\alpha_{n}\right\}$ in $K \sim U$, such that for every $n, \alpha_{n} \in K\left(y\left(t_{n}\right)\right)$.

By compactness of $K \sim U$, there is a point $\alpha_{0} \in K \sim U$ and a subsequence of $\left\{\alpha_{n}\right\}$, called for convenience $\left\{a_{i}\right\}$, such that $\alpha_{t} \rightarrow \alpha_{0}$ as $i \rightarrow \infty$. Now for each $i, \alpha_{i} \in K\left(y\left(t_{i}\right)\right)$, so the line segment from $y\left(t_{i}\right)$ to α_{i} is in S. By closure of S, the limiting line segment from x to α_{0} is also in S. Therefore x sees α_{0}, contradicting the hypothesis, since α_{0}, not being in U, is clearly not in $K(x)$.

The same argument implies the existence of $\tau_{0}>0$ such that for $0<\tau<\tau_{0}, K(z(\tau)) \subset U^{\prime}$. We therefore conclude that for t, τ sufficiently small, $K(y(t)) \cap K(z(\tau))=\varnothing$.

Theorem 2. Let S and K be, respectively, a closed and a compact subset of a linear topological space L, such that (S, K) is of Helly type $(n+1, n)$ for some $n \geqq 3$. Let $\mathscr{K}=\{K(x): x \in S, K(x) \not \subset\{x\}\}$. Then \mathscr{K} is pairwise nondisjoint.

Proof. Suppose \mathscr{K} fails to be pairwise nondisjoint and let $K(x)$ and $K(w)$ be members of \mathscr{K} such that $K(x) \cap K(w)=\varnothing$. There exist neighborhoods U, U^{\prime} such that $K(x) \subset U, K(w) \subset U^{\prime}$, and $U \cap U^{\prime}=$ \varnothing. As in the proof of the lemma, select $p \in K(x), p \neq x, q \in K(w)$, $q \neq w$, and then y on $(x, p), z$ on (w, q) such that $K(y) \subset U, K(z) \subset$ U^{\prime}. There is no point in K seeing three of the four points x, y, w, z. Expanding the set $\{x, y, w, z\}$ if necessary, we have a contradiction of the hypothesis of Helly type $(n+1, n)$ for all $n \geqq 3$. Therefore \mathscr{K} is pairwise nondisjoint.

A special case of Theorem 2 is of sufficient interest to be stated separately.

Theorem 3. Let S and K be a closed and a compact subset respectively, of a linear topological space L, such that (S, K) is of Helly type $(n+1, n)$ for some $n \geqq 3$. Let us further assume that for some $x_{11} \in S, K\left(x_{0}\right)=\{p\}, p \neq x_{0}$. Then either S is starshaped relative to p or S is the union of an isolated point and a set starshaped relative to p.

Proof. Suppose y_{1} and y_{2} are points in $S \sim\{p\}$, such that $K\left(y_{1}\right) \subset\left\{y_{1}\right\}, i=1,2$. The set $\left\{x_{0}, y_{1}, y_{2}\right\}$, suitably expanded, lacks the
$(n+1, n)$ property, since y_{1} and y_{2} do not see p, and x_{0} sees neither y_{1} nor y_{2}. Therefore there is at most one point y in $S \sim\{p\}$ such that $K(y) \subset\{y\}$.

We then have, by Theorem 2, that at most one point in S does not see p. Furthermore, any such point must be isolated, by the closure of S.

Remark. It is possible for a point x_{0} to be the only point with singleton visibility set. Consider the following example: Let $S=$ $\left\{(x, y) \in R^{2} \mid y \leqq x^{2}, 0 \leqq x \leqq 1,0 \leqq y \leqq 1\right\}$, and $K=\{(1, y) \mid 0 \leqq y \leqq 1\}$. Let $x_{0}=(0,0)$. Then $K\left(x_{0}\right)=\{(1,0)\}$. It is easily seen that (S, K) satisfies the hypothesis of Theorem 3, and that $(0,0)$ is the only point with the required property.

Remark. Theorems 2 and 3 do not hold when (S, K) is of Helly type (3.2). An example is shown below.

REmARK. Theorems 2 and 3 trivially fail if the hypothesis lacks the condition that $K(x) \neq \varnothing$, for every $x \in S$.

Remark. Let S and K be subsets of a linear topological space L, such that (S, K) is of Helly type $(3,2)$. If there exist points $x, z \in S$ such that $K(x)=\{a\}, K(z)=\{b, c\}, a, b, c$, distinct, then S is a union of three starshaped sets, since an arbitrary w in S sees at least one of $\{a, b, c\}$ via S. As we see by Breen's example [1], even with the restriction that S is a closed subset of the plane and K is a line segment we may need as many as three points to write S as a union of starshaped sets.

Theorem 4. Let S be a closed subset of a linear topological space L, and let K be a compact convex subset of S of finite dimension k. Suppose (S, K) has the triangle property and is of Helly type $(2 k+2,2 k+$ 1). Then S is the union of a starshaped set and at most one isolated point.

Proof. Since the theorem is trivially true for $k=0$, we assume $k>0$. For arbitrary $x \in S, K(x)$ is compact, as was shown in the Lemma, and is also convex.

Suppose $K(x) \neq \varnothing$ for every $x \in S$. If, for arbitrary $\left\{x_{i}: x_{i} \in S, i=\right.$ $1,2, \cdots, k+1\}$, the set $\bigcap_{i=1}^{k+1} K\left(x_{i}\right) \neq \varnothing$, then Helly's theorem implies $\bigcap_{x \in S} K(x) \neq \varnothing$, so S is starshaped. Assume S is not starshaped. Then let j be a minimal integer such that $\bigcap_{i=1}^{j} K\left(x_{t}\right)=\varnothing$ for some collection
$\left\{x_{i}: x_{i} \in S, i=1,2, \cdots, j\right\}$. Then $j \geqq 2$ since $K(x) \neq \varnothing$ for all x, and $j \leqq k+1$ by assumption.

Consider $\left(S \sim\left\{x_{1}, \cdots, x_{J}\right\}, K\right)$. This pair is of Helly type $(2 k+2-j$, $2 k+2-j)$: for given an arbitrary collection of $2 k+2-j$ points from $S \sim\left\{x_{1}, \cdots, x_{j}\right\}$, augment the collection with $\left\{x_{1}, \cdots, x_{j}\right\}$, making a total of $2 k+2$ points of S. By hypothesis at least $2 k+1$ of these points must see a point of K in common. One point from the $2 k+2$ points in S must fail to see the point in K, in fact, a point from the set $\left\{x_{1}, \cdots, x_{j}\right\}$ since otherwise the assumption that $\bigcap_{i=1}^{\prime} K\left(x_{i}\right)=\varnothing$ would be violated. Therefore all of the $2 k+2-j$ points from $S \sim\left\{x_{1}, \cdots, x_{j}\right\}$ see the point in question.

Since $j \leqq k+1$, it follows that $2 k+2-j \geqq k+1$, so the pair $\left(S \sim\left\{x_{1}, \cdots, x_{J}\right\}, K\right)$ is of Helly type $(k+1, k+1)$ as well, and consequently, by Helly's theorem $S \sim\left\{x_{1}, \cdots, x_{l}\right\}$ is starshaped. Then the closure of $S \sim\left\{x_{1}, \cdots, x_{j}\right\}$ is also starshaped. Our assumption that S is not starshaped implies that there is an integer $i, 1 \leqq i \leqq j$, such that x_{i} is not in the closure of $S \sim\left\{x_{1}, \cdots, x_{j}\right\}$. Therefore x_{1} has a neighborhood containing no points of $S \sim\left\{x_{1}, \cdots, x_{l}\right\}$, and sees no points of K via S, which contradicts that $K\left(x_{1}\right) \neq \varnothing$. Therefore S is starshaped.

On the other hand, suppose for some $x_{0} \in S, K\left(x_{0}\right)=\varnothing$. Then x_{0} is the only point of S with empty visibility set, and $\left(S \sim\left\{x_{0}\right\}, K\right)$ is of Helly type $(2 k+1,2 k+1)$. By Helly's theorem, the collection $\{K(y): y \in S \sim$ $\left.\left\{x_{0}\right\}\right\}$ has a nonvoid intersection, so $S \sim\left\{x_{0}\right\}$ is starshaped. S consists of the starshaped set $S \sim\left\{x_{0}\right\}$ and the point $\left\{x_{0}\right\}$. Closure of S implies that x_{0} is isolated.

References

1. M. Breen, An Example Concerning Unions of Two Starshaped Sets in the Plane, Israel J. of Math., 17 \#4 (1974), 347-349.
2. H. Hadwiger and H. DeBrunner, Über eine Variante zum Hellyschen Satz, Arch. Math., 8 (1957), 309-313.
3. F. A. Valentine, Convex Sets, McGraw-Hill, New York (1964).

Received July 2, 1975 and in revised form October 9, 1975. Partial support for the second author was provided by Pennsylvania State University through Grant PDE-OCC-EDUC-PROG IV \#3412.

[^0]
[^0]: Lehigh University, Bethlehem. Pennsylvania
 AND
 Pennsylvania State University, Worthington Scranton Campus

