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Dedicated to the memory of our teacher, Professor Joseph L. Walsh

The basic aim of this paper is to study the phenomenon of
overconvergence for rational functions converging geometrically
on [0, + oo).

1. Introduct ion. The classical results of Bernstein, Walsh,
Goncar, and others concerning the overconvergence of rational functions
are roughly of the following type (cf. [18]): It is assumed that

(i) f(z) is defined (finite) on some compact set E in the complex
plane C;

(ii) {rn(z)}Γ=i is a sequence of rational functions of respective
degrees n which converge geometrically to / on JB, i.e.,

and

(iii) the set of poles of the sequence {rn(z)}™=ι has no accumulation
points on E.
It is then concluded that

(iv) the sequence {rn(z)}Z=ι converges geometrically to an analytic
extension of / on some open set in the plane containing E.

The aim of the present paper is to investigate the phenomenon of
overconvergence in the case where E is a closed line segment [α, b] and
the hypothesis (iii) above is weakened to allow accumulation points of
poles at the endpoints of £", i.e., assumption (iii) is replaced by

(iii)' the set of poles of the sequence {rn(z)}^=1 has no accumulation
points on the open subinterval (α, b) of E = [α, b].

Of course with the hypotheses (i), (ii), and (iii)', we must modify
conclusion (iv) to read

(iv)' the sequence {rn{z)Yn=x converges geometrically to an analytic
extension of / on some open set in the plane containing (α, b).
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For the precise statements of such results on "angular overcon-
vergence" it is sufficient to take E = [0, + oo)5 because any interval [α, b]
can be mapped onto [0, + <») by means of a bilinear transformation, and
such bilinear transformations preserve rational functions of degree
n. For example, one of the results which we prove asserts that if rational
functions rn(z) of respective degrees n converge geometrically on
E = [0, + oo), and the poles of the rn(z) lie outside an infinite sector of the
form

{ z G C : | a r g z | < φ j , 0 < φ, ^ π,

then the rn(z) converge geometrically on some smaller infinite sector

{z E C: I arg z \ < φ2}, 0 < φ2 < φ,.

It is important to note that a number of results have appeared in the
literature ([8], [10], [11]) which give classes of functions / and examples of
approximating rational functions rn(z) for which condition (ii) above is
satisfied on E = [0, -f oo). Furthermore, for some special sequences of
approximating rational functions, the existence of pole-free open sets (in
the plane) containing (0, +oo) follows from the results in [17], [12], [13],
among others. Hence the main results of this paper, which we state in
§2, have immediate applications. These applications will be discussed
primarily in §3.

2. Statements of main results. We now introduce the
necessary notation and state our main results. Their proofs will be given
in §4.

For an arbitrary set A in the complex plane C we denote by || ||A the
sup norm on A, i.e.,

| | / | U : = s u p { | / ( z ) | : z € A } .

We use the symbol πn to denote the set of all complex polynomials in the
variable z having degree at most n, and let τrnn denote the set of all
complex rational functions rn(z) of the form

Φ) Γ£Λ>
 w h e r e Pn£π» qnEπm qn^0.

The first three results which we state concern pole-free regions whose
boundaries are parallel to the ray E = [0, + oo) at x = + oo. It is conve-
nient in this regard to introduce the set Sίf which consists of all real
nonnegative continuous functions h on [0, + oo) such that for x large,
Λ(JC)>0, and h'(x) exists, is nonnegative, and satisfies
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(2.1) lim h'(x) = 0.
X—>+oo

Corresponding to each h E % we define generically the set Es(h\
O ^ s ^ l , in the complex plane by

(2.2) Es(h): = {z = x + iy: x^O and \y\^sh(x)}.

Notice that, by condition (2.1), the boundary of each set Es(h) defined in
(2.2) makes an angle of zero with the positive real axis at x = -I- oo.

Our first result is the following:

THEOREM 2.1. Assume that for a function f, defined and finite on
[0, -f oo), there exists a sequence of rational functions {rn}"=1, with rn E π n n

for all n i l , and a real number q > 1 such that

(2-3)

Assume further that for some function h E 'Xthe interior of the region Eλ{h)
{defined in (2.2)) contains no poles of the rn(z) for all n sufficiently
large. Then for every d satisfying the inequality

< 2 4 > 0 < ( J < k i < 1 ,
Vq-hl

there exists a bounded subset Kd ofEd (h) and an analytic function F(z) on
Ed(h)- Kd with F(x) - f(x) for all real x in this set, such that {rn(z)}^=1

converges geometrically to F(z) on Ed(h)-Kd. Moreover

(2.5)

The next result shows that in certain cases the conclusion of
Theorem 2.1 can hold on the whole set Ed(h), rather than on Ed(h)- Kd.

COROLLARY 2.2. Assume that for a continuous function g( ^ 0) on
[0, + oo) there exists a sequence of polynomials {pn}Z=u with pn E ττn for all
n ^ 1, and a real number q>\ such that

^— f II1 1
(2.6) lim -

g Pn

l/n

- < 1.
1
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Then, as is known [7, Theorem 3], there exists an entire function G(z) of
finite order with G(x) = g(x) for all x ^ 0. Next assume that for some
function h E ffl, with h (x) > 0 for all x > 0, the interior of the region Eλ(h)
{defined in (2.2)) contains no zeros of pn(z) for all n large. If d satisfies
(2.4) and if G is nonzero on the vertical segment {z = iy: |y | ^ dh(0)},
then

(2.7)
l im

1 1 II Ί 1 / n 1 /l + d

G Pn\\εd(h)) q \l-d

As a concrete application of Corollary 2.2, we first recall from
Meinardus and Varga [8] that

(2.8) lim
1

sn(x)

l/n 1
2 '

where sn(z) = Σi=oz
k/k\ denotes the familiar nth partial sum of e\ It is

further known from Saff and Varga [12] that for

(2.9) h{x) = 2{x + \)m,

the region

(2.10) b,Λh) = \z=x V)

contains no zeros of the sn(z) for all n. Note that h G X, and that with
G(z) = ez (so that G is nonzero at every finite point z), with pn = sn for
all n ^ 1, and with q - 2, the hypotheses of_ Corollary 2.2 are all
fulfilled. Thus for any d satisfying 0 < d < (V2 - 1)/(V2 + 1), we have
from (2.7) that

(2.11) lim
1

2 VΓ

which is effectively the result of [11, Theorem 4.1].
any d > 0 the set

We remark that for

(2.12) Ed(ίi) = {z = x + iy: x ^0, \y\^2d(x + 1)1/2}

is an unbounded parabolic region truncated at the origin.
As a consequence of Corollary 2.2 and of the results in [12], similar

overconvergence results in unbounded parabolic regions also hold for
each column of the Pade table for e~\ i.e., for the Pade approximants
{Rv,n(z)}ΐ=1 where the degree, v, of the numerator is fixed.
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Applications of Corollary 2.2 can in fact be made to a certain class of
entire functions which contains the above example, and this will be
described in the next section.

From Corollary 2.2 it is possible to deduce the following result which
concerns geometric convergence on related unbounded sets whose
widths grow more slowly at infinity.

COROLLARY 2.3. With the hypotheses of Corollary 2.2, assume that
c(x) is a nonnegative continuous function on [0, + o°) with c(x)<h(x) for
all x > 0 , such that

<2 1 3 ) USL W) = °>
and let

(2.14) <g : = {z = x + iy: x ^ 0 , |y | ̂  c(x)}.

If G is nonzero on the segment {z = iy: | y | ̂  c(0)}, then

(2,5) Hfl' I-jr.ϋϋ ίll.I I'".

The remaining results concern overconvergence on regions having a
positive angle at infinity. In stating them it is convenient to introduce
the sets S(0,μ) and S(Θ) defined by

(2.16) S(0,μ) : = {z: | a r g z | < 0,

(2.17) |

THEOREM 2.4. Assume fftαί /or α function f defined and finite on
[0, +°°), there exists a sequence of rational functions {rn}"=1, wiίA rn G πn?n

/or α// n ^ 1, and a rea/ number q>\ such that

(2.18)

Assume further that for some ΘQ and μ0, wiίΛ 0 < 0O = ^7 μo > 0, the region
S(θo,μo) (defined in (2.16)) contains no poles of the rn(z) for all n
large. Then for every θ satisfying the inequality

(2.19)
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there exists a μ = μ ( 0 ) > O and an analytic function F(z) on the closure
S(θ,μ) with F(x) = f(x) for all real x in this set, such that {rn(z)}^=1

converges geometrically to F(z) on S(θ,μ). Moreover

1 rsin[K0o+0)]]2
1 r s i n [ K 0 o 0 ) ] ]

(2.20) lim {||F-rJ|sW'" < - Ui^-e))} < l

It is interesting to note that while Theorem 2.1 cannot be deduced
from Theorem 2.4, the former result can be considered as a limiting case
of the latter. Indeed, for the situation of Theorem 2.1, we regard 0O and
0 as functions of x which tend to zero as x -» + oc; specifically, we define
0O and 0 by the equations

. n h(x) , Λ dh(x)
tan 0o = — ^ , tan 0 = — ^ .

Then, on writing (2.19) in the equivalent form

tan((9/4) < Vq-1

tan(0o/4) V q + Γ

and taking the limit as x -» + o°, we derive the condition

r tan(0/4) r tan0 ^
lim ^ L = lim = d
χ-+« tan(0o/4) χ-+« tan 0O

which is the same as inequality (2.4) of Theorem 2.1.
Using Theorem 2.4 we can deduce the following analogs of Corol-

laries 2.2 and 2.3:

COROLLARY 2.5. Let the functions g, G, and the sequence of polyno-
mials {pn}n=i be as in Corollary 2.2 (so that, in particular, inequality (2.6)
holds). Assume further that no zeros of pn lie in the infinite sector S(θ0)
(defined in (2.17)), 0 < θ0 ̂  π, for all n sufficiently large, and that g(0) ^ 0.
If θ satisfies (2.19), ί/ien on ί/ie closure S(θ),

pn

' V 1 fsin[Hflo+
q Uin[i(0o- 0)]j

COROLLARY 2.6. Lei the functions g, G, and the sequence ofpolyno -
m/a/s {pnYn=ι be as in Corollary 2.2 (so that, in particular, inequality (2.6)
holds). Assume that no zeros of pn lie in S(θ0), 0 < θo= π, for all n
sufficiently large, and that g(0) ^ 0. Then for any nonnegative continuous
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function c(x) on [0, -f α>) such that c(x)~ o(x) as x -» + <*> and such that
(i)c(0) = 0 if θo=7τ/2, (ii) c(x)< x tan(0o) for x > 0 //O<0 o <π/2, we
have

s II 1 1 x l/n Γ II 1 1

(2.22) l im I 7 7 [ = l im \\\
«-» 1 I I G pn <*) »-» III g Pn

wJiere ί/iβ region % is defined as in (2.14).

If, in Corollary 2.5, we weaken the hypothesis by replacing the
reciprocals of polynomials, l/pn9 by arbitrary rational functions rn E πn,n

whose poles omit a full sector, then we obtain the following less specific
conclusion:

THEOREM 2.7. Assume that for a function f defined and finite on
[0, + 0 0 ) , there exists a sequence of rational functions {rπ}"=1, with rn E π n n

for all n ^ 1, and a real number q > 1 such that inequality (2.18)
holds. Suppose further that the infinite sector S(θ0) (defined in (2.17)),
0 < 0O ̂  π, contains no poles of the rn (z) for all n large. Then there exists
α 0, 0 < 0 < 0o, and a function F(z) analytic on the sector S(0), continuous
on S(0), with F(JC) = /(JC) for all x ^ 0, such that {rn(z)}Γ=i converges
geometrically to F(z) on S(θ).

Theorem 2.7 has an important application to the problem (raised at
the International Conference on Approximation Theory, Maryland,
1970) of finding a sequence of rational functions which converges
geometrically to e'z in an infinite sector. It is well-known that the
sequence l/sn(z), sn(z) = Σo zk/k\, does not have this property because
no infinite sector is devoid of zeros of sn(z) for all n large (cf. [3] or
[14]). However, it is shown by the authors in [11] and [13], that certain
sequences of Pade approximants of e~z converge geometrically on
[0, + oo) to e~x, and furthermore have all their poles outside some infinite
sector {z: |arg z | < 0O}. Hence, by Theorem 2.7, such a sequence must
converge geometrically to e~z on some infinite sector {z: | a r g z | < 0},
0 < 0 < 0O. The precise details of this application shall be reserved for a
later occasion.

The last result of this section concerns rational functions which
converge faster than geometrically on [0, + oo)5 i.e.,

(2.23) l im{| |/-r n | | [ 0 , + O 0 ) Γ = 0.
n—*°°

COROLLARY 2.8. // in Theorem 2.7, the assumption of inequality
(2.18) is replaced by (2.23), then the sequence {rn(z)Yn=λ converges faster
than geometrically on every closed sector 5(0), 0 < 0 < 0O, i.e.,



530 E. B. SAFF AND R. S. VARGA

(2-24) lim{\\F-rn\\mY'n=0-
n—*°o

3. Some applications. In order to apply results such as
Corollaries 2.2 and 2.3 we first need conditions on the entire function
G(z) which insure that there exists a sequence of polynomials pn, with
pn E πn for all n ̂  1, such that

(3.1) lim
l/n

G pn | | J

Second, we need a specific result, like that of (2.9), which asserts that for
an appropriate function h E $?, the interior of the region Ex(h) defined in
(2.2) is free of zeros of the polynomials pn in (3.1) for all n large. Results
of both these types are already known for the case where the pn are the
nth partial sums of the Maclaurin expansion for G. In order to state
these results we remind the reader of some standard terminology.

If g(z) - Σl=oakz
k is an entire function, we let Mg(r): =

max{|g(z)j: \z | = r) denote its maximum modulus function, and let
p = ρg denote the order of g (for nonconstant g), i.e., (cf. [2, p. 8], [15, p.
34])

Furthermore, an entire function g(z) of order p, 0 < p < °°, is said to be
of perfectly regular growth (cf. [15, p. 44]) if there exists a real B > 0 such
that

(3.3)

We remark that if a nonconstant entire function g satisfies a linear
differential equation with rational function coefficients, then g is neces-
sarily of perfectly regular growth (cf. [15, p. 108]).

We now state a result which gives sufficient conditions for geometric
convergence on [0, + oo).

THEOREM 3.1 (Meinardus and Varga [8]). Let g{z) - Σl=Qakz
k be

an entire function of perfectly regular growth (p, B) with real nonnegative
coefficients ak. Then

ί I 1 1 1 ιln 1

(3-4) lim μ-f =W<1.
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where sn{z) = Σn

k=Qakz
k denotes the nth partial sum of the Maclaurin

expansion for g.

Concerning zero-free regions for the partial sums sn we state a
previously unpublished result from one of the author's thesis [17]. For
related published results see [16].

THEOREM 3.2. Let & denote the set of all entire functions g(z) =
Σl=oakz

k for which
(i) a0 > 0 and αfe g 0 for all fcgl;
(ii) // am = 0, then am+2ί = 0 for every / g 1;
(iii) if K: = {k: ak>0 and ak+2 > 0} is nonempty, then

(3.5) inf L ^ w ? * ^ 1 > °
v ; k&κ [(k + l)(fc +2)ak+2)

Then, for g E 5̂ , there exists a nondecreasing continuous function hg

defined on [0, + oo) with hg(0) > 0, such that g(z) and all its partial sums
sn(z) = Σk=oakz

k, n ^ l , have no zeros in

(3.6) {z =x + iy: x^O and | y | ^Λ g (x) } .

Moreover, for each g E Ŝ , the order pg of g satisfies 0 ^ pg ^ 1.

We remark that the set if of Theorem 3.2 contains many familiar
elements. For example, w(z) = e\ v{z)- cosh(Vz) = ΣQ zk/(2k)!, the
modified Bessel functions Jn(iz)J(iz)n for any n ^ O , and the hyper-
geometric function ιF{(c; d\z) with c > 0 , d > 0 , are easily seen to be
elements of ϊf.

If ^ g denotes the nonempty (from Theorem 3.2) collection of all
positive nondecreasing continuous functions hg on [0, -f oo) for which
g(z) and all its partial sums sn(z), n ^ 1, have no zeros in the region
defined by (3.6), then we define the (maximal) width function Hg(x)by

(3.7) Hg(x): = sup{hg(x): hg E Wg], for each x i^0.

The function Hg(x) so defined is clearly nondecreasing on [0, +co), and
g(z) and all its partial sums sn(z) have no zeros in the interior of the
region defined by

(3.8) {z=x + iy: x^0 and | y | ^ H g ( j c ) } .

Moreover, if g is of order pg > 0, then a result of Carlson [3] states that no
proper sector, with vertex at the origin, can be devoid of zeros of the
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partial sums sπ, for all n large. Consequently, when pg > 0 , Hg(x) is
finite for all finite x ^ 0.

The next corollary provides lower bounds for Hg(x) for particular
elements in if.

COROLLARY 3.3. Let g{z) = Σo akz
k be an entire function such that

ak>0 for all k and such that

(3.9) inf l-rr1"-} > 0.
v ' *δi [k2ak+ι\

Then g E if and its associated width function Hg of (3.7) satisfies, for some
constant c > 0,

(3.10) Hg(x)^cxυ\ for all x^O.

Proof. It is trivial to verify that g(z) = Σo akz
k E if. Furthermore, it

follows from the hypotheses above that the entire function / defined by

f(z): = Σ™akZ2k is also in if. Thus, from Theorem 3.2, we can as-

sociate with / a continuous nondecreasing function hf defined on [0, -I- °°),

with hf (0) > 0, such that / and all its partial sums 5n (z) have no zeros in

&\ = {z =x + iy: x ^ 0 and |y |^Λ ; (jc)}.

But if sn(z) denotes the nth partial sum of g(z), then sn(z2)= S2n(z) for
all n = 1,2, , which allows us to relate the corresponding zeros of the
partial sums of g with those of /. Thus, defining

then g and all its partial sums sn have no zeros in (@. Now, since
hf (0) > 0 and hf is nondecreasing on [0, + co), then evidently

» D {z2: z =x + iy, x ^ 0 and |y 1^/1,(0)}.

Thus, if Hg is the associated width function for g, the above inclusion
implies that

Hg(t)^2Λ,(0)(ί + ΛK0))1/2 = 2hf (°) ί l / 2 ' f o r a11 r = °̂

which is the desired result of (3.10).

As previously noted, u(z)=e\ of order p« = 1, and v(z) =
cosh(Vz), of order ρv = 1/2, are elements of the set if, and furthermore
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each is of perfectly regular growth. Moreover, for u(z) = e\ the
authors' result of (2.9) implies that

Hu (x) g 2(x + 1)1/2, for all x ^ 0.

Also, applying Corollary 3.3 to υ(z) = cosh(Vz) gives

HΌ(x)^cxm, for all * ^ 0 .

However, we believe that this last inequality can be improved. In fact,
we conjecture more generally that, for any element g E ϊf of perfectly
regular growth, its associated width function satisfies

Hg(x)^cx(2-p^\ for all x^O.

As a consequence of Theorems 3.1 and 3.2, which apply to both ez

and cosh(Vz), we have the following application of Corollary 2.2.

COROLLARY 3.4. For any g E &* of order p > 0 which is of perfectly
regular growth, let Hg be its associated nondecreasing width function of
(3.7), and lethEίffl be any positive function for which h (x) ̂  Hg (x) for all
x^O. Then for

0<d<(2υ2p-l)/(2 ιl2p

we have

(3.11) l i m ί l - - -III sH Ed{h)
= ol/p 1 1 _ A I ^ '

where the region Ed(h) is defined as in (2.2), and sn(z) denotes the nth
partial sum of g(z).

Proof Because g E ϊf implies that the Maclaurin coefficients of g
are all nonnegative, and because g is assumed to be of perfectly regular
growth, then the conclusion (3.4) of Theorem 3.1 is valid. Next, by the
definition of Hg (x) and the fact that h (x) ̂  Hg (x) for all x ^ 0, it follows
that g and all its partial sums sn have no zeros in the interior of the region
Eλ(h). Consequently, applying Corollary 2.2, with q = 21/p, gives the
desired result of (3.11).

We remark that the existence of a function h E 3ίf satisfying the
conditions of Corollary 3.4 is obvious. As a simple example, take hg of
Theorem 3.2 and set h (x) = hg (0).
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Concerning rational approximation to entire functions of order
p = 0, it has been shown in [7, Thm. 7] and in [4, Thm. 2] that if g is an
entire function of order zero and satisfies certain growth and coefficient
restrictions, then

(3.12) l i m ί i n f - - - . 1 = 0 .
»-» [pe*. g p ( 0 + o o ) J

As an illustration of how our techniques apply to such situations, we
present

PROPOSITION 3.5. Let g(z) = Σx

k=oz
k\ak\ where α ^ 2 , and let

sn(z) = Σk=,oz
k/ak\ Then, on every closed sector S(θ) (defined in (2.17))

with 0 < θ < 7r, we have

(3.13)
Sn \\S(Θ)

1/n2

1

Of course, for the functions of Proposition 3.5, we see that the
conclusion of (3.13) is far stronger, and implies the result of (3.12), as a
special case.

As the proof of Proposition 3.5 follows from the methods of proof of
the main results in §2, we shall defer it to the next section.

4. Proofs of n e w results. We now present the proofs of the
main results given in §2. It is convenient in this regard to first state a
particular case of Walsh's Lemma [18, p. 250].

LEMMA 4.1. Let r n ( z ) E τ r n n have poles in the extended complex
plane at the points βu β2, , βm, m ^ n, (listed according to
multiplicity). //

then for

(4.1)

- l , +1] ,

l-Φ(βk)Φ(z)

Φ(z)-Φ(ft)

where w = Φ(z) is ί/ie inverse of the function
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which maps | w | > l in the w-plane one-to-one onto the exterior of
[-1, +1] in the z-plane, so that ψ(oo) = oo. Moreover, if CR denotes
generically the elliptical level curve | Φ(z) | = JR > 1 in the z-plane, and if
all the points β} lie on or exterior to CA, then for any 1 ̂  S ^ A, t

(4-2)

where Cs denotes the closed interior of Cs in the z-plane.

We remark that if rn = pn E πn, then (4.2) is valid for any A > S, and
letting A -> oo in (4.2) gives the familiar result of Bernstein (cf. [6, p. 92]),

\\pn(z)\\cs ̂  MS", if \\pn(z)\U+n^M,

which can also be deduced from (4.1) with all βt - oo.

Proof of Theorem 2.1. For δ > 0, set qx: = q + δ, q2: = q + 28, and
select δ > 0 sufficiently small so that (cf. (2.3))

(4.3) i ϊ i n / ^ i i ^
"-*00 qi q\ q

Next, for any β ^ 1, define

(4.4) A*(j8): = J-+ A / ^ + 1, and p*(β):= A*(β/d),

where d is fixed and satisfies (2.4). An easy calculation with these
definitions then shows that

A (β)p (β)-1\ _ 1 + d
) 1-d

Thus, we can choose a finite β ^ 1, dependent on δ, such that

(4.6) 1 < I — ^ r / r \r/ A J < Hi /

From (4.3) there exists an n0, depending on δ, such that

|| / - rn ||[0, +x) < — , for all n ^ n0.
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Thus, by the triangle inequality, it follows that

(4.7) 72+D
W - rn-i||[o,+«) < w „ ' , for all n > n0.

Since by hypothesis h G X, there exists a tx ̂  0 such that h(t) > 0 for all
f g ί,. Consider then the line segment of the real axis

m(t):=[t-βh(t),t

for any t ^ ί,. With LΉospitaΓs rule, the condition of (2.1) then implies
that

(4.8) lim = lim h'(t) = 0,

and consequently, there exists a ί2, ^ = ίi, dependent on β and hence on
δ, such that for all t ^ t2, the segment m(t) is a segment of the
nonnegative real axis, i.e.,

m(ί) C[0, +oo), for all t ^ ί2.

Next, for any μ ^ 1 and for any r ̂  ί2, let mμ(ί) denote the following
ellipse in the complex plane:

m μ ( ί ) : =

where

(4.9)

and let mμ(t) denote the closed interior of mμ(t), i.e.,

Wait): = \z = x + ly: Σ T-2- + 77 ̂

1 a υ

For each t ^ ί2, let A (t) denote the largest value of μ ^ 1 such that

(4.10) mμ{t)CEx(h).
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We claim that

(4.11) lim A(t) = A*(β).
t—»+oo

To prove (4.11) we establish upper and lower bounds for A (t). Geometri-
cally, the value for μ derived by setting b = h{t) is obviously an upper
bound for A{t). But, using (4.9), this implies that

and, upon solving for μ, it follows (cf. (4.4)) that

Thus

A(t)^A*(β), for each t ^ t 2 .

Next, since h E ffl, the function h(t) is nondecreasing for, say, all
t g t3 ^ t2. Thus, the value for μ derived by setting b = h(t - a) is again
seen geometrically to be a lower bound for A(f), i.e., from (4.9)

( 4 , 2 )

It is not difficult to see in fact that (4.12) has a unique solution μ*(t)
satisfying 1< μ *(f) ^ A *(/3) for all t sufficiently large. Indeed, on the
interval 1 ̂  μ ^ A *(β) it is clear from (4.8) that the right-hand side of
(4.12) is a well-defined positive nonincreasing function of μ for all ί, say,
with / ̂  ί4^ ί3, while the left-hand side of (4.12) is a strictly increasing
function of μ. Moreover, for μ = 1 the left-hand side vanishes and is
thus less than the positive value of the right-hand side for μ = 1, while for
μ = A *(/3), the left-hand side reduces by definition to h(t), which cannot
be less than the corresponding value of the right-hand side for μ =
A *(/3) since h (t) is nondecreasing for t ^ t3. Thus, there exists a unique
solution μ *(f) of (4.12) which satisfies 1 < μ *(ί) ̂  A *(j8), and μ *(f) is a
lower bound for A(/), i.e.,

for all t^tA.

We now show that μ*(/)> the unique solution of (4.12), satisfies
lim,_+.μ*(0 = A*(β). As μ*(ί) is bounded, i.e., μ*(r)S A *(0), we
see from (4.8) that
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as

Therefore, since W exists for all sufficiently large values of the
argument, we can apply the Mean Value Theorem to deduce

(4.13)

where

(4.14) t - @ψϊ (μ *(ί) + (μ *(ί)Γ) < ct < ί, for all t large.

Dividing the expression in (4.13) by h(t) and observing that
lim +̂ooC, = +oo, it follows from hypothesis (2.1) that

as ί -> + oo. But, using the defining relation (4.12) for μ *(ί), the above
gives us that

iim I {μ*(t)-(μ*(t))"'}= 1,

which implies, from the definition of A*(β) in (4.4), that

Iim

Hence, as μ*(ί) = A ( ί ) ^ A *(β) for all ί ^ r4, then evidently
limf^+coA(ί) = A*(jβ), as claimed in (4.11).

In order to "fill out" the region Ed(h), where d is fixed and satisfies
(2.4), it suffices to work with ellipses mμ(ί), defined by setting

b = dh{t).

From (4.9) and (4.4), the corresponding value of μ turns out to be
μ = ρ*(β) = A*(β/d). Geometrically, this implies that the elliptical
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region rhp*φ){t) covers the vertical segment {z = x + iy: x - t and \y\~
dh(t)} of Ed(h). Λ Next, using (4.11) and the fact that 0 < d < 1, then
l^p*(β) = A*(β/d)<A(t) for all t sufficiently large, say t^t5^t2.
But from (4.7), we trivially have, since m (t) C [0, + <») for all t g t2, that

|| rn - rπ_, ||m(/) < ^ 2

 n ' , for all n > n0, all t g ί2.

Next, since the interior of Ex{h) by hypothesis contains no poles of rn for
all n sufficiently large, say n ^ nx § n0? the same is evidently true for
( / • r ^ i j ε ^ n - u H . Thus, applying (4.2) of Walsh's Lemma 4.1 with
[ - 1 , +1] replaced by m(t), gives us that

i w - r (

for all n>nu all ί ^ ί5. Since l i π v ^ A ( 0 = A *(β) from (4.11), it
follows from (4.6) that, for all n > nι and all t sufficiently large, say

* = * 6 = fc5?

\-d

where t6 is dependent on δ. But, since mp*{β}(t) covers the vertical
segment of Ed(h) with abscissa ί, then the set U{i>ί6mp*(/3)(ί) evidently
covers Ed(h)y with the possible exception of a bounded subset Kd of
Ed(h), where Kd depends upon the choice of δ, as well as d. Hence,

(4.15) ||r.(z)-r.-I(*)|UHt4 ^
 ί ^ 7 i ) ( ^ | ) 2 " for all n

which implies that the sequence {r«(z)}*=1 converges geometrically on
Ed(h)- Kd to an analytic extension F(z) of /(x), defined by means of

F(z): = rm(z)+ Σ (^i(z)- rn(z)).

Indeed, it follows from (4.15) that

lk». i + ,(z )-^(2)11^^ ^ ( i l 2 y)^ f {τ^ί)2n>for a11 n > n»a11 s = J '

where
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so that letting 5 —> 00,

||F(z)- r.-.ίz^U^ g J l ^ l (fr|)2"' for

This in turn implies that

which is the desired final inequality, (2.5), of Theorem 2.1.

Proof of Corollary 2.2. The existence of the entire function G(z),
of finite order, with G(x) = g(x) for all x ̂ 0 is a consequence of [7,
Theorem 3], even though the result given there is only stated for the case
when g is real on [0, -f <»). Moreover, a careful examination of the
proof of Theorem 3 of [7] shows that the sequence {pn(z)Yn=λ converges
uniformly and geometrically to G(z) on any bounded set T in the
complex plane, the degree of convergence on T being at least II q, i.e.,

(4.16) h^{\\G(z)-pn(z)\\TY'"^~.

Next, as no pn by hypothesis has zeros in the interior of Eλ(h) for all n
sufficiently large, the uniform convergence of {pnγn=λ to G on any
bounded set gives us that G is nonzero at any interior point of Ex(h) by
Hurwitz's Theorem. Also, because Λ ( J C ) > 0 for all x > 0 , it is clear
from the definition of the set Es(h) in (2.2) that every point in Ed(h), for
each d with 0 < d < 1, is an interior point of Ex{h), except for the vertical
segment {z = ίy: |y | = dh(0)}. Hence, since G(z) is given to be nonzero
on this segment, then G(z) is nonzero on all of Ed(h). We remark that
if /ι(0) = 0, then the assumption that G is nonzero on the segment
{z = iy: |y | ̂  dhφ)} reduces simply to the assumption that G(0) =

We are now in a position to apply Theorem 2.1 with f(x)=
for all x ^ 0 , and with rn = l/pn for all n ^ l . First, fix any d which
satisfies_(2.4), and_ let q' be any number with \<q'<q such that
d < (Vqf- 1)/(VV + 1). Then, it follows from (2.6) that

— r II l l || ) 1 / n i
lim \ \\—7-r τ-7 < — < 1.
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Hence, from (2.5) of Theorem 2.1, there exists a bounded subset Kd of
Ed{h) such that

(4.17) lim
1 1

G{z) <ϊ'\l-<ί
< 1.

Now, since G(z) is nonzero on Ed(h), it is evidently nonzero on the
closure of its bounded subset Kd. Thus, it follows from (4.16) with
T = Kd that

(4.18) lim
1 1

G(z) Pn{z)\\Kd) q q'

Then, simply combining the results of (4.17) and (4.18) gives us that

lim
1 1

G(z) pn(z) Ed(h)

1/n dV
I

But as this inequality holds for all q' sufficiently close to q with Kqf <q,
then

l i m " | G ( z )

the desired result of (2.7).

1

Ed(h)

1 dy

q W-dl

Proof of Corollary 2.3. Because <€ is, from (2.13), contained in
every Ed(h), 0<d, except for some compact set, it follows from (4.16)
and (2.7) that

lim
11

G(z) pn(z)
1

q W-d)
d\2

Γ I

for each d > 0 sufficiently small. But as % is independent of d, then
letting d—»0 in the above inequality yields

lim
1 1

=i-< 1.
G(z) pn(z)

On the other hand, the ray [0, + o°) is a subset of <€, so that

hσ: -
1

[0, +«)

^ - ί l l 1 1
pΛ(z)
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Thus, if 0 < σ < 1, we can choose q from (2.6) with 1 < q < + oo so that
q = 1/σ, and equality holds throughout in the above expression, which
yields the desired result of (2.15). If, however σ = 0, then (2.6) is valid
for every q > 1, and letting q -» 4- °o in the above expression again gives
(2.15).

For the proofs of the theorems on overconvergence in regions
having a positive angle at infinity, it is convenient to first establish

LEMMA 4.2. Let π/2 ̂  φx < φ2 ̂  π, and, /or / = 1,2, /βί Δ*(φI, p)
denote generically the open circular sector {in the w-plane) with vertex
- 1, radius p, and opening 2φt ( ^ π ) symmetric about the ray [-1,4- oo)?

i.e.,

its closure being denoted by Δ*(φ t,p). Then, for each pair of positive
numbers 6, r/, there exists a δ > 0 swc/i ί/iaί ί/ie inequality

(4.19) * ^ 1 / f i \ "• ^

w — a

holds whenever w E Δ*(φ b δ) and a£ Δ*(φ2,17), a/ - 1.

Proof. First, we fix a in the infinite sector F : = {w:φ 2 =
arg(w + 1 ) ^ 2π — φ2} which is contained in the complement of
Δ*(φ 2,η), i.e.,

a=-l + rei\ r > 0, φ2^θ^2π-φ2,

and we consider the image of the closed infinite sector S: —
{w: |arg(w -f-1)| ^ φλ) under the bilinear transformation

= T(w): =v 7

w - a

Let i?+ and £β~ denote, respectively, the lines

ϊ£+: = {w: arg(w + 1) = φλ or φj + π};

if": = {w: arg(w + 1) = TΓ - φλ or 2ττ - φ j .

Since these lines do not pass through α, they are mapped by T to true
(intersecting) circles C« and C~ in the £-plane. Furthermore, since α ^ S,
the image T(S) is the union of the closed interiors of these circles.
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To estimate the moduli of points on C«, we find the center c+

a and
radius r+

a of this circle. As T(a) = ^, we have c * = T ( α * ) , where

is the reflection of a in the line i?+. Thus,

+ = 1 - α α * = eι(2φ>-

and so,

(4.20)

i(2φι-θ) _

cos φx r_

Furthermore, since T(°°) = - α E C,+, we have

(4.21) r

+

a = I c« -f ά I = I ̂ i 2 ~ ̂  = ~ c o s θ +

Now, (4.20) and (4.21) imply that, for ξ on C+,

'

sini(0 - φj) sin(0 - φx) '

and it is easy to verify that the next to last term is a nonincreasing
function of θ on [φ2,2τr - φ2], and that sin(0 - φ i ) ^ s i n ( φ 2 - φi)>0.
Hence,

sinj(φ2+φ1-π)
isin(φ2-φ0'

and, by a symmetry argument, the same inequality holds for ξ E Ca.
Therefore, for any w E S, α 6 P , and | a 4-11 ^ r, we have

1 —

w - a
-f —

s i n ( φ 2 -

Consequently, given 6 and 17, fix r = min{r/, β s i n ( φ 2 - φi)}, so that
inequality (4.19) holds whenever w E S, a E P, and 0 < | α + 11 < r.

Finally, assume | α + 11 S r and suppose that w E 5 with | w + 11 ^
δ < r. It is easy to verify that
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1 — aw
w — a

w + 1
1 - w + 1

Writing w = - 1 + δe'*, O ^ δ ^ δ , with \θ\^φu it follows that | iv | =
( l - 2 δ c o s θ + δ 2 ) 1 / 2 ^( l-2δcosφ 1 + δ2)1/2. Substituting this into the
above display then yields

1- aw
w - a

δβ-cosφλ + <9(δ2)<l

for all δ sufficiently small. But, as the right side of (4.19) is greater than
1 + 6, then (4.19) must hold for w E Δ*(φ,, δ) and a £ Δ*(φ2, η), a φ - 1.

We now prove an overconvergence result for circular sectors with
vertex at z = — 1.

LEMMA 4.3. Assume that /, defined and finite on [—1,1], is such
that there exists a sequence of rational functions {rn}"=1, with rn E τrπ,n /or
all n^\, and a real number q>\ such that

(4.22)

Lei Δ(φ, p) denote generically the open circular sector

+ l ) | < φ, | z + l | <

assume that Δ(θ0, μ0), vv/zerβ 0 < 0O = TΓ and μ0 > 0, contains no poles
of the rn (z) for all n sufficiently large. Then, for each fixed θ, 0 < θ < 0O,
satisfying

(4.23)

i.e.

(4.24)

sin|(0o+6>)
<

0<θ<4tan
- 1

tan

ί/iere ex/sίs a μ = μ(θ)>0 and a function F(z) analytic on Δ(0, μ),
continuous on the closure Δ(θ, μ), with F(x) - f(x) for all x of [- 1, +1]
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in [ - 1 , - 1 + μ], such that {rn(z)}ζ=ι converges geometrically to F on
A(θ,μ). Moreover,

(4.25)

Proof. First, choose qλ > q so that

(4.26)

and let γ satisfy

(4.27) 1 < γ < (qjq)ιμ.

From (4.26) and the triangle inequality, we have for n sufficiently large,
say n ^ n0, that

(4.28) <

Let θ be fixed and satisfy (4.23), and choose 0O and 0 so that

(4.29) 0 < 0 < 0 O < 0 O , and sini(0 0 +0) < s ini(e o +0) a

s ini(0 o -0) s ini(0 o -0)

Since the derivative of the function Ψ(w) of Walsh's Lemma 4.1 has a
simple zero at w = - 1, an angle θ at z = - 1 is sent into \(θ + π) by the
inverse mapping w = Φ(z). Consequently, as 0O < 0O, the image of the set
Δ(0O,μo)~[- 1,1] under Φ must, for some η > 0 , contain the set

*(fΔ*(f + f

where the asterisk denotes that the circular sector is in the w-
plane. Since γ > 1, Lemma 4.2 (with φ, = 0/2 + ττ/2, φs = 0o/2 + π/2)
implies that there exists a δ > 0 such that the inequality

(4.30) l-Φ(/3) Φ(z)

Φ(z)-Φ(β) 7

holds whenever β £ Δ(0O, ̂ o), jβ ̂  [ - 1,1], and
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(4.31)

But,_as θ > θ, we can find a μ, 0 < μ < 2 , so that (4.31) holds for all
z E Δ(0, μ ) - [- 1,1]. Now, by hypothesis, no poles of rn(z)— rn_,(z) lie
in Δ(0O> μ0) for all n large, say n^nλ^ n0, and thus, from (4.28), (4.30),
and (4.1) of Lemma 4.1, we deduce that

for n > nλ. Hence, by the argument used in the proof of Theorem 2.1,
the sequence {rn(z)}"=1 converges geometrically on Δ(#, μ) to an analytic
extension F(z) of / (x). Furthermore, from (4.32), (4.29), and (4.27), we
have

i I S i n 4 ί I/O ' CM 1

q [sinl(0o— Θ)j '

which is the desired inequality (4.25).

Proof of Theorem 2.4. Observe that Lemma 4.3 trivially remains
valid if the line segments of the circular sectors Δ(0O, μ0) and Δ(0, μ) are
replaced by smooth arcs making angles of θ0 and 0, respectively, with the
segment [-1,1] at z = - 1 . Also, condition (4.22) is invariant under
bilinear transformations of [ - 1,1], and therefore so is Lemma 4.3. As
a consequence of these facts we obtain Theorem 2.4.

The proofs of Corollaries 2.5 and 2.6 are similar to those of
Corollaries 2.2 and 2.3, and hence we omit them.

Proof of Theorem 2.7. Applying Lemma 4.3 (with the interval
[- 1,1] translated to the interval [0, 2]), and applying Theorem 2.4, we
know that there exists a θ* > 0 and a p, 1 < p < <*>, such that the sequence
{fπCOK î converges geometrically on the set

But, as the rn{z) (trivially) converge geometrically on the segment
[1/ρ, p], and have poles a positive distance (independent of n) from this
segment, it follows from a theorem of Walsh (see §9.8 of [18]) that the
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rn(z) must converge geometrically in the closed interior of some non-
degenerate ellipse % with foci at 1/p and p. Consequently, by choosing
0, 0 * > 0 > O , so small that S(Θ)CA Ug, the sequence of rational
functions will converge geometrically on 5(0), necessarily to an analytic
extension F of /.

Concerning the proof of Corollary 2.8 we remark that if rational
functions rn{z) converge faster than geometrically on [0, + 0 0 ) , then it is
known (see Aharonov and Walsh [1], and Goncar [5]) that the rn(z)
converge uniformly on any closed bounded set K of the plane which
contains no limit points of the poles of the rn(z), the convergence on K
being faster than geometrically.

Proof of Corollary 2.8. In this case, inequality (2.18) holds for every
q > 1. Hence, given 0, 0 < 0 < 0O, and given e > 0, we can choose q so
large that

I fsinK0o+0)]2

 <

q [sinϊ(0o-0)J 6 '

and so (as in the proof of Theorem 2.7) there exists a ρ = p ( e ) > l such
that

(4.33) M{\\F-rn\\§i9yκ}m<e9

where

Since, for all n large, K is a positive distance from the poles of the rn(z),
we have by the result of [1] and [5] mentioned above that

(4.34) l i m { | | F - r n | U Γ =0.

Therefore, from (4.33) and (4.34) we obtain

and as e > 0 is arbitrary, equation (2.24) follows.

This completes the proof of the main results stated in §2. It
remains to verify Proposition 3.5. The proof requires three lemmas, the
first of which concerns approximation on the ray [0, 4- oo).
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LEMMA 4.4. Under the assumptions of Proposition 3.5

(4.35) lim
1 1

g(x) sn(x) (0,+αc)

1/n2

The proof of (4.35) follows from a straightforward modification of
the argument used by Meinardus and Varga [8] in their proof of Theorem
3.1. See also Erdόs and Reddy [4].

LEMMA 4.5. Let T be any bounded set in the complex plane. Then,
with the assumptions of Proposition 3.5,

(4.36)

Proof. If p:=sup{| z | : z G T}, then direct calculations show that

k=n+\

for all n large and all z G Γ , from which (4.36) directly follows.
The final lemma can be found in Pόlya and Szegό ([9], vol. 2, p. 69,

prob. 176).

LEMMA 4.6. The function g(z) and the partial sums sn(z) of
Proposition 3.5 have all their zeros on the negative real axis.

Proof of Proposition 3.5. Using the above lemmas and applying the
techniques of this section, it is easy to show that, for 1 < q < Vα and for
0 < θ < 7r, the inequality

S(θ)

is valid for all n sufficiently large, where r > 1 is some constant
independent of n.

This last inequality together with the arbitrariness of q implies that

lim f

But, by Lemma 4.4, we also have

l l I!

g sn is«o

1
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1
= lim

g s*

Vn2

^ lim 11/n2

S(θ) i
and so equation (3.13) follows.
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