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ON A FIXED POINT THEOREM OF KRASNOSELSKII
FOR LOCALLY CONVEX SPACES

V. M. SEHGAL AND S. P. SINGH

Let °lί be a neighborhood basis of the origin consisting of
absolutely convex open subsets of a separated locally convex
topological vector space E and 5 a subset of E. Let a mapping
/: S —> E satisfy the condition: for each U E °U and e > 0, there
exists a δ = δ(e, U) > 0 such that if x, y E S and
x-y G(e + δ)U, t h e n / ( x ) - / ( y ) E e£7. In the present paper,
sufficient conditions are given for the mapping / to have a fixed
point in S. The result is extended to the sum of two mappings of
Krasnoselskii type.

In a recent paper, Meir and Keeler [8] gave an interesting general-
ization of the Banach's contraction principle. Following [8], a self
mapping / of a metric space (X, d) is an (e, δ) contraction iff for each
e > 0 there exists a δ = δ(e)>0 such that for all x, y EX with e ^
d(x, y)ge-bδ implies d(/(x), /(y))< e. The (β, δ) contraction map-
pings clearly contain the class of strict contractions (d(/(x),/(y))^
λd(x, y), 0 < λ < 1) and the nonlinear contractions investigated by Boyd
and Wong [4]. In this paper, we consider mappings defined on a subset
S of a locally convex vector space E with values in E (not necessarily 5)
and satisfy a certain condition similar to (β, δ) contraction. The main
result here generalizes a result of Cain and Nashed [5] and a recent result
of Assad and Kirk [2] and provides a further generalization of a
well-known result of Krasnoselskii [7].

Throughout this paper, E is a separated locally convex topological
vector space and °U is a neighborhood basis of the origin consisting of
absolutely convex open subsets of E. For each U E % let pυ be the
Minkowski's functional of U. Further, if x, y E E let

(jc,y) = { z E £ : z = λx + (1 - λ)y, 0< A < 1}

and [x, y), = {x} U (x, y). For a set A C J5, d(A) denotes the boundary
of A and cl(Λ) the closure of A in E. Also for A, B C £, A - B =
{x - y : x EA, y £ β } .

Let S be a nonempty subset of E. A mapping f: S-+E is a
^/-contraction (U E ^ ) iff for each e > 0 there is a δ = δ(e, U) > 0 such
that if x? y E S and if

(1) χ - y E ( e + δ)[/, then f(x)-f(y)GeU.
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If /: S —> E is a 17-contraction for each U E% then / is a °U -contraction.
Note that if / is a °U -contraction, then / is continuous. (For a related
definition of %-contraction, see Taylor [11].)

It may be remarked that if £ is a normed space with °U =
{x E E: ||x || < 6, 6 > 0} then (1) is equivalent to (e, δ) contraction [8].

The following lemma simplifies the proof of next theorem.

LEMMA 1. Letf: S —>Ebe a °tt-contraction, thenfis °U-contractive,
that is for each U E % Pu(f(x)-f(y))<Pu(x - y) tf Pu(x ~ y ) ^ 0 and
0 otherwise.

Proof. Let x, y E S and suppose p = pυ, p(x - y) = e > 0 . Then
χ - y E ( € + δ) l/ for each δ > 0 and in particular x - y E (e + δo)U
where δo = δ(t/,e). Therefore by (1) (/( jc)-/(y))E eU. Since U is
open, this implies that p(f(x) — f(y))< € = p(x - y). If 6 = 0 , then
x —y EeI7 for each e > 0 and hence by (1) ( / ( x ) - / ( y ) ) E eU which
implies that p(/ (x) - / (y)) = 0.

THEOREM 1. Lei S be a sequentially complete subset of E and
f: S -> E be a °U-contraction. If f satisfies the condition:

(2) for each x E 5 with f(x)£ 5, there is a z E (x,/(x)) Π S
SMC/I that f(z)E S

then f has a unique fixed point in 5.

Proof. Let x 0 E S and choose a sequence {xj C S defined induc-
tively as follows: for each nGl (positive integers) if f(xn)ξΞS, set
xn+\ = /(x n) and if f(xn)& S, let xn+{ be any element of (xn,/(xn)) Π S such
that /(x n + 1 )E S (such xn+1 exists by (2)). It then follows that for each
n E /, there is a λn E [0, 1) satisfying

(3) xn+1 = λnxn + ( l -

We show that the sequence {xn} so constructed satisfies

(4) (a) x n + 1 - x n - * 0 (b) x n -/(Xn)->0

To establish (4), note that by (3)

(5) xn + 1~xn = ( l - λ n ) ( / ( x n ) - x n ) , and

(6) f (xn) - Xn+i = λ n ( / ( x n ) - x n ) .

Therefore, for a U E °U with p = pUy it follows by the above lemma that
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Thus by (5) p(f(xn+ί)-χn+ι)^p(f(xn)-χn) for each n E J, that is
{p(f(χn)~χn)} is a nonincreasing sequence of nonnegative reals and
hence for each p = pυ, U E% there is a r(£/) = 0 with

(7) r(U)^p(f(xn)-χn)-*r(U)^O.

We claim that r (U) = 0. Suppose r (U) > 0. Choose a δ =
δ(r([/), £/)>0 satisfying (1). Then by (7) there is a n0El such that
p(f(xn)~~ *n)< r(U)+ δ for all n ̂  n0. Now choose an m E/7 m ̂  n0

such that xm+1 = f(xm% (let m = n0 if/(JCΠ O)E 5, otherwise let m = n o+ 1,
then jcm+1 = /(x m )E S). Thus for this m,

p(xm ~ xm+ι) = P(̂ m ~/(jcm))< r(ί/)4- &

and hence by (1)

which contradicts (7). Thus r ([/) = 0 for each U E°lί and this implies
that the sequence xn — / (jcn) —> 0. This establishes 4(b) and 4(a) now,
follows by (5).

We assert that {jcn} is a Cauchy sequence in E. Suppose not. Let
for each k E /, Ak = {xn: n ̂  k}. Then by assumption there is U E %
such that Ak- Akξ£ U for any k El. Choose an β with 0 < e < 1 and a
δ with 0 < δ < δ(e, U) satisfying e + δ < 1. It follows that
Ak - Ak £ (e + 8/2)U for any k El. Thus for each k E /, there exist
integers n(k) and m(k) with k ̂ n(k)< m(k) such that

(8) xnik)-xmik)£(€

Let m(/c) be the least integer exceeding n(k) satisfying (8). Then by (8)

(") Xn(k) ~ Xm(k) — \Xn(k) ~~ Xm{k)-\) ~̂~ {Xm(k)-l ~ Xm(k))

Now by (4) there is a k0 E I such that xk - f(xk)E (δ/4)U and jcfc_i - xk E
(δ/4)U whenever k ̂  fe0, and hence by (9)

Qi )^ k g

It follows, that for all k ̂  fe0
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However, for k ^ kθ9

Xn(k)~~ Xm(k) ~ (*n(k)~"-/(*n(fc))) + (f(Xn(k))~f(Xm(k)))+

and therefore,

which contradicts (8). Thus {xn} is a Cauchy sequence in S and the
sequential completeness implies that there is a u ES such that
xn —> w. Since / is continuous, it follows by (4b) that u = f(u). This
proves the existence of the fixed point of /. Since E is separated, the
uniquencess is an immediate consequence of the Lemma 1.

The following result was proven in [10] and its proof here is given for
completeness.

LEMMA 2. Let S be a closed or sequentially complete subset of E. If
x E S and y&iS then there is a λ E [0, 1] such that z =
( l - λ ) x + λy Ed(S). Further, if xgd(S) then 0 < λ < 1 .

Proof Let A = {μ g 0: (1 - a)x + ay E S for all a with 0 g a g
μ}. Since x E S, Λ ^ 0 . The hypothesis y ^ S implies that λ =
sup{μ: μ E A}S 1. Now if S is closed or sequentially complete, it
follows that z = ( l - λ ) x + λy E S and hence λ < l . To show that
z E 5(5), it suffices to show that for each U E% (z + U)Π c ( 5 ) ^ 0 ,
where c(S) is the complement of S in E. Choose a jβo>λ with
(β0- λ)p(x - y)< 1 where p = /?[/. By definition of λ, there is a β with
λ<β^β0 such that zx = {\-β)x + βy£S. Since j φ - z O ^
(j3-λ)p( jc-y)<l , it follows that zxE{z + U) and hence z Ed(S). If
x£ d(S) but JC E S, then clearly 0< λ < 1.

The following is now an immediate consequence of Theorem 1.

THEOREM 2. Let S be sequentially complete subset of E and
f: S->E be a °lί-contraction. If f(S Π d(S)) C 5, then f has a unique
fixed point.

It may be noted that if S is closed then S Π d(S) = d(S).
In the following, let 9 = {p = pυ for some U E <%}, JR+ the nonnega-

tive reals and Ψ a family of mappings defined as Ψ - {φ: i? + -» R+: φ is
continuous and φ(t) < t if t > 0}. A mapping /: S —> E is a nonlinear 3>
contraction (see also Boyd and Wong [4]) iff for each p E $P, there is a
ΦPEΨ such that p(f(x)-f(y))^φp(p(χ-y)) for all x, y E 5. If this
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inequality holds with φp(t) = apt, 0 < α p < l , then / is called <3>-
contraction (see [5]). Since a nonlinear SP contraction is a °U-
contraction, the following result immediately follows by Theorem 1 and
provides an extension of a result in [5], (see also Assad [1]).

THEOREM 3. Let S be α sequentially complete subset of E and
/: S -> E be a nonlinear 3P contraction. If f satisfies (2) then f has a
unique fixed point in S.

As an application of Theorem 3, we give here a generalization of a
well-known result of Krasnoselskii [7] which has been extended recently
to locally convex spaces in [5] The following extension of Tychonoff's
theorem [12] is due to Singball [3] (see also Himmelberg [6]) and is used
in the proof of Theorem 5.

THEOREM 4. Let S be a closed and convex subset of E and f: S -> S
be a continuous mapping such that the range f(S) is contained in a
compact set Then f has fixed point.

In the rest of this paper, a mapping /: S —> E is completely continu-
ous if it is continuous and f(S) is contained in a compact subset of
E. Further, if A : S —» E is a nonlinear SP contraction and B: S —> E is
completely continuous, then for each fixed x E S, the mapping fx: 5 -» E
is defined by fx(y) =* A(y) + B(x). Note that since E is separated, the
mapping (I - A): S —> E is one-to-one, where / is the identity map of 5.

The following lemma follows immediately from Theorem 3.

LEMMA 3. Let S be a sequentially complete subset of E and
A: 5 —>E be a nonlinear $P contraction. Suppose for a x E £ , the
mapping f: S-+E defined by f(y) = A(y) + x satisfies (2), then there
exists a unique u(x)ES with f(u(x))= u{x), that is {I-A)~ιx =
u(x)ES.

THEOREM 5. Let S be a convex and complete subset of E. Let
A: S->E be a nonlinear $P contraction and B: S —>E be completely
continuous. If for each x E 5, the mapping fx: S -» E satisfies (2) and
(I - A)~ιB(S) is a bounded subset of S, then there is a u E S satisfying
Λ(W) + JB(W)= U.

Proof. For each fixed x E S, the mapping fx satisfies the conditions
of Lemma 3 and hence there is a unique ux E S with fx(ux) = ux. Define
a mapping L: 5 -> 5 by

(10) L(x)=ux =A(L(x)) + B(xl x E S.
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Then, for each x E S, L(x) = (/ - A)" !J5(x). If follows by hypothesis
that L(S) is a bounded subset of £. We show that L in (10) is
continuous. Let {xa: a E Γ} C S be a net such that xa —• x E 5 and
suppose L (xα) does not converge to L (x). Then there is a p E ί? and an
e > 0 and a subnet {p(L(xa)~ L(x)): a E ΓJ of the net
{p(L(xα)-L(x)): α E Γ} such that

(11) /?(L(x α )-L(x))>e for each a G Γ , .

Since {p(L(xα)~ L(x)): a E ΓJ is a bounded subset of the reals, it has a
subnet {p(L(xa)~ L(x)): α E Γ2 C ΓJ-> r ^ 0. However, by (10) for any
α E Γ 2

p(L(xa)- L(x))^p(B(xa)- B(x))+ φp(p(L(xa)- L(x))%

which implies that r = 0. This contradicts (11) and consequently L is
continuous. We now show that L(S) is relatively compact in S. If
{L(xa): a E Γ} is a net in L(S), then there is a net {£(xα): a E ΓJ which
is convergent. We assert that {L(xa): a EΓλ} is a Cauchy
subnet. Suppose not. Then there is a p E ί? and an 6 > 0 such that for
each α E 1̂  there are elements n{a) and m(a) in Π with n ( α ) ^ α ,
m ( α ) ^ α, satisfying

(12) rα =p(L(x n ( α ) )-L(x
m ( α )

Since {J3(xα): a E ΓJ is a Cauchy net, there is an α^EΓi such that
p(B(xa)- B{xβ)) < e for all α, β ^ α0, α, j8 G Γ,. However, {rα: α E ΓJ
being a bounded subset of reals has a convergent subnet {ra: a E Γ2}
-> r ^ 0. The same argument as above implies that r = 0 and this
contradicts (12). This proves the assertion. It now follows by Theorem
4, that L(u)= u for some uES and hence by (10) A{u) + B{u)= u.

The following consequence of Theorem 5 appears new and general-
izes a result of Nashed and Wong (Theorem 1 [9]). Note that in a
normed linear space E a mapping /: 5 —> E is a nonlinear contraction
(see [4]) if there exists a φ E Ψ such that || / (x) - / (y) || S φ (|| x - y ||) for
all x, y E S.

COROLLARY 1. Let S be a closed, bounded and convex subset of a
Banach space E. If A: S —» E is a nonlinear contraction and B: S —• E
is completely continuous such that for each x E d(S), fx(d(S)) C 5, then
A(M) + B(U) = u for some u E S.

As another consequence, we have the following extension of a result
of Cain and Nashed [5].
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COROLLARY 2. Let S be a convex and complete subset of E. Let
A. S-+E be a & contraction and B: S->E be a completely continuous
mapping. If for each x E S, fx satisfies (2) then A (u) + B (u) = u for some
uES.

Proof It suffices to show that for each p E ^ 5 p((I -Ay'BiS)) is a
bounded subset of reals. Now it follows by (10) that for all x, y E S

p{L{x)-L{y))^p{B{x)-B(y))+app{L{x)-L{y)\

which implies that p(L(x) - L(y)) ̂  (1 - ap)~
lp(B(x)-B(y)) and hence

L(S) = (I - A)-\B(S) is bounded.

We wish to thank the referee for some useful comments.

REFERENCES

1. N. A. Assad, A fixed point theorem for weakly uniformly strict-contractions, Canad. Math. Bull.,
16 (1973), 15-18.
2. N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type,
Pacific-J. Math., 43 (1972), 553-562.
3. F. F. Bonsall, Lectures on some fixed point theorems on functional analysis, Tata Inst. of
Fundamental Research, Bombay, India, 1962.
4. D. W. Boyd and S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc, 20 (1969),
458-464.

5. G. L. Cain, Jr. and M. Z. Nashed, Fixed points and stability for a sum of two operators in locally
convex spaces, Pacific J. Math., 39 (1971), 581-592.
6. C. J. Himmelberg, Fixed points of compact multifunction, J. Math. Anal. Appl., 38 (1972),
205-207.

7. M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspehi Mat.
Nauk., 10 (1955), No. 1 (63), 123-127.
8. A. Meir and E. B. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969),
326-329.

9. M. Z. Nashed and J. S. W. Wong, Some variants of a fixed point theorem of Krasnoselskii and
applications to non-linear integral equations, J. Math. Mech., 18 (1969), 767-777.
10. C. H. Su and V. M. Sehgal, Some fixed point theorems for non-expansive mappings in locally
convex spaces, Bollettino U.M.I., 10 (1974), 598-601.
11. W. W. Taylor, Fixed point theorems for nonexpansive mapping in linear topological spaces, J.
Math. Anal. Appl., 40 (1972), 164-173.

12. A. TychonofT, Ein fixpunktsatz, Math. Ann., I l l (1935), 767-776.

Received May 21, 1975.

UNIVERSITY OF WYOMING

AND

UNIVERSITY OF NEWFOUNDLAND






